
COMS11700

Pushdown automata

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

10 March 2014

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 1/18

Pushdown automata

I You have seen that there are some languages which cannot be
recognised by nondeterministic finite automata (NFAs).

I We now discuss a way of extending the concept of NFAs to make them
more powerful, by adding access to a simple data storage device.

I This is an apparently simple extension which nevertheless
significantly expands the range of recognisable languages.

I It also illustrates a close connection between a natural class of
languages and a natural model of computation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 2/18

Pushdown automata

I You have seen that there are some languages which cannot be
recognised by nondeterministic finite automata (NFAs).

I We now discuss a way of extending the concept of NFAs to make them
more powerful, by adding access to a simple data storage device.

I This is an apparently simple extension which nevertheless
significantly expands the range of recognisable languages.

I It also illustrates a close connection between a natural class of
languages and a natural model of computation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 2/18

Pushdown automata
We can think of a finite automaton as follows:

a b b a a b a

Control

A pushdown automaton (PDA) is a nondeterministic finite automaton which
also has read/write access to a stack.

a b b a a b ab

b

a

Control

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 3/18

Pushdown automata
We can think of a finite automaton as follows:

a b b a a b a

Control

A pushdown automaton (PDA) is a nondeterministic finite automaton which
also has read/write access to a stack.

a b b a a b ab

b

a

Control

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 3/18

Pushdown automata

I The stack starts empty, grows downwards and the automaton has
access to the top element.

I At each step, it can push an element onto the top of the stack and/or
pop an element from the top of the stack.

I Based on what the top element is, the PDA can make different
transitions.

I This provides a simple kind of storage, allowing PDAs to do more than
finite automata can.

We can have a special symbol $, which lets the PDA determine whether
the stack is empty.

I The PDA starts out by pushing $ onto the stack; at a later stage it can
test whether $ is at the top of the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 4/18

Pushdown automata

I The stack starts empty, grows downwards and the automaton has
access to the top element.

I At each step, it can push an element onto the top of the stack and/or
pop an element from the top of the stack.

I Based on what the top element is, the PDA can make different
transitions.

I This provides a simple kind of storage, allowing PDAs to do more than
finite automata can.

We can have a special symbol $, which lets the PDA determine whether
the stack is empty.

I The PDA starts out by pushing $ onto the stack; at a later stage it can
test whether $ is at the top of the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 4/18

Pushdown automata

I The stack starts empty, grows downwards and the automaton has
access to the top element.

I At each step, it can push an element onto the top of the stack and/or
pop an element from the top of the stack.

I Based on what the top element is, the PDA can make different
transitions.

I This provides a simple kind of storage, allowing PDAs to do more than
finite automata can.

We can have a special symbol $, which lets the PDA determine whether
the stack is empty.

I The PDA starts out by pushing $ onto the stack; at a later stage it can
test whether $ is at the top of the stack.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 4/18

Example
I Imagine we want to recognise the language LP of properly nested

parentheses.

I That is, strings like:

(), (()(())), ((())()(())), . . .

but not like:
)(, (()()))), ((())()(()), . . .

Characterisation of LP

s ∈ LP if:
I at any point scanning along s, we have seen no more)’s than (’s;
I at the end of s, we have seen exactly as many)’s as (’s.

This characterisation suggests a PDA for LP . . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 5/18

Example
I Imagine we want to recognise the language LP of properly nested

parentheses.

I That is, strings like:

(), (()(())), ((())()(())), . . .

but not like:
)(, (()()))), ((())()(()), . . .

Characterisation of LP

s ∈ LP if:
I at any point scanning along s, we have seen no more)’s than (’s;
I at the end of s, we have seen exactly as many)’s as (’s.

This characterisation suggests a PDA for LP . . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 5/18

Example
I Imagine we want to recognise the language LP of properly nested

parentheses.

I That is, strings like:

(), (()(())), ((())()(())), . . .

but not like:
)(, (()()))), ((())()(()), . . .

Characterisation of LP

s ∈ LP if:
I at any point scanning along s, we have seen no more)’s than (’s;
I at the end of s, we have seen exactly as many)’s as (’s.

This characterisation suggests a PDA for LP . . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 5/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

(

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Example

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

(() ())

Control

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 6/18

Describing pushdown automata
Just like DFAs / NFAs, PDAs can be described by their state diagrams.

I Each transition label is now of the form

α, β → γ

I This means:
IF input symbol is α AND β is on the top of the stack

- Make the transition
- Pop β off the stack
- Push γ onto the stack.

I Some special cases:
I α, β → ε: Don’t push anything onto the stack
I α, ε→ γ: Don’t pop anything from the stack
I ε, β → γ: Don’t read any input

I Just like NFAs, PDAs are nondeterministic: the PDA accepts if any
sequence of transitions terminates in an accepting state.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 7/18

Describing pushdown automata
Just like DFAs / NFAs, PDAs can be described by their state diagrams.

I Each transition label is now of the form

α, β → γ

I This means:
IF input symbol is α AND β is on the top of the stack

- Make the transition
- Pop β off the stack
- Push γ onto the stack.

I Some special cases:
I α, β → ε: Don’t push anything onto the stack
I α, ε→ γ: Don’t pop anything from the stack
I ε, β → γ: Don’t read any input

I Just like NFAs, PDAs are nondeterministic: the PDA accepts if any
sequence of transitions terminates in an accepting state.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 7/18

Describing pushdown automata
Just like DFAs / NFAs, PDAs can be described by their state diagrams.

I Each transition label is now of the form

α, β → γ

I This means:
IF input symbol is α AND β is on the top of the stack

- Make the transition
- Pop β off the stack
- Push γ onto the stack.

I Some special cases:
I α, β → ε: Don’t push anything onto the stack

I α, ε→ γ: Don’t pop anything from the stack
I ε, β → γ: Don’t read any input

I Just like NFAs, PDAs are nondeterministic: the PDA accepts if any
sequence of transitions terminates in an accepting state.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 7/18

Describing pushdown automata
Just like DFAs / NFAs, PDAs can be described by their state diagrams.

I Each transition label is now of the form

α, β → γ

I This means:
IF input symbol is α AND β is on the top of the stack

- Make the transition
- Pop β off the stack
- Push γ onto the stack.

I Some special cases:
I α, β → ε: Don’t push anything onto the stack
I α, ε→ γ: Don’t pop anything from the stack

I ε, β → γ: Don’t read any input

I Just like NFAs, PDAs are nondeterministic: the PDA accepts if any
sequence of transitions terminates in an accepting state.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 7/18

Describing pushdown automata
Just like DFAs / NFAs, PDAs can be described by their state diagrams.

I Each transition label is now of the form

α, β → γ

I This means:
IF input symbol is α AND β is on the top of the stack

- Make the transition
- Pop β off the stack
- Push γ onto the stack.

I Some special cases:
I α, β → ε: Don’t push anything onto the stack
I α, ε→ γ: Don’t pop anything from the stack
I ε, β → γ: Don’t read any input

I Just like NFAs, PDAs are nondeterministic: the PDA accepts if any
sequence of transitions terminates in an accepting state.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 7/18

Describing pushdown automata
Just like DFAs / NFAs, PDAs can be described by their state diagrams.

I Each transition label is now of the form

α, β → γ

I This means:
IF input symbol is α AND β is on the top of the stack

- Make the transition
- Pop β off the stack
- Push γ onto the stack.

I Some special cases:
I α, β → ε: Don’t push anything onto the stack
I α, ε→ γ: Don’t pop anything from the stack
I ε, β → γ: Don’t read any input

I Just like NFAs, PDAs are nondeterministic: the PDA accepts if any
sequence of transitions terminates in an accepting state.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 7/18

The PDA for LP

Determining whether s ∈ LP

1. Push $ onto the stack.
2. Read each symbol of s in turn.
3. If it’s a ‘(’, push ‘(’ onto the stack. If it’s a ‘)’, try to pop a ‘(’ off the

stack.
4. If the top element of the stack is $ when we get to the end of s, accept.

q0 q1 q2
ε, ε→ $

(, ε→ (

), (→ ε

ε, $→ ε

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 8/18

PDAs: formal definition

Definition
A pushdown automaton is described by a 6-tuple (Q,Σ, Γ, δ,q0,F), where:

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. δ : Q × Σε × Γε → P(Q × Γε) is the transition function,
5. q0 ∈ Q is the start state,
6. F ⊆ Q is the set of accept states.

Recall that Σε = Σ ∪ {ε}.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 9/18

PDAs: formal definition

A PDA P defined as above accepts input w if w can be written as
w = w1 . . .wm for some m, where wi ∈ Σε, and there exist sequences
r0, . . . , rm ∈ Q and strings s0, . . . , sm ∈ Γ∗ satisfying:

1. r0 = q0 and s0 = ε (P starts in the start state with an empty stack)

2. For each i , (ri+1,b) ∈ δ(ri ,wi+1,a), where si = at and si+1 = bt for
some a,b ∈ Γε and t ∈ Γ∗ (P moves properly according to its transition
function)

3. rm ∈ F (an accept state occurs at the end of the input)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 10/18

Example
Let N be the following PDA:

q0 q1 q2
ε, ε→ $

(, ε→ (

),(→ ε

ε, $→ ε

The formal description of N is:

N = ({q0,q1,q2}, {(,)}, {(,),$}, δ, q0, {q2})

where δ is the transition function defined by the table

Input: () ε
Stack: () $ ε () $ ε () $ ε

q0 {(q1,$)}
q1 {(q1,()} {(q1, ε)} {(q2, ε)}
q2

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 11/18

Second example
How would we design a PDA to recognise the language

L = {anbn | n ≥ 0}?

This is the language of strings containing a number of a’s followed by an
equal number of b’s. So, for example:

aabb ∈ L, ε ∈ L, but abab /∈ L.

Idea for determining whether s ∈ L

1. Start by reading a’s. For each a read, push it onto the stack.
2. When the first b is seen, switch to popping a’s off the stack. Pop one a

off the stack for each b read.
3. If the stack is empty, accept.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 12/18

Second example
How would we design a PDA to recognise the language

L = {anbn | n ≥ 0}?

This is the language of strings containing a number of a’s followed by an
equal number of b’s. So, for example:

aabb ∈ L, ε ∈ L, but abab /∈ L.

Idea for determining whether s ∈ L

1. Start by reading a’s. For each a read, push it onto the stack.
2. When the first b is seen, switch to popping a’s off the stack. Pop one a

off the stack for each b read.
3. If the stack is empty, accept.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 12/18

Second example

The following PDA implements the above idea.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

Note that it is nondeterministic.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 13/18

Second example

We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q0

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example

We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q1

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example

We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q1

a

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example
We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q1

a

a

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example

We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q2

a

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example

We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q2

$

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example

We track one path of this PDA’s execution, demonstrating that it accepts
the string aabb ∈ L.

q0 q1 q2 q3
ε, ε→ $

a, ε→ a

b,a→ ε

b, a→ ε

ε, $→ ε

a a b b

q3

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 14/18

Second example

I By playing around with this PDA you should convince yourself that it
does indeed recognise the language

L = {anbn | n ≥ 0}

. . . although we won’t formally prove this here.

I Recall that you showed, using the pumping lemma, that there is no
finite automaton that recognises this language.

I Therefore, PDAs are more powerful than finite automata!

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 15/18

A slight generalisation of PDAs

One simple way in which we can generalise PDAs is by allowing them to
push multiple symbols onto the stack.

Imagine we would like to push the string abc onto the stack, which we
could write as the transition

q0 q1
α, β → abc

We can split this into a sequence of transitions as follows:

q0 r0 r1 q1
α, β → c ε, ε→ b ε, ε→ a

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 16/18

A slight generalisation of PDAs

One simple way in which we can generalise PDAs is by allowing them to
push multiple symbols onto the stack.

Imagine we would like to push the string abc onto the stack, which we
could write as the transition

q0 q1
α, β → abc

We can split this into a sequence of transitions as follows:

q0 r0 r1 q1
α, β → c ε, ε→ b ε, ε→ a

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 16/18

A slight generalisation of PDAs

One simple way in which we can generalise PDAs is by allowing them to
push multiple symbols onto the stack.

Imagine we would like to push the string abc onto the stack, which we
could write as the transition

q0 q1
α, β → abc

We can split this into a sequence of transitions as follows:

q0 r0 r1 q1
α, β → c ε, ε→ b ε, ε→ a

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 16/18

Deterministic PDAs
I PDAs as we described them are intrinsically nondeterministic, but the

concept of deterministic PDAs also makes sense.

I A deterministic PDA (DPDA) is a PDA which has at most one possible
choice of transition to make at each step.

I The transition function is of the form

δ : Q × Σε × Γε → (Q × Γε) ∪ ∅

and for each q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of

δ(q,a, x), δ(q,a, ε), δ(q, ε, x), δ(q, ε, ε)

is not ∅.

I Unlike the situation with DFAs and NFAs, it turns out that the class of
languages recognised by DPDAs is a strict subset of that recognised
by PDAs.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 17/18

Deterministic PDAs
I PDAs as we described them are intrinsically nondeterministic, but the

concept of deterministic PDAs also makes sense.

I A deterministic PDA (DPDA) is a PDA which has at most one possible
choice of transition to make at each step.

I The transition function is of the form

δ : Q × Σε × Γε → (Q × Γε) ∪ ∅

and for each q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of

δ(q,a, x), δ(q,a, ε), δ(q, ε, x), δ(q, ε, ε)

is not ∅.

I Unlike the situation with DFAs and NFAs, it turns out that the class of
languages recognised by DPDAs is a strict subset of that recognised
by PDAs.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 17/18

Deterministic PDAs
I PDAs as we described them are intrinsically nondeterministic, but the

concept of deterministic PDAs also makes sense.

I A deterministic PDA (DPDA) is a PDA which has at most one possible
choice of transition to make at each step.

I The transition function is of the form

δ : Q × Σε × Γε → (Q × Γε) ∪ ∅

and for each q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of

δ(q,a, x), δ(q,a, ε), δ(q, ε, x), δ(q, ε, ε)

is not ∅.

I Unlike the situation with DFAs and NFAs, it turns out that the class of
languages recognised by DPDAs is a strict subset of that recognised
by PDAs.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 17/18

Summary and further reading

I A pushdown automaton (PDA) is a nondeterministic finite automaton
equipped with a stack.

I Using a stack allows PDAs to recognise non-regular languages.

I PDAs can be described by state diagrams or by a more formal text
description.

I They can be generalised by allowing the PDA to write multiple
symbols to the stack.

I Further reading: Sipser §2.2 (for DPDAs: Sipser 3rd edition §2.4).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS11700: Pushdown automata Slide 18/18

