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Introduction

We have seen two models of computation: finite automata and pushdown
automata. We now discuss a model which is much more powerful: the
Turing machine.
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Introduction

We have seen two models of computation: finite automata and pushdown
automata. We now discuss a model which is much more powerful: the
Turing machine.
A Turing machine is like a finite automaton, with three major differences:
» |t can write to its tape;
» It can move both left and right;
» The tape is infinite in one direction.

Ll

Initially, the input is provided on the left-hand end of the tape, and followed
by an infinite sequence of blank spaces (“_”).
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Alan Turing (1912-1954)

1936: Invented the Turing machine and the concept of computability.

» 1939-1945: Worked at Bletchley Park on cracking the Enigma
cryptosystem and others.

1946-1954: Work on practical computers, Al, mathematical biology, ...
1952: Convicted of indecency. Died of cyanide poisoning in 1954.
2014: Received a royal pardon.

v

v

v

v

Pic: Wikipedia/Bletchley Park
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Turing machines

» Turing machines have two special states: an accept state and a reject
state.
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Turing machines

» Turing machines have two special states: an accept state and a reject
state.

» If the machine enters the accept or reject state, it halts (stops).

» If it doesn’t ever enter either of these states, it never halts (i.e. it runs
forever).

» The language L(M) recognised by a Turing machine M is the set

{x | M halts in the accept state on input x}
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Turing machines

» Turing machines have two special states: an accept state and a reject
state.

» If the machine enters the accept or reject state, it halts (stops).

» If it doesn’t ever enter either of these states, it never halts (i.e. it runs
forever).

» The language L(M) recognised by a Turing machine M is the set

{x | M halts in the accept state on input x}

» For some language L, if there exists a Turing machine M such that
L = L(M), we say that £ is Turing-recognisable. (These languages
are also sometimes called recursively enumerable.)
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Describing Turing machines
We can describe a Turing machine by its state diagram.

» As with DFAs and PDAs, we have a graph whose vertices are labelled
by states of the machine, and whose edges are labelled by possible

transitions.
—Db,R
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Describing Turing machines
We can describe a Turing machine by its state diagram.

» As with DFAs and PDAs, we have a graph whose vertices are labelled
by states of the machine, and whose edges are labelled by possible

transitions.
—Db,R

a—b,R

» A label of the form

means that on reading tape symbol a, the machine writes b to the
tape and then moves right.
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Describing Turing machines
We can describe a Turing machine by its state diagram.

» As with DFAs and PDAs, we have a graph whose vertices are labelled
by states of the machine, and whose edges are labelled by possible

transitions.
—Db,R

a—b,R

» A label of the form

means that on reading tape symbol a, the machine writes b to the
tape and then moves right.

» Another example: a label
a,b— L

means that on reading either tape symbol a or b, the machine doesn’t
write anything to the tape and then moves left.
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Turing machines

Imagine we want to test membership in the language
Leg={wiw | we {0,1}*}.

X € Lgq if itis made up of two equal bit-strings, separated by a # symbol.
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Turing machines

Imagine we want to test membership in the language
Leg={wiw | we {0,1}*}.

X € Lgq if itis made up of two equal bit-strings, separated by a # symbol.

Idea for recognising this language

1. Our algorithm will scan forwards and backwards, testing each
corresponding pair of bits either side of the # for equality in turn.

2. We can overwrite each bit with an x symbol after checking it so we
don’t check the same bits twice.
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State diagram (Sipser, Figure 3.10)

071_>R X—)R
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Example: testing whether 01401 € Lgq

0’1—>R x— R

—(g +— R %u—h‘?@

071_>H x— R
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Example: testing whether 01401 € Lgq

0,1 =R x— R

CLEl LTS
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Turing machines: formal definition

Definition
A Turing machine is described by a 7-tuple (Q, %, T, 8, Go, Gaccept Greject)
where:
1. Qs the set of states,
2. ¥ is the input alphabet (which must not contain _),
I is the tape alphabet, where , elTand ~ C T,
0:QxT — QxT x{L, R} is the transition function,
Qo € Qis the start state,
Qaccept IS the accept state,
Qreject is the reject state, where Greject # Gaccept-

N o oA W
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Example
The Turing machine we just saw is described by

({qh---aQ8’QacceptaQreject}7 {0,1,#}, {0,1,#,%,.}, 6, qi, Qaccept; qreject)

where the transition function 4 is defined by the table

0 1 # X o
91| ., x,R| q3,x,R | gs, R
®| @R | R | R
| 93, R a,R | g, R

Qs | Qs %, L Qs, R
g5 Q6, %, L g, R
[*3 qﬁvL q67L Q77L q67L
Q| aqnlL qr, L ai,R
ds g8, R | Qaccept, R

Blank entries in the table correspond to transitions where the machine
rejects.
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Turing machines: formal definition (2)

» The full description of what a Turing machine M is doing at any point
in time is called its configuration.

» We write uqv for the configuration where:
» the tape to the left of the current position contains u;
» the tape to the right of the current position (and including the current
position) contains v (followed by an infinite number of _’s);
» the machine is in state q.
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Turing machines: formal definition (2)

» The full description of what a Turing machine M is doing at any point
in time is called its configuration.

» We write uqv for the configuration where:

» the tape to the left of the current position contains u;

» the tape to the right of the current position (and including the current
position) contains v (followed by an infinite number of _’s);

» the machine is in state q.

» For example, 0193110 describes the following situation:

Lofr]efefof-]=]5 -
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Turing machines: formal definition (3)

» Configuration C; yields C, if M can go from Cy to C. in one step. So:

» uag;bv yields ugkacv if §(q;, b) = (gk, ¢, L);
» uagq;bv yields vacqkv if 6(q;, b) = (qk, ¢, R).
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» If M is at the left-hand end of the tape, it cannot move any further to
the left; but M can move arbitrarily far to the right (the tape is one-way
infinite).
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Turing machines: formal definition (3)

» Configuration C; yields C, if M can go from Cy to C. in one step. So:

» uag;bv yields ugkacv if §(q;, b) = (gk, ¢, L);
» uagq;bv yields vacqkv if 6(q;, b) = (qk, ¢, R).

» If M is at the left-hand end of the tape, it cannot move any further to

the left; but M can move arbitrarily far to the right (the tape is one-way
infinite).

» M accepts input x if there is a sequence of configurations Cy, ..., Cx
such that:

1. Ci is the start configuration of M on input x;
2. Forall1 <i< k-1, Cjyields Ci;+;
3. Cx is an accepting configuration (M is in state Gaccept)-
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Real-world implementations

As well as being a mathematical tool, a Turing machine is a real machine
that we can build. . .

» http://aturingmachine.com/index.php

» http://www.legoturingmachine.org
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Summary and further reading

» A Turing machine is a generalisation of a finite automaton which has
access to an infinite tape which it can read from and write to.

» Turing machines can perform complicated computations (although
writing these down formally can be a painful process).

» Further reading: Sipser §3.1.
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