
COMS21103

Skip lists and other search structures

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

18 November 2013

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 1/33



Introduction

I One of the most basic tasks in computer science is searching for data.

I In this task’s most basic form, we imagine that we have a “database”
containing a number of records, each consisting of a key, and some
associated data.

I We can search for keys, and want to find the associated data.

I For example, the database might be a list of students: the key might
be a student ID, and the data might be everything else associated with
that student (name, address, etc.).

I “Database” is in quotes because it is a database in the abstract sense,
rather than (necessarily) a real-world database like MySQL. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 2/33



Introduction

I One of the most basic tasks in computer science is searching for data.

I In this task’s most basic form, we imagine that we have a “database”
containing a number of records, each consisting of a key, and some
associated data.

I We can search for keys, and want to find the associated data.

I For example, the database might be a list of students: the key might
be a student ID, and the data might be everything else associated with
that student (name, address, etc.).

I “Database” is in quotes because it is a database in the abstract sense,
rather than (necessarily) a real-world database like MySQL. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 2/33



Introduction

I One of the most basic tasks in computer science is searching for data.

I In this task’s most basic form, we imagine that we have a “database”
containing a number of records, each consisting of a key, and some
associated data.

I We can search for keys, and want to find the associated data.

I For example, the database might be a list of students: the key might
be a student ID, and the data might be everything else associated with
that student (name, address, etc.).

I “Database” is in quotes because it is a database in the abstract sense,
rather than (necessarily) a real-world database like MySQL. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 2/33



Introduction

I One of the most basic tasks in computer science is searching for data.

I In this task’s most basic form, we imagine that we have a “database”
containing a number of records, each consisting of a key, and some
associated data.

I We can search for keys, and want to find the associated data.

I For example, the database might be a list of students: the key might
be a student ID, and the data might be everything else associated with
that student (name, address, etc.).

I “Database” is in quotes because it is a database in the abstract sense,
rather than (necessarily) a real-world database like MySQL. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 2/33



Introduction

I One of the most basic tasks in computer science is searching for data.

I In this task’s most basic form, we imagine that we have a “database”
containing a number of records, each consisting of a key, and some
associated data.

I We can search for keys, and want to find the associated data.

I For example, the database might be a list of students: the key might
be a student ID, and the data might be everything else associated with
that student (name, address, etc.).

I “Database” is in quotes because it is a database in the abstract sense,
rather than (necessarily) a real-world database like MySQL. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 2/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database

I Delete(k ): Deletes the record with key k from the database
I Find(k ): Returns the data corresponding to the record whose key is k ,

or “not found”
I Successor(k ): Returns the key which is next in the database after k .

Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database
I Delete(k ): Deletes the record with key k from the database

I Find(k ): Returns the data corresponding to the record whose key is k ,
or “not found”

I Successor(k ): Returns the key which is next in the database after k .
Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database
I Delete(k ): Deletes the record with key k from the database
I Find(k ): Returns the data corresponding to the record whose key is k ,

or “not found”

I Successor(k ): Returns the key which is next in the database after k .
Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database
I Delete(k ): Deletes the record with key k from the database
I Find(k ): Returns the data corresponding to the record whose key is k ,

or “not found”
I Successor(k ): Returns the key which is next in the database after k .

Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database
I Delete(k ): Deletes the record with key k from the database
I Find(k ): Returns the data corresponding to the record whose key is k ,

or “not found”
I Successor(k ): Returns the key which is next in the database after k .

Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database
I Delete(k ): Deletes the record with key k from the database
I Find(k ): Returns the data corresponding to the record whose key is k ,

or “not found”
I Successor(k ): Returns the key which is next in the database after k .

Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Introduction
We would like to support the following operations.

I Insert(k , d): Inserts a record with key k and data d into the database
I Delete(k ): Deletes the record with key k from the database
I Find(k ): Returns the data corresponding to the record whose key is k ,

or “not found”
I Successor(k ): Returns the key which is next in the database after k .

Used to, for example, print a list of all records in order.

There are a number of different data structures we could use for this task,
with varying complexities.

I To compare them, we consider a simple version of the search problem
where each key is an integer between 1 and U (the universe size).

I We assume that the largest number of records ever stored in the
database is n.

I In general, we imagine that n is much smaller than U.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 3/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

Insert(7, Alice)

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

AliceInsert(3, Bob)

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

AliceBobSuccessor(3)

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

AliceBobreturns 7

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

AliceBob

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

AliceBob

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Array
I The simplest data structure we could use would be an array.
I Here we simply store the record with key k at position k in the array.

AliceBob

I Insert, Delete and Find are all very efficient (Θ(1)) but Successor
could take time Θ(U), as we need to seach through all subsequent
elements in the array in turn.

I Perhaps more importantly, the array uses Θ(U) space, even if it only
contains a small number of elements!

Structure Space used Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 4/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list headInsert(7, Alice)

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head 7
Alice

Insert(3, Bob)

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head 3
Bob

7
Alice

Successor(3)

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head 3
Bob

7
Alicereturns 7

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Unsorted linked list
I We could also consider storing the records in unsorted order in a

linked list.

I When a new record comes in, we just insert it at the start of the list.

I This allows complexities to be obtained that do not depend on U.

list head 3
Bob

7
Alicereturns 7

This also makes Successor much quicker, but search and deletion slower:

Structure Space used Insert Delete Find Successor
Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)

Exercise: Does it help to store the records sorted by key?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 5/33



Hash table

I Another data structure you have seen is the hash table.

I We store the table in an array of size m, where m is much smaller than
U.

I Given a key k , we compute a function h(k) giving the position of k in
the array.

I If m < U, there must exist records that hash to the same position. To
deal with this situation, we have a linked list at each element of the
array to store these elements.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table

I Another data structure you have seen is the hash table.
I We store the table in an array of size m, where m is much smaller than

U.

I Given a key k , we compute a function h(k) giving the position of k in
the array.

I If m < U, there must exist records that hash to the same position. To
deal with this situation, we have a linked list at each element of the
array to store these elements.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table

I Another data structure you have seen is the hash table.
I We store the table in an array of size m, where m is much smaller than

U.
I Given a key k , we compute a function h(k) giving the position of k in

the array.

I If m < U, there must exist records that hash to the same position. To
deal with this situation, we have a linked list at each element of the
array to store these elements.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table

I Another data structure you have seen is the hash table.
I We store the table in an array of size m, where m is much smaller than

U.
I Given a key k , we compute a function h(k) giving the position of k in

the array.
I If m < U, there must exist records that hash to the same position. To

deal with this situation, we have a linked list at each element of the
array to store these elements.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table

I Another data structure you have seen is the hash table.
I We store the table in an array of size m, where m is much smaller than

U.
I Given a key k , we compute a function h(k) giving the position of k in

the array.
I If m < U, there must exist records that hash to the same position. To

deal with this situation, we have a linked list at each element of the
array to store these elements.

Insert(7, Alice)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table

I Another data structure you have seen is the hash table.
I We store the table in an array of size m, where m is much smaller than

U.
I Given a key k , we compute a function h(k) giving the position of k in

the array.
I If m < U, there must exist records that hash to the same position. To

deal with this situation, we have a linked list at each element of the
array to store these elements.

7
Alice

Insert(3, Bob)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table
I Another data structure you have seen is the hash table.
I We store the table in an array of size m, where m is much smaller than

U.
I Given a key k , we compute a function h(k) giving the position of k in

the array.
I If m < U, there must exist records that hash to the same position. To

deal with this situation, we have a linked list at each element of the
array to store these elements.

7
Alice

3
Bob

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 6/33



Hash table

In the worst case, we might have n records coming in which all hash to the
same position. Then the complexity is no better than an unsorted linked
list!

Structure Space used Insert Delete Find Successor
Hash table O(n) Θ(1) O(n) O(n) O(n)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 7/33



Binary tree
A binary tree offers another way to store data, and to list it easily.

4

Charlie

2

Yoda

7

Alice

1

Zoe

3

Bob

5

Dave

6

Xena

Now the complexities of the various operations all depend on the height h
of the tree.

Structure Space used Insert Delete Find Successor
Binary tree O(n) O(h) O(h) O(h) O(h)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 8/33



Binary tree
A binary tree offers another way to store data, and to list it easily.

4

Charlie

2

Yoda

7

Alice

1

Zoe

3

Bob

5

Dave

6

Xena

Now the complexities of the various operations all depend on the height h
of the tree.

Structure Space used Insert Delete Find Successor
Binary tree O(n) O(h) O(h) O(h) O(h)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 8/33



Binary tree
If the height is large, these operations are all inefficient. This can happen if
keys are inserted into the tree in an unfortunate (e.g. ascending) order.

1

Zoe

2

Yoda

3

Bob

4

Charlie

5

Dave

6

Xena

7

Alice

Structure Space used Insert Delete Find Successor
Binary tree (worst case) O(n) O(n) O(n) O(n) O(n)

In the worst case, this is even worse than an unsorted linked list.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 9/33



AVL tree
As you heard in COMS11600, an AVL tree is a binary tree which is
maintained such that the height of a tree containing n keys is O(log n).

4

Charlie

2

Yoda

6

Xena

1

Zoe

3

Bob

5

Dave

7

Alice

Structure Space used Insert Delete Find Successor
AVL tree O(n) O(log n) O(log n) O(log n) O(log n)

I We have now achieved much better complexities, but at the expense
of having a more complicated data structure.

I Can we do better?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 10/33



AVL tree
As you heard in COMS11600, an AVL tree is a binary tree which is
maintained such that the height of a tree containing n keys is O(log n).

4

Charlie

2

Yoda

6

Xena

1

Zoe

3

Bob

5

Dave

7

Alice

Structure Space used Insert Delete Find Successor
AVL tree O(n) O(log n) O(log n) O(log n) O(log n)

I We have now achieved much better complexities, but at the expense
of having a more complicated data structure.

I Can we do better?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 10/33



AVL tree
As you heard in COMS11600, an AVL tree is a binary tree which is
maintained such that the height of a tree containing n keys is O(log n).

4

Charlie

2

Yoda

6

Xena

1

Zoe

3

Bob

5

Dave

7

Alice

Structure Space used Insert Delete Find Successor
AVL tree O(n) O(log n) O(log n) O(log n) O(log n)

I We have now achieved much better complexities, but at the expense
of having a more complicated data structure.

I Can we do better?

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 10/33



Skip lists

I We will discuss a way in which we can get complexities which match
the above AVL tree bounds, with a much simpler data structure, called
the skip list.

I The snag is that the complexities we obtain will be randomised.

I That is, when we build our data structure, we will do it by tossing coins.

I Then the bounds we will obtain are bounds on the expected number of
operations for the worst case input.

I To be clear: when we perform an Insert, Delete, Find or Successor
operation on a skip list, it always succeeds; but sometimes (if we are
unlucky with our coin tosses) it might take a long time.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 11/33



Skip lists

I We will discuss a way in which we can get complexities which match
the above AVL tree bounds, with a much simpler data structure, called
the skip list.

I The snag is that the complexities we obtain will be randomised.

I That is, when we build our data structure, we will do it by tossing coins.

I Then the bounds we will obtain are bounds on the expected number of
operations for the worst case input.

I To be clear: when we perform an Insert, Delete, Find or Successor
operation on a skip list, it always succeeds; but sometimes (if we are
unlucky with our coin tosses) it might take a long time.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 11/33



Skip lists

I We will discuss a way in which we can get complexities which match
the above AVL tree bounds, with a much simpler data structure, called
the skip list.

I The snag is that the complexities we obtain will be randomised.

I That is, when we build our data structure, we will do it by tossing coins.

I Then the bounds we will obtain are bounds on the expected number of
operations for the worst case input.

I To be clear: when we perform an Insert, Delete, Find or Successor
operation on a skip list, it always succeeds; but sometimes (if we are
unlucky with our coin tosses) it might take a long time.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 11/33



Skip lists

I We will discuss a way in which we can get complexities which match
the above AVL tree bounds, with a much simpler data structure, called
the skip list.

I The snag is that the complexities we obtain will be randomised.

I That is, when we build our data structure, we will do it by tossing coins.

I Then the bounds we will obtain are bounds on the expected number of
operations for the worst case input.

I To be clear: when we perform an Insert, Delete, Find or Successor
operation on a skip list, it always succeeds; but sometimes (if we are
unlucky with our coin tosses) it might take a long time.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 11/33



Skip lists

I We will discuss a way in which we can get complexities which match
the above AVL tree bounds, with a much simpler data structure, called
the skip list.

I The snag is that the complexities we obtain will be randomised.

I That is, when we build our data structure, we will do it by tossing coins.

I Then the bounds we will obtain are bounds on the expected number of
operations for the worst case input.

I To be clear: when we perform an Insert, Delete, Find or Successor
operation on a skip list, it always succeeds; but sometimes (if we are
unlucky with our coin tosses) it might take a long time.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 11/33



Skip lists

A skip list is a linked list with shortcuts.

Imagine we have a list containing n keys in sorted order, e.g.:

1 2 5 9 16 18 25

(data omitted from the diagram for simplicity)

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 12/33



Skip lists

To accelerate search in this list, we attach another linked list which
contains duplicates of m < n of the keys in the list, e.g.:

1 2 5 9 16 18 25

1 5 18

I To find an element, we search in the new “shortcut” list to find the
largest key smaller than the key we’re looking for.

I Then we switch to the main list and continue to search for the key as
normal.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 13/33



Skip lists

To accelerate search in this list, we attach another linked list which
contains duplicates of m < n of the keys in the list, e.g.:

1 2 5 9 16 18 25

1 5 18

I To find an element, we search in the new “shortcut” list to find the
largest key smaller than the key we’re looking for.

I Then we switch to the main list and continue to search for the key as
normal.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 13/33



Skip lists

To accelerate search in this list, we attach another linked list which
contains duplicates of m < n of the keys in the list, e.g.:

1 2 5 9 16 18 25

1 5 18

I To find an element, we search in the new “shortcut” list to find the
largest key smaller than the key we’re looking for.

I Then we switch to the main list and continue to search for the key as
normal.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 13/33



Optimising this two-level list
I What is the worst-case time complexity of finding an element in this

two-level list?

I The number of keys read is the sum of the number read in the main
list and the number read in the shortcut list.

I A good way to minimise this in the worst case is to make the spacing
of the m elements in the shortcut list equal.

1 2 5 9 16 18 25

1 5 16 25

I We then obtain a worst-case complexity of O(m + n/m), which is
minimised by taking m =

√
n, giving a complexity of O(

√
n).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 14/33



Optimising this two-level list
I What is the worst-case time complexity of finding an element in this

two-level list?
I The number of keys read is the sum of the number read in the main

list and the number read in the shortcut list.

I A good way to minimise this in the worst case is to make the spacing
of the m elements in the shortcut list equal.

1 2 5 9 16 18 25

1 5 16 25

I We then obtain a worst-case complexity of O(m + n/m), which is
minimised by taking m =

√
n, giving a complexity of O(

√
n).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 14/33



Optimising this two-level list
I What is the worst-case time complexity of finding an element in this

two-level list?
I The number of keys read is the sum of the number read in the main

list and the number read in the shortcut list.
I A good way to minimise this in the worst case is to make the spacing

of the m elements in the shortcut list equal.

1 2 5 9 16 18 25

1 5 16 25

I We then obtain a worst-case complexity of O(m + n/m), which is
minimised by taking m =

√
n, giving a complexity of O(

√
n).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 14/33



Optimising this two-level list
I What is the worst-case time complexity of finding an element in this

two-level list?
I The number of keys read is the sum of the number read in the main

list and the number read in the shortcut list.
I A good way to minimise this in the worst case is to make the spacing

of the m elements in the shortcut list equal.

1 2 5 9 16 18 25

1 5 16 25

I We then obtain a worst-case complexity of O(m + n/m), which is
minimised by taking m =

√
n, giving a complexity of O(

√
n).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 14/33



Using more levels
I We can improve this complexity by adding more levels to this list, and

continuing to keep each level as equally spaced as possible.
I Each element is present in one or more lists, and all elements are

present in the bottom list.

1 2 5 9 16 18 25 27 31 35 38

1 5 16 25 31 38

1 16 38

1 38

To search, we start with the top list and follow the same procedure as with
two lists.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 15/33



Using more levels
I We can improve this complexity by adding more levels to this list, and

continuing to keep each level as equally spaced as possible.
I Each element is present in one or more lists, and all elements are

present in the bottom list.

1 2 5 9 16 18 25 27 31 35 38

1 5 16 25 31 38

1 16 38

1 38

To search, we start with the top list and follow the same procedure as with
two lists.
Ashley Montanaro

ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 15/33



Searching in a skip list
Find(k )

1. i ← 1
2. while i ≤ number of lists
3. scan along the i ’th list until either k is found, or the next element

has key greater than k
4. i ← i + 1

I If we have an L-level list, and put ni/L equally spaced elements in each
level i between 1 and L, the worst-case number of elements read is

L∑
i=1

ni/L/n(i−1)/L =
L∑

i=1

n1/L = Ln1/L.

I If we take L = log2 n, the total number of elements read is at most
2 log2 n.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 16/33



Searching in a skip list
Find(k )

1. i ← 1
2. while i ≤ number of lists
3. scan along the i ’th list until either k is found, or the next element

has key greater than k
4. i ← i + 1

I If we have an L-level list, and put ni/L equally spaced elements in each
level i between 1 and L, the worst-case number of elements read is

L∑
i=1

ni/L/n(i−1)/L =
L∑

i=1

n1/L = Ln1/L.

I If we take L = log2 n, the total number of elements read is at most
2 log2 n.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 16/33



Searching in a skip list
Find(k )

1. i ← 1
2. while i ≤ number of lists
3. scan along the i ’th list until either k is found, or the next element

has key greater than k
4. i ← i + 1

I If we have an L-level list, and put ni/L equally spaced elements in each
level i between 1 and L, the worst-case number of elements read is

L∑
i=1

ni/L/n(i−1)/L =
L∑

i=1

n1/L = Ln1/L.

I If we take L = log2 n, the total number of elements read is at most
2 log2 n.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 16/33



Maintaining this data structure

I How should we maintain this structure under insertions and deletions?

I Deletions are easy: when an element is deleted, we remove it from all
levels of the list (to make this more efficient, we would use doubly
linked lists).

I Insertion is more tricky. When a new element comes in, we should
add it to some number of levels of the list.

I The problem is that, as we don’t know which elements will arrive in the
future, we don’t know how many levels of the list to add it to, in order
to keep the levels of the list equally spaced.

I We will avoid this problem using randomisation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 17/33



Maintaining this data structure

I How should we maintain this structure under insertions and deletions?

I Deletions are easy: when an element is deleted, we remove it from all
levels of the list (to make this more efficient, we would use doubly
linked lists).

I Insertion is more tricky. When a new element comes in, we should
add it to some number of levels of the list.

I The problem is that, as we don’t know which elements will arrive in the
future, we don’t know how many levels of the list to add it to, in order
to keep the levels of the list equally spaced.

I We will avoid this problem using randomisation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 17/33



Maintaining this data structure

I How should we maintain this structure under insertions and deletions?

I Deletions are easy: when an element is deleted, we remove it from all
levels of the list (to make this more efficient, we would use doubly
linked lists).

I Insertion is more tricky. When a new element comes in, we should
add it to some number of levels of the list.

I The problem is that, as we don’t know which elements will arrive in the
future, we don’t know how many levels of the list to add it to, in order
to keep the levels of the list equally spaced.

I We will avoid this problem using randomisation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 17/33



Maintaining this data structure

I How should we maintain this structure under insertions and deletions?

I Deletions are easy: when an element is deleted, we remove it from all
levels of the list (to make this more efficient, we would use doubly
linked lists).

I Insertion is more tricky. When a new element comes in, we should
add it to some number of levels of the list.

I The problem is that, as we don’t know which elements will arrive in the
future, we don’t know how many levels of the list to add it to, in order
to keep the levels of the list equally spaced.

I We will avoid this problem using randomisation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 17/33



Maintaining this data structure

I How should we maintain this structure under insertions and deletions?

I Deletions are easy: when an element is deleted, we remove it from all
levels of the list (to make this more efficient, we would use doubly
linked lists).

I Insertion is more tricky. When a new element comes in, we should
add it to some number of levels of the list.

I The problem is that, as we don’t know which elements will arrive in the
future, we don’t know how many levels of the list to add it to, in order
to keep the levels of the list equally spaced.

I We will avoid this problem using randomisation.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 17/33



Maintaining this data structure

Insert(k )

1. search to find where k should be inserted in the bottom level
2. insert k in the bottom level
3. r ← the result of tossing a fair coin
4. while r = HEADS

5. insert k in the next level up
6. r ← the result of tossing a fair coin

So with probability 1/2, k is only inserted in the main list; with probability
1/4, it is inserted in the bottom two lists; with probability 1/8, it is inserted
in three lists; . . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 18/33



Maintaining this data structure

Insert(k )

1. search to find where k should be inserted in the bottom level
2. insert k in the bottom level
3. r ← the result of tossing a fair coin
4. while r = HEADS

5. insert k in the next level up
6. r ← the result of tossing a fair coin

So with probability 1/2, k is only inserted in the main list; with probability
1/4, it is inserted in the bottom two lists; with probability 1/8, it is inserted
in three lists; . . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 18/33



Example

Imagine we start with the following skip list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Now Insert(27) is called.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 19/33



Example

First we search for where 27 should be inserted in the bottom list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 20/33



Example

First we search for where 27 should be inserted in the bottom list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 20/33



Example

First we search for where 27 should be inserted in the bottom list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 20/33



Example

First we search for where 27 should be inserted in the bottom list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 20/33



Example

First we search for where 27 should be inserted in the bottom list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 20/33



Example

First we search for where 27 should be inserted in the bottom list:

1 2 5 9 16 18 25 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 20/33



Example

We insert 27 in the bottom list.

1 2 5 9 16 18 25 27 31 35 38

1 5 16 25 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 21/33



Example

We toss a coin; assume the answer is HEADS. This means we insert 27 in
the next level up.

1 2 5 9 16 18 25 27 31 35 38

1 5 16 25 27 38

1 16 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 22/33



Example

We toss a coin again; assume the answer is HEADS. This means we insert
27 in the next level up too.

1 2 5 9 16 18 25 27 31 35 38

1 5 16 25 27 38

1 16 27 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 23/33



Example

We toss a coin again; assume the answer is TAILS. The algorithm
terminates.

1 2 5 9 16 18 25 27 31 35 38

1 5 16 25 27 38

1 16 27 38

1 38

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 24/33



Probabilistic analysis
I We would like to show that, on average, the skip list has good

performance.

I “On average” should be thought of in terms of the algorithm’s internal
randomness (coin flips). There is no assumption that the data in the
skip list itself is random in any way.

I Technical note: We assume that the elements to be inserted and
deleted are chosen with no reference to the coin flips made by the
algorithm.

The main tool from probability theory we will need:

Union bound
Let E1, . . . ,Em be events, and let the probability of event Ei occurring be pi .
Then the probability that one or more of the events E1 through Em occur is
at most

∑
i pi .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 25/33



Probabilistic analysis
I We would like to show that, on average, the skip list has good

performance.

I “On average” should be thought of in terms of the algorithm’s internal
randomness (coin flips). There is no assumption that the data in the
skip list itself is random in any way.

I Technical note: We assume that the elements to be inserted and
deleted are chosen with no reference to the coin flips made by the
algorithm.

The main tool from probability theory we will need:

Union bound
Let E1, . . . ,Em be events, and let the probability of event Ei occurring be pi .
Then the probability that one or more of the events E1 through Em occur is
at most

∑
i pi .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 25/33



Probabilistic analysis
I We would like to show that, on average, the skip list has good

performance.

I “On average” should be thought of in terms of the algorithm’s internal
randomness (coin flips). There is no assumption that the data in the
skip list itself is random in any way.

I Technical note: We assume that the elements to be inserted and
deleted are chosen with no reference to the coin flips made by the
algorithm.

The main tool from probability theory we will need:

Union bound
Let E1, . . . ,Em be events, and let the probability of event Ei occurring be pi .
Then the probability that one or more of the events E1 through Em occur is
at most

∑
i pi .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 25/33



Probabilistic analysis
I We would like to show that, on average, the skip list has good

performance.

I “On average” should be thought of in terms of the algorithm’s internal
randomness (coin flips). There is no assumption that the data in the
skip list itself is random in any way.

I Technical note: We assume that the elements to be inserted and
deleted are chosen with no reference to the coin flips made by the
algorithm.

The main tool from probability theory we will need:

Union bound
Let E1, . . . ,Em be events, and let the probability of event Ei occurring be pi .
Then the probability that one or more of the events E1 through Em occur is
at most

∑
i pi .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 25/33



The number of levels
We first show that a skip list does not have many levels, with high
probability.

Claim
The probability that a skip list containing n elements has 2 log2 n levels or
more is at most 1/n.

Proof

I By the union bound, the probability of having at least 2 log2 n levels is
at most n times the probability that an individual element is inserted in
at least 2 log2 n levels.

I This probability is precisely (1/2)2 log2 n = 1/n2.
I So the probability that the list has at least 2 log2 n levels is at most

n × 1/n2 = 1/n. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 26/33



The number of levels
We first show that a skip list does not have many levels, with high
probability.

Claim
The probability that a skip list containing n elements has 2 log2 n levels or
more is at most 1/n.

Proof

I By the union bound, the probability of having at least 2 log2 n levels is
at most n times the probability that an individual element is inserted in
at least 2 log2 n levels.

I This probability is precisely (1/2)2 log2 n = 1/n2.
I So the probability that the list has at least 2 log2 n levels is at most

n × 1/n2 = 1/n. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 26/33



The number of levels
We first show that a skip list does not have many levels, with high
probability.

Claim
The probability that a skip list containing n elements has 2 log2 n levels or
more is at most 1/n.

Proof

I By the union bound, the probability of having at least 2 log2 n levels is
at most n times the probability that an individual element is inserted in
at least 2 log2 n levels.

I This probability is precisely (1/2)2 log2 n = 1/n2.

I So the probability that the list has at least 2 log2 n levels is at most
n × 1/n2 = 1/n. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 26/33



The number of levels
We first show that a skip list does not have many levels, with high
probability.

Claim
The probability that a skip list containing n elements has 2 log2 n levels or
more is at most 1/n.

Proof

I By the union bound, the probability of having at least 2 log2 n levels is
at most n times the probability that an individual element is inserted in
at least 2 log2 n levels.

I This probability is precisely (1/2)2 log2 n = 1/n2.
I So the probability that the list has at least 2 log2 n levels is at most

n × 1/n2 = 1/n. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 26/33



The search time
Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I We analyse the behaviour of the algorithm when searching for an item.
I Key observation: apart from the first item, we only examine an

element at a given level if it was not present on the level above.
I Therefore, the expected number of elements examined on a given

level is the same as the expected number of flips of a coin required
until we get heads.

I This is 1/2× 1 + 1/4× 2 + 1/8× 3 · · · =
∑

i≥1 i2−i = 2.
I So if there are at most 2 log2 n levels in the list, we examine an

expected number of at most 4 log2 n elements.
. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 27/33



The search time
Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I We analyse the behaviour of the algorithm when searching for an item.

I Key observation: apart from the first item, we only examine an
element at a given level if it was not present on the level above.

I Therefore, the expected number of elements examined on a given
level is the same as the expected number of flips of a coin required
until we get heads.

I This is 1/2× 1 + 1/4× 2 + 1/8× 3 · · · =
∑

i≥1 i2−i = 2.
I So if there are at most 2 log2 n levels in the list, we examine an

expected number of at most 4 log2 n elements.
. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 27/33



The search time
Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I We analyse the behaviour of the algorithm when searching for an item.
I Key observation: apart from the first item, we only examine an

element at a given level if it was not present on the level above.

I Therefore, the expected number of elements examined on a given
level is the same as the expected number of flips of a coin required
until we get heads.

I This is 1/2× 1 + 1/4× 2 + 1/8× 3 · · · =
∑

i≥1 i2−i = 2.
I So if there are at most 2 log2 n levels in the list, we examine an

expected number of at most 4 log2 n elements.
. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 27/33



The search time
Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I We analyse the behaviour of the algorithm when searching for an item.
I Key observation: apart from the first item, we only examine an

element at a given level if it was not present on the level above.
I Therefore, the expected number of elements examined on a given

level is the same as the expected number of flips of a coin required
until we get heads.

I This is 1/2× 1 + 1/4× 2 + 1/8× 3 · · · =
∑

i≥1 i2−i = 2.
I So if there are at most 2 log2 n levels in the list, we examine an

expected number of at most 4 log2 n elements.
. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 27/33



The search time
Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I We analyse the behaviour of the algorithm when searching for an item.
I Key observation: apart from the first item, we only examine an

element at a given level if it was not present on the level above.
I Therefore, the expected number of elements examined on a given

level is the same as the expected number of flips of a coin required
until we get heads.

I This is 1/2× 1 + 1/4× 2 + 1/8× 3 · · · =
∑

i≥1 i2−i = 2.

I So if there are at most 2 log2 n levels in the list, we examine an
expected number of at most 4 log2 n elements.

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 27/33



The search time
Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I We analyse the behaviour of the algorithm when searching for an item.
I Key observation: apart from the first item, we only examine an

element at a given level if it was not present on the level above.
I Therefore, the expected number of elements examined on a given

level is the same as the expected number of flips of a coin required
until we get heads.

I This is 1/2× 1 + 1/4× 2 + 1/8× 3 · · · =
∑

i≥1 i2−i = 2.
I So if there are at most 2 log2 n levels in the list, we examine an

expected number of at most 4 log2 n elements.
. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 27/33



The search time

Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I On the other hand, we always examine at most n elements.

I So the expected number of elements examined is at most

Pr[≥ 2 log2 n levels]× n + Pr[≤ 2 log2 n levels]× 2× (2 log2 n)

≤ 1/n × n + 1× 2× (2 log2 n)

= O(log n). �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 28/33



The search time

Claim
Let L be a skip list containing n elements. Then the expected time to find
an element in L is O(log n).

Proof (sketch)

I On the other hand, we always examine at most n elements.
I So the expected number of elements examined is at most

Pr[≥ 2 log2 n levels]× n + Pr[≤ 2 log2 n levels]× 2× (2 log2 n)

≤ 1/n × n + 1× 2× (2 log2 n)

= O(log n). �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 28/33



Summary of skip lists

I A skip list is a linked list with shortcuts. The skip list shows how
randomness can be useful in the design of data structures.

I This is possibly surprising as we might imagine that randomness is
the last thing we would want to build into data storage.

I Skip lists achieve similar performance to AVL trees and other
balanced binary trees, but are simpler and more intuitive to implement.

I They are randomised, so in theory could have bad worst-case
performance, but in practice have excellent performance.

I A number of advanced database applications are built around skip
lists, e.g. levelDB (Google).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 29/33



Summary of skip lists

I A skip list is a linked list with shortcuts. The skip list shows how
randomness can be useful in the design of data structures.

I This is possibly surprising as we might imagine that randomness is
the last thing we would want to build into data storage.

I Skip lists achieve similar performance to AVL trees and other
balanced binary trees, but are simpler and more intuitive to implement.

I They are randomised, so in theory could have bad worst-case
performance, but in practice have excellent performance.

I A number of advanced database applications are built around skip
lists, e.g. levelDB (Google).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 29/33



Summary of skip lists

I A skip list is a linked list with shortcuts. The skip list shows how
randomness can be useful in the design of data structures.

I This is possibly surprising as we might imagine that randomness is
the last thing we would want to build into data storage.

I Skip lists achieve similar performance to AVL trees and other
balanced binary trees, but are simpler and more intuitive to implement.

I They are randomised, so in theory could have bad worst-case
performance, but in practice have excellent performance.

I A number of advanced database applications are built around skip
lists, e.g. levelDB (Google).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 29/33



Summary of skip lists

I A skip list is a linked list with shortcuts. The skip list shows how
randomness can be useful in the design of data structures.

I This is possibly surprising as we might imagine that randomness is
the last thing we would want to build into data storage.

I Skip lists achieve similar performance to AVL trees and other
balanced binary trees, but are simpler and more intuitive to implement.

I They are randomised, so in theory could have bad worst-case
performance, but in practice have excellent performance.

I A number of advanced database applications are built around skip
lists, e.g. levelDB (Google).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 29/33



Summary of skip lists

I A skip list is a linked list with shortcuts. The skip list shows how
randomness can be useful in the design of data structures.

I This is possibly surprising as we might imagine that randomness is
the last thing we would want to build into data storage.

I Skip lists achieve similar performance to AVL trees and other
balanced binary trees, but are simpler and more intuitive to implement.

I They are randomised, so in theory could have bad worst-case
performance, but in practice have excellent performance.

I A number of advanced database applications are built around skip
lists, e.g. levelDB (Google).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 29/33



Other search structures?

I Another interesting data structure, which achieves similar
performance to skip lists, is the treap.

I Just as skip lists can be seen as randomised linked lists, treaps can
be seen as randomised binary trees.

I On modern computer systems, there are many other factors to be
considered when choosing a search structure (e.g. performance with
respect to caching and external memory, concurrent access, . . . ).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 30/33



Other search structures?

I Another interesting data structure, which achieves similar
performance to skip lists, is the treap.

I Just as skip lists can be seen as randomised linked lists, treaps can
be seen as randomised binary trees.

I On modern computer systems, there are many other factors to be
considered when choosing a search structure (e.g. performance with
respect to caching and external memory, concurrent access, . . . ).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 30/33



Other search structures?

I Another interesting data structure, which achieves similar
performance to skip lists, is the treap.

I Just as skip lists can be seen as randomised linked lists, treaps can
be seen as randomised binary trees.

I On modern computer systems, there are many other factors to be
considered when choosing a search structure (e.g. performance with
respect to caching and external memory, concurrent access, . . . ).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 30/33



Summary of complexities

Structure Space Insert Delete Find Successor
Array Θ(U) Θ(1) Θ(1) Θ(1) O(U)

Unsorted linked list O(n) Θ(1) O(n) O(n) O(n)
Hash table O(n) Θ(1) O(n) O(n) O(n)
Binary tree O(n) O(n) O(n) O(n) O(n)
AVL tree O(n) O(log n) O(log n) O(log n) O(log n)
Skip list O(n) O(log n) O(log n) O(log n) O(log n)

Holy grail O(n) O(1) O(1) O(1) O(1)

I All complexities listed are worst-case.

I The skip list is randomised; all others are deterministic.

I How close can we get to the holy grail? An object of current research!
See COMS31900: Advanced Algorithms for more. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 31/33



Further Reading

I Introduction to Algorithms
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

I Section 10.2 – Linked lists
I Section 11.1 – Directly addressed arrays
I Section 11.2 – Hash tables
I Exercise 13-3 – AVL trees
I Exercise 13-4 – Treaps

I Algorithms lecture notes, University of Illinois
Jeff Erickson
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

I Lecture 10 – Treaps and skip lists

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 32/33

http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/


Biographical notes

William J. Pugh

I Bill Pugh developed skip lists in the
1980s.

I Also contributions to programming
language design and implementation,
including the Java memory model.

I Currently a professor emeritus at the
University of Maryland.

Pic: umd.edu

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Skip lists Slide 33/33




