
Fault tolerant quantum computation
Guest lecture for ‘Quantum Computation’ MATHM0023

Dominic Verdon
School of Mathematics, University of Bristol

dominic.verdon@bristol.ac.uk

07/03/2019

In this lecture I will introduce some of the theoretical tools that are being
used in attempts to build a fault-tolerant universal quantum computer.

Notation. P ⊂ U(2n) is the group generated by tensor products of Pauli
operators {I,X, Y, Z} on n qubits. We write Xi, Yi, Zi | 1 ≤ i ≤ n for operations
which perform Pauli X,Y or Z on qubit i and the identity elsewhere. Q := C2

is the Hilbert space of a qubit. We will need to distinguish between logical
and physical states, subspaces and operators, and so will signify ‘logical’ by
overlining, e.g. Q is the Hilbert space of a logical qubit.

Stabiliser codes. In the last lecture you learned about Shor’s nine-qubit
code. This encodes one logical qubit in nine physical qubits.

I’ll begin by reviewing this code from a slightly different perspective: it’s a
stabiliser code. Stabiliser codes are a particularly nice class of codes which can
be treated using abelian group theory. Because they are so nice to work with,
most of the codes people use in practice, such as surface codes1, are stabiliser
codes.

Let’s define the code space Q ⊂ Q⊗9 again, this time in stabiliser language.
In the last lecture, we saw expressions for the logical computational basis states
{|0〉, |1〉} ∈ Q⊗9, and the code space Q was defined as the linear span of these.
However, we can define the code space just in terms of the operators in P which
measure the error syndrome. If you check your notes from last time you will see
that, for the nine-qubit code, these are:

1Surface codes are a fascinating and widely used type of topological stabiliser code. See
e.g. [4].

1

mailto:dominic.verdon@bristol.ac.uk

S1 Z Z I I I I I I I
S2 Z I Z I I I I I I
S3 I I I Z Z I I I I
S4 I I I Z I Z I I I
S5 I I I I I I Z Z I
S6 I I I I I I Z I Z
S7 X X X X X X I I I
S8 X X X I I I X X X

You can easily check that these all commute — this is good news because oth-
erwise they wouldn’t be simultaneously measurable, and so our error syndrome
would depend on the measurement order! Because they commute, they generate
an abelian group S < P . Obviously, the eigenstates for the generators are the
eigenstates for any operator in this group, and their eigenvalues for any operator
in the group are completely determined by the eigenvalues for the generators.

Definition 0.1. An n-qubit stabiliser code is defined by a stabiliser — an
abelian subgroup S < P not containing i1 or −1.2 The code space is the joint
eigenspace of S where all operators have +1 eigenvalues.3

We already know that the code space is 2-dimensional, but we can see this
just from the generators {S1, . . . , S8}. They are all independent, and have
eigenvalues ±1; each therefore divides Q⊗9 into a different pair of eigenspaces.
The eigenspaces of S are the intersections of these, so are 29/28 = 2-dimensional.
Therefore, our code space Q is 2-dimensional, and can be used to encode a
qubit.4

Definition 0.2. For any stabiliser S ⊂ P , the size of the associated code space
is 2n−r, where r is the size of any independent generating set of S.5

How many errors does this code correct? In the last lecture we saw that it
certainly corrects for all single-qubit errors. Can we see this just by considering
the stabiliser?

We saw in the last lecture that, for a correction operation to correct for an
error aE + bF , it is sufficient for it to correct both E and F , since by linearity
it will act on all states in the superposition. We therefore need only consider
a basis of error operators. In the setting of stabiliser codes, P is the obvious
choice, with the advantage that all error operators are unitary.

Firstly, note that any two operators x1, x2 ∈ P either commute (x1x2 =
x2x1) or anticommute (x1x2 = −x2x1). Let |ψ〉 be an eigenvector of x1 with
eigenvalue λψ ∈ {±1}. Then, if x1, x2 commute, then

x1x2 |ψ〉 = x2x1 |ψ〉 = λψx2 |ψ〉 ,
2This last condition is just there to avoid redundancy and make the mathematics nicer.
3In fact we could use any eigenspace as the code space, but this choice keeps things concrete.
4If this intuitive argument didn’t satisfy you, there is an automorphism of the Pauli group

that maps the generators of S to {X1, . . . , X8}; the dimension of the code space is then
obvious.

5Well-definedness of r follows from the classification of finite abelian groups.

2

and so x2 preserves the eigenspaces of x1. On the other hand, if x1, x2 anticom-
mute, then

x1x2 |ψ〉 = −x2x1 |ψ〉 = −λψx2 |ψ〉 ,

and so x2 swaps the two eigenspaces of x1.
This means that every operator x anticommuting with some element of the

stabiliser S < P takes the code space to a different joint eigenspace of the
operators of S. Errors not commuting with all elements of S — in group theory
language, errors not in the centraliser of S in P , ZP (S) — can therefore always
be detected by measuring the generators of S.

In fact, since −1 6∈ S, we have that ZP (S) = NP (S), where NP (S) is the
normaliser of S in P :

NP (S) = {x ∈ P | xSx−1 = S}

The dangerous error operators — the ones we don’t want to occur — are those
in NP (S) but not in S. These will preserve the code space — and therefore be
undetectable — but act on it nontrivially. We will see later that we can make
use of these operators to perform logical operations, but we certainly don’t want
them to occur without us knowing about it.

So, we can certainly detect any error operator which is in P but not in the
normaliser NP (S), but can we correct for these errors? Given some error x ∈ P ,
it will map the code space Q ⊂ Q⊗9 to some other eigenspace xQ ⊂ Q⊗9. If it
is the only error which maps to this eigenspace, then we can easily correct by
performing x† after measuring the syndrome. However, if there are two errors
x1, x2 ∈ P which both map to xQ, we need to be able to perform just one
correction operator x† for both, since we won’t know which occured. In order
that the action on the code space after correction is trivial, we need that both
x†x1 ∈ S and x†x2 ∈ S; this is true iff x1 and x2 are in the same left coset of S;
which is true iff x†1x2 ∈ S. For a family of errors {xi}, xi ∈ P to be correctable,
then, the necessary and sufficient condition is that

x†ixj ∈ S

for any xi, xj such that xiQ = xjQ. So, how does this work out for the 9-qubit
code?

• The gates in NP (S)/S all act on three or more qubits.

• For any pair of two-qubit gates xi, xj such that xiQ = xjQ, we have that

x†ixj ∈ S.

It follows that the 9-qubit code actually corrects any error on two qubits. It’s
instructive to check this for single-qubit errors.

Exercise 0.3. Prove using the above techniques that single-qubit errors for the
nine-qubit code are all correctable.

3

Fault-tolerant quantum computation. We can encode one logical qubit
|ψ〉 in nine physical qubits so that, if any error on two of those nine qubits occurs,
we can perform a measurement and unitary correction to recover |ψ〉. This is
useful for building a quantum memory, or transferring a quantum state through
a noisy quantum channel. However, for universal quantum computation, it’s
not enough. We additionally need to:

1. Perform gates from some universal gate set on our logical qubits.

2. Perform projective measurements on our logical qubits.

3. Initialise logical qubits in the |0〉 state.

We can’t decode our logical qubits, because as soon as we do that they will
be vulnerable to errors again; in other words, we want to perform operations
at the logical level mediated by fault-tolerant physical operations. Here we’ll
talk about how to perform a universal logical gate set fault-tolerantly, under
the simplifying (but somewhat unrealistic) assumption that all noise occurs in
between operations.6

Error propagation. Fault-tolerance of operations is about limiting error
propagation. Error propagation happens when an error on a single physical
qubit is spread to other physical qubits by an operation.

Suppose we want to perform a 2-qubit logical gate:

...

...

U

...

...

Q1

Q2

We call the group of physical qubits corresponding to a single logical qubit a
code block, or just a block. Suppose that our chosen physical implementation of
this gate involves three CNOT gates from a single qubit in block 1 to different
qubits in block 2:

6Essentially the same techniques work when the operations are also noisy (see e.g. [6]).

4

...

...

...

...

Q1

Q2

⊕ ⊕ ⊕
Now suppose there is an error on the control qubit in block 1 going into the

logical gate. Following the logical gate, this error will now have spread to three
physical qubits in block 2; this error may not be correctable. It may be pos-
sible to resolve this problem by running error correction extremely frequently
(immediately before each CNOT, for instance), but this will make our compu-
tation inefficient. It is better to implement our logical operations so that this
uncontrolled error propagation cannot occur.

Definition 0.4. A physical implementation of a logical operation is fault-
tolerant if a single error in a single block going into the operation causes at
most one error in each block coming out of the operation.

The threshold theorem [2] tells us that, when fault-tolerant operations are
used, errors can be corrected efficiently as long as the error rate is below a
certain threshold. To make sure our logical operations are fault tolerant the
following conditions are sufficient:

• They shouldn’t involve physical gates between pairs of physical qubits in
the same block.

• They shouldn’t involve physical gates between a given qubit in one block
and multiple qubits in another.

Physical operations satisfying the above conditions are called transversal.

Fault-tolerant logical gates. We will now sketch how a universal set of
logical gates can be implemented fault-tolerantly. The universal gate set we will
use is called Clifford + T . It is made up of the Clifford group C, generated by
H, CNOT and

S =

(
1 0
0 i

)
,

and the single qubit gate

T =

(
1 0
0 eiπ/4

)
.

First note that we haven’t even picked a logical computational basis yet — we
just specified the code space. In keeping with the stabiliser philosophy, where
we define everything in terms of operators, let’s define transversal logical Pauli

5

operators on our code space. The computational basis will then be given as the
eigenvectors of logical Pauli Z.

We already saw when considering correctable errors that the operators in
NP (S)/S induce nontrivial maps from the code space to itself; it is therefore a
group of nontrivial logical operators on the code space. But which group is it?

For any stabiliser with generators {S1, . . . , Sk}, I claim that there’s an au-
tomorphism of P which takes {S1, . . . , Sk} to {X1, . . . , Xk}.7 Automorphisms
map normalisers to normalisers, but we already know what the normaliser of
〈X1, . . . , Xk〉 is; it’s generated by {X1, . . . , Xk} and all the Paulis on the other
qubits. Therefore the group NP (S)/S is isomorphic to the Pauli group on n−k
qubits, Pn−k.8 This group is represented in the usual way on the code space; we
can therefore pick some identification of the logical operators in NP (S)/S with
the Pauli operators based on their commutation relations. These logical Pauli
operators are obviously transversal because they’re tensor products of single
qubit operators. For the nine-qubit code, for instance, the single-qubit logical
Pauli operators can be taken as

X = X1X2X3 Z = Z1Z4Z7.

You can check that these preserve the code space and obey the Pauli commu-
tation relations.

So, we can implement logical Pauli operators, but what about the rest of
the Clifford group? The logical Clifford operators depend on the code we are
considering. The Clifford operators are precisely those which preserve the Pauli
group under conjugation:

C := {x ∈ U(2n) | xPx−1 = P}

The action of a logical Clifford operator on logical qubits is completely deter-
mined by how it permutes the logical Pauli operators under the conjugation
action. Although a more general approach to constructing the logical Clifford
operators is given in [5, Section 5.5], one simple approach is trial and error:
pick transversal physical operations on one or two blocks preserving the code
space, and determine how these operations permute the logical Pauli operators
corresponding to the blocks, in order to determine which Clifford gate they
perform.

Exercise 0.5 (Original research?). In [5, Section 5.3] there are lots of examples
of transversal logical gates for 5- and 7-qubit codes, but none for the 9-qubit
code. Find a logical Clifford gate outside of the Pauli group on the 9-qubit code
by performing transversal physical CNOTs and swap gates [5, Section 5.3] on
one or two blocks of the 9-qubit code, so that the code space is preserved.

7To prove this, we view the Pauli group as a symplectic vector space over Z2, where
the generators of S are orthogonal vectors, and use the fact that the symplectic group acts
transitively on orthogonal bases. See [7] for a nice exposition.

8Note that the automorphism we used is non-unique, so for general stabiliser codes there
may be different ways to define this basic Pauli structure on your code space.

6

Magic states and gate teleportation. When we’ve constructed our fault-
tolerant logical Clifford gates, we finally need to construct fault-tolerant logical
T . However, there is a problem: it has been proved that it is not possible to
implement a universal gate set transversally [3, Corollary 1]. Since we just
implemented all the Clifford gates transversally, for T we need to use a different
approach involving magic states and gate teleportation. We will now sketch how
this works. In what follows all the operations take place at the logical level, and
the diagrams should be read from bottom-to-top, rather than from left to right.

Let

be the maximally entangled state 1√
2
(|00〉+ |11〉) of two qubits. You can check

yourself that, for any unitary U ,

U = U t

Suppose that we can initialise the state

T t

.

We call this a magic T -state, and we’re going to use this state as a resource9

to perform a T gate on another logical qubit using only Clifford operations and
projective measurement.10

First, note that T is in the second level of the Clifford hierarchy. This means
precisely that it takes Pauli gates to Clifford gates under conjugation:

TPT † ⊂ C (1)

We take the qubit on which we want to perform T , and measure it with the first
half of the T state in the maximally entangled basis |φi〉 := 1√

2
(1⊗X∗i)(|00〉+

|11〉), where X0 := I,X1 := X,X2 := Y,X3 := Z are the Pauli matrices.
Suppose we measure |φi〉. Then the resulting state of the other half of the
magic T -state is

9Creating magic states at the logical level is a major bottleneck in quantum computation.
Huge numbers of qubits in experimental prototypes of quantum computers are dedicated to
this task, assembled together in so-called magic state factories. The field of quantum circuit
optimisation aims to cut down the number of T or other non-Clifford gates required to perform
an operation, reducing the number of magic states required.

10I didn’t show that we can do this projective measurement fault-tolerantly at the logical
level, but we can; see e.g. [5].

7

T t

(Xi)
t

=

T

Xi

=

Xi

T

where

is the effect 1√
2
(〈00|+ 〈11|), and you can check the second equality yourself.11

So, after measuring i we know we have the state TXi |ψ〉, where ψ was the
state we started off with. But TXi |ψ〉 = TXiT

†T |ψ〉, and, by (1), TXiT
† is

in the Clifford group! Moreover it’s self inverse, and we only have to perform
the Clifford correction TXiT

† to get the state we wanted, T |ψ〉.
We have therefore performed a logical T gate using only a logical magic

T -state, logical Clifford operations, and logical projective measurement in the
computational basis.

References

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum
protocols. In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science, pages 415–425. IEEE, 2004. arXiv:quant-ph/0402130,
doi:10.1109/LICS.2004.1319636.

[2] D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with
constant error. In Proceedings of the Twenty-ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, pages 176–188, New York, NY, USA,
1997. ACM. arXiv:quant-ph/9906129, doi:10.1145/258533.258579.

[3] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quan-
tum gate sets. Physical Review Letters, 102(11):110502, 2009. arXiv:

0811.4262, doi:10.1103/PhysRevLett.102.110502.

[4] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N
Cleland. Surface codes: Towards practical large-scale quantum computation.
Physical Review A, 86(3):032324, 2012. arXiv:1208.0928.

[5] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD
thesis, California Institute of Technology, 1997. arXiv:quant-ph/9705052.

11To understand where this nice yanking notation comes from, see [1].

8

http://arxiv.org/abs/quant-ph/0402130
http://dx.doi.org/10.1109/LICS.2004.1319636
http://arxiv.org/abs/quant-ph/9906129
http://dx.doi.org/10.1145/258533.258579
http://arxiv.org/abs/0811.4262
http://arxiv.org/abs/0811.4262
http://dx.doi.org/10.1103/PhysRevLett.102.110502
http://arxiv.org/abs/1208.0928
http://arxiv.org/abs/quant-ph/9705052

[6] Daniel Gottesman. Quantum Information Science and Its Contributions
to Mathematics: American Mathematical Society Short Course, January
3-4, 2009, Washington, DC, volume 68 of Proceedings of symposia in ap-
plied mathematics, chapter An introduction to quantum error correction and
fault-tolerant quantum computation, pages 13–58. American Mathematical
Society, 2010. arXiv:0904.2557.

[7] Jeongwan Haah. Algebraic methods for quantum codes on lattices. Revista
Colombiana de Matemáticas, 50(2):299–349, 2016. arXiv:1607.01387.

9

http://arxiv.org/abs/0904.2557
http://arxiv.org/abs/1607.01387

