COMS21103

Dynamic programming
Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

4 November 2013

Introduction

Dynamic programming is a way of finding efficient algorithms for problems
which can be broken down into simpler, overlapping subproblems.

Ashley Montanaro

COMS21103: Dynamic programming

Introduction

Dynamic programming is a way of finding efficient algorithms for problems
which can be broken down into simpler, overlapping subproblems.

The basic idea

» Start out with a problem you want to solve.

Ashley Montanaro

.uk % University of

programming Slide 2/37 BRISTOL

Introduction

Dynamic programming is a way of finding efficient algorithms for problems
which can be broken down into simpler, overlapping subproblems.

The basic idea

» Start out with a problem you want to solve.
» Find a naive exponential-time recursive algorithm.

Ashley Montanaro

ast uk Bl University of

COMS21103: Dynamic programming Slide 2/37 m BRISTOL

Introduction
Dynamic programming is a way of finding efficient algorithms for problems
which can be broken down into simpler, overlapping subproblems.

The basic idea

» Start out with a problem you want to solve.
» Find a naive exponential-time recursive algorithm.
» Speed up the algorithm by storing solutions to subproblems.

Ashley Montanaro

ast .uk Bl University of

COMS21103: Dynamic programming Slide 2/37 m BRISTOL

Introduction

Dynamic programming is a way of finding efficient algorithms for problems
which can be broken down into simpler, overlapping subproblems.

The basic idea

» Start out with a problem you want to solve.

» Find a naive exponential-time recursive algorithm.

» Speed up the algorithm by storing solutions to subproblems.

» Speed it up further by solving subproblems in a more efficient order.

Ashley Montanaro

ast .uk Bl University of

COMS21103: Dynamic programming Slide 2/37 BRISTOL

Introduction

Dynamic programming is a way of finding efficient algorithms for problems
which can be broken down into simpler, overlapping subproblems.

The basic idea

Start out with a problem you want to solve.

Find a naive exponential-time recursive algorithm.

Speed up the algorithm by storing solutions to subproblems.

Speed it up further by solving subproblems in a more efficient order.

vV V. Vv VY

v

Rather than an individual algorithm, dynamic programming is a
framework within which many algorithms can be developed.

v

Using this framework can require creativity and insight, but can also
lead to surprisingly efficient algorithms.

% University of

Slide 2/37 BRISTOL

The history

» Dynamic programming was invented by Richard E. Bellman at the
RAND Corporation circa 1950.

» The word “programming” is not used in its modern sense but in the
sense of finding an optimal schedule or programme of activities.

Ashley Montan:
as % University of

.uk
programming Slide 3/37

BRISTOL

The history

» Dynamic programming was invented by Richard E. Bellman at the
RAND Corporation circa 1950.

» The word “programming” is not used in its modern sense but in the
sense of finding an optimal schedule or programme of activities.

Bellman explains the name

The 1950s were not good years for mathematical research. We had a very
interesting gentleman in Washington named Wilson. He was Secretary of
Defense, and he actually had a pathological fear and hatred of the word,
research... His face would suffuse, he would turn red, and he would get
violent if people used the term, research, in his presence. You can imagine
how he felt, then, about the term, mathematical... | thought dynamic
programming was a good name. It was something not even a
Congressman could object to.

Ashley Montanaro

% University of
Slide 3/37 BRISTOL

Dynamic programming by example

Dynamic programming is a very general technique and the easiest way to
understand it is via example. We will discuss three such examples:

» Computing Fibonacci numbers;

» Finding the largest empty square in an image;

» Computing the edit distance between two strings.

Ashley Montanaro

.uk % University of

programming Slide 4/37 BRISTOL

Fibonacci numbers
The Fibonacci numbers are defined as follows:

» Fn=Fp 1+ Fp2 (n>2).

Pic: Wikipedia

They occur (for example) in biology. The first few are:

0,1,1,2,3,5,8,13,21,34,55, ...

Ashley Montanaro

COMS21103: Dynamic programming

Calculating the Fibonacci numbers

Imagine we want to calculate the n'th Fibonacci number F,. The following
algorithm is immediate from the definition:

RecFib(n)

1.ifn<0

2 return 0

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

Ashley Montanaro

uk % University of

nam rogre;mming Slide 6/37 m BRISTOL

Calculating the Fibonacci numbers

Imagine we want to calculate the n'th Fibonacci number F,. The following
algorithm is immediate from the definition:

RecFib(n)

1.ifn<0

2 return 0

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

However, RecFib(n) has running time exponential in n.

Exercise: prove this.

Ashley Montanaro

ac.uk % University of

nami ;oéramming Slide 6/37 m BRISTOL

RecFib(n)

1.ifn<0

2 return O

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

This naive algorithm is inefficient: it repeatedly recomputes the answers to
subproblems.

Ashley Montanaro

.uk % University of

programming Slide 7/37 BRISTOL

RecFib(n)

1.ifn<0

2 return O

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

This naive algorithm is inefficient: it repeatedly recomputes the answers to
subproblems.

Ashley Montanaro

.uk % University of

programming Slide 8/37 BRISTOL

RecFib(n)

1.ifn<0

2 return O

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

This naive algorithm is inefficient: it repeatedly recomputes the answers to
subproblems.

Ashley Montanaro

ast .uk Bl University of
COMS21103: Dynamic programming Slide 9/37 m BRISTOL

RecFib(n)

1.ifn<0

2 return O

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

This naive algorithm is inefficient: it repeatedly recomputes the answers to
subproblems.

Ashley Montanaro

ast .uk Bl University of
COMS21103: Dynamic programming Slide 10/37 m BRISTOL

RecFib(n)

1.ifn<0

2 return O

3. ifn=1

4 return 1

5. return RecFib(n — 1) + RecFib(n — 2)

This naive algorithm is inefficient: it repeatedly recomputes the answers to
subproblems.

% University of
Slide 11/37 B BRISTOL

Improving the algorithm

We can make the algorithm more efficient by storing the results of these
recursive calls in an array F.

MemoFib(n)

.ifn<0
return O
cifn=1

. if F[n] undefined
F[n] <~ MemoFib(n — 1) + MemoFib(n — 2)

1
2

3

4. return 1
5

6

7. return F[n]

Ashley Montanaro
ac.uk Bl University of

nam ;oéramming Slide 12/37 m BRISTOL

Improving the algorithm

We can make the algorithm more efficient by storing the results of these
recursive calls in an array F.

MemoFib(n)

.ifn<0
return O
cifn=1

1
2

3

4. return 1

5. if F[n] undefined
6 F[n] <~ MemoFib(n — 1) + MemoFib(n — 2)
7. return F[n]

This process is known as memoization (NB: not a typo...).

Ashley Montanaro
ac.uk Bl University of

nam ;oéramming Slide 12/37 m BRISTOL

The performance of this algorithm
MemoFib(n)

ifn<O0
return 0
if n=1
return 1
if F[n] undefined
F[n] < MemoFib(n — 1) + MemoFib(n — 2)
return F[n]

N o o s =

Ashley Montanaro

uk % University of

nam rogre;mming Slide 13/37 BRISTOL

The performance of this algorithm
MemoFib(n)

.ifn<0
return 0
if n=1
return 1
if F[n] undefined
F[n] < MemoFib(n — 1) + MemoFib(n — 2)
return F[n]

N o o s =

» Each entry in the memory is only computed once, so there are only
O(n) integer additions. All other operations take time O(1).

» Each integer addition can be performed in time O(n), so the total
running time is O(n?).

% University of

Slide 13/37 BRISTOL

Improving the algorithm further

Something a bit unnatural about this algorithm: the numbers are requested
from the top down, but filled in from the bottom up.

MemoFib(n)

.ifn<0
return O
ifn=1

1
2

3

4. return 1

5. if F[n] undefined
6 F[n] < MemoFib(n — 1) + MemoFib(n — 2)
7. return F[n]

» That is, the F array is computed in the order F[0], F[1],..., F[n].

» This leads to an unnecessarily large number of recursive calls being
made.

% University of

Slide 14/37 BRISTOL

Improving the algorithm further

We can get rid of the recursion by simply computing the Fibonacci
numbers in ascending order.

AscFib(n)

1. F[0] <O

2. F[1] <1

3. fori=2ton
4 Flil < Fli = 1]+ F[i — 2]
5. return F[n]

Ashley Montanaro
ash K % University of

COMS21103: Dynamic programming Slide 15/37 BRISTOL

Improving the algorithm further

We can get rid of the recursion by simply computing the Fibonacci
numbers in ascending order.

AscFib(n)

. F[0]«< 0
. F[1] + 1
.fori=2ton
Flil < Fli = 1]+ F[i — 2]
return F[n]

I

» This algorithm clearly uses O(n) additions and stores O(n) integers.

Ashley Montanaro

ash K % University of

COMS21103: Dynamic programming Slide 15/37 m BRISTOL

Improving the algorithm further

We can get rid of the recursion by simply computing the Fibonacci
numbers in ascending order.

AscFib(n)

1. F[0] <O

2. F[1] <1

3. fori=2ton
4 Flil < Fli = 1]+ F[i — 2]
5. return F[n]

» This algorithm clearly uses O(n) additions and stores O(n) integers.

» This may be the natural algorithm one would come up with when first
looking at the problem, but the point is that here we found it almost
completely mechanically from the original recurrence.

Ashley Montanaro

ac.uk % University of

nam ;oéramming Slide 15/37 BRISTOL

Fral notes on Fibonacci numbers

Although this problem was very simple, it illustrates the basic concepts
behind dynamic programming:

1. Start out with a problem which can be presented recursively in terms
of overlapping subproblems.

2. Write down a naive recursive algorithm based on this presentation.
3. Memoize the recursive algorithm.

4. Finally, restructure the algorithm to obtain a “bottom-up” algorithm
which computes solutions in an efficient order, with no recursion.

Ashley Montanaro

ast .uk % University of

COMS21103: Dyna i Slide 16/37 AR BRISTOL

Fral notes on Fibonacci numbers

Although this problem was very simple, it illustrates the basic concepts
behind dynamic programming:

1. Start out with a problem which can be presented recursively in terms
of overlapping subproblems.

2. Write down a naive recursive algorithm based on this presentation.
3. Memoize the recursive algorithm.

4. Finally, restructure the algorithm to obtain a “bottom-up” algorithm
which computes solutions in an efficient order, with no recursion.

Optional exercise: give an improved algorithm which computes F, using
o(n) integer additions.

Ashley Montanaro

ast .uk % University of

COMS21103: Dyna i Slide 16/37 AR BRISTOL

Example: largest empty square

Consider the following problem: given an n x n monochrome image, find
the largest empty square, i.e. square avoiding any black points.

"o
. . . - . =
- .
1 .
- 1
. 1 -
- .
.
1 T
- . LI E
- - \ . .
. .o
.o
PR
- . b ="
. .
- -
. h 1 . 1
- "
_ - r - . .
- .
- i .
" l- N . - []
- . .
- 1
- -

Ashley Montanaro
niversity of

RISTOL

COMS21103: Dynamic programming Slide 17/37

Example: largest empty square

Consider the following problem: given an n x n monochrome image, find
the largest empty square, i.e. square avoiding any black points.

"o
. . . - . =
- .
1 .
- 1
. 1 -
- .
.
1 T
- . LI E
- - \ . .
. .o
.o
PR
- . b ="
. .
- -
. h 1 . 1
- "
_ - r - . L
- 4
- i .
" l- N . - []
- . .
- 1
- -

Ashley Montanaro
niversity of

RISTOL

COMS21103: Dynamic programming Slide 17/37

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:
» The bottom right pixel in S is empty;
» The three (m— 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Ashley Montanaro
k

% University of
kel BRISTOL

COMS21103: Dynamic programming Slide 18/37

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:

» The bottom right pixel in S is empty;
» The three (m — 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Proof by picture:

Ashley Montanaro
k

e University of
kel BRISTOL

COMS21103: Dynamic programming Slide 18/37

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:

» The bottom right pixel in S is empty;
» The three (m— 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Proof by picture:

Ashley Montanaro
k

% University of
kel BRISTOL

COMS21103: Dynamic programming Slide 18/37

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:

» The bottom right pixel in S is empty;
» The three (m— 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Proof by picture:

Ashley Montanaro

k % University of

COMS21103: Dynamic programming Slide 18/37 BRISTOL

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:

» The bottom right pixel in S is empty;
» The three (m— 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Proof by picture:

Ashley Montanaro

k % University of

COMS21103: Dynamic programming Slide 18/37 BRISTOL

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:

» The bottom right pixel in S is empty;
» The three (m — 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Proof by picture:

Ashley Montanaro

k % University of

COMS21103: Dynamic programming Slide 18/37 BRISTOL

Dynamic programming to the rescue

A recursive formulation of this problem is as follows.

» An m x m square of pixels S is empty if and only if:

» The bottom right pixel in S is empty;
» The three (m— 1) x (m — 1) squares in the top left, top right and bottom
left of S are all empty.

Proof by picture:

Exercise: Write out this proof in words.

Ashley Montanaro

.uk % University of

programming Slide 18/37 BRISTOL

Dynamic programming to the rescue

So let LES(x, y) be the size (i.e. width and height) of the largest empty
square whose bottom right-hand corner is at position (x, y).

% University of

Slide 19/37 BRISTOL

Dynamic programming to the rescue

So let LES(x, y) be the size (i.e. width and height) of the largest empty
square whose bottom right-hand corner is at position (x, y).

Then:
» If the pixel (x, y) isn’t empty, LES(x, y) = 0.

Gt 8 % University of

COMS21103: Dynamic programming Slide 19/37 BRISTOL

Dynamic programming to the rescue

So let LES(x, y) be the size (i.e. width and height) of the largest empty
square whose bottom right-hand corner is at position (x, y).

Then:

» If the pixel (x, y) isn’t empty, LES(x, y) = 0.
» If (x, y) is empty and in the first row or column, LES(x, y) = 1.

Gt 8 % University of

COMS21103: Dynamic programming Slide 19/37 BRISTOL

Dynamic programming to the rescue

So let LES(x, y) be the size (i.e. width and height) of the largest empty
square whose bottom right-hand corner is at position (x, y).

Then:
» If the pixel (x, y) isn’t empty, LES(x, y) = 0.
» If (x, y) is empty and in the first row or column, LES(x, y) = 1.
» If (x, y) is empty and not in the first row or column, then

LES(x, y) = min(LES(x — 1,y —1),LES(x,y —1),LES(x —1,y)) + 1.

Ashley Montanaro

ash k Bl University of

COMS21103: Dynamic programming Slide 19/37 BRISTOL

Dynamic programming to the rescue

So let LES(x, y) be the size (i.e. width and height) of the largest empty
square whose bottom right-hand corner is at position (x, y).

Then:
» If the pixel (x, y) isn’t empty, LES(x, y) = 0.
» If (x, y) is empty and in the first row or column, LES(x, y) = 1.
» If (x, y) is empty and not in the first row or column, then

LES(x, y) = min(LES(x — 1,y —1),LES(x,y —1),LES(x —1,y)) + 1.

This immediately suggests a recursive algorithm!

Ashley Montanaro

ash K % University of

COMS21103: Dynamic programming Slide 19/37 BRISTOL

A recursive algorithm

The following inefficient algorithm computes the size of the largest empty
square whose bottom right-hand corner is (x, y).

LES(x, y)

1. if (x, y) not empty

2 return O

3. fx=1ory=1

4 return 1

5. return min(LES(x — 1,y — 1), LES(x,y — 1), LES(x — 1, y)) + 1

Ashley Montanaro

uk % University of

nami rogre;mming Slide 20/37 m BR_[STOL

A recursive algorithm

The following inefficient algorithm computes the size of the largest empty
square whose bottom right-hand corner is (x, y).

LES(x, y)

1. if (x, y) not empty

2 return O

3. fx=1ory=1

4 return 1

5. return min(LES(x — 1,y — 1), LES(x,y — 1), LES(x — 1, y)) + 1

Once this has been done, taking the maximum of LES(x, y) over all x, y
gives the size of the largest empty square in the whole image.

Ashley Montanaro

ac.uk % University of

nam ;oéramming Slide 20/37 BRISTOL

A memoized recursive algorithm
Next step: memoize this algorithm. ..

MemoLES(x, y)
1. if (x, y) not empty
2 return 0
3. ifx=1ory=1
4. return 1
5. if LES[x, y] undefined
6 return min(MemoLES(x — 1,y — 1), MemoLES(x,y — 1),

MemoLES(x —1,y)) + 1
return LES[x, y]

N

Ashley Montanaro
ash % University of

COMS21103: Dynamic programming Slide 21/37 m BRISTOL

A memoized recursive algorithm
Next step: memoize this algorithm. ..

MemoLES(x, y)

1. if (x, y) not empty

2 return 0

3. ifx=1ory=1

4. return 1

5. if LES[x, y] undefined

6 return min(MemoLES(x — 1,y — 1), MemoLES(x,y — 1),

MemoLES(x —1,y)) + 1
return LES[x, y]

N

» Each element of the LES array is only computed once.
» So this algorithm now only makes O(n?) integer additions.

Ashley Montanaro

ash % University of

COMS21103: Dynamic programming Slide 21/37 BRISTOL

A bottom-up version of the algorithm

Finally, observe that the LES array gets filled in from the top left. Rewriting
this as an iterative algorithm, we get

lterLES(n)

1. forx=1ton

2 fory=1ton

8 if (x, y) not empty

4 LES[x, y] =

& elseifx=1ory =1
6 LES[x,y] =1

7 else

8 LES[x, y] = min(LES[x-1,y-1], LES[x,y-1], LES[x-1,y]) +

Ashley Montanaro

.% University of

ash
COMS21103: Dynamic programming Slide 22/37 .. BRISTOL

A bottom-up version of the algorithm

Finally, observe that the LES array gets filled in from the top left. Rewriting
this as an iterative algorithm, we get

lterLES(n)

1. forx=1ton

2 fory=1ton

8 if (x, y) not empty

4 LES[x, y] =

& elseifx=1ory =1
6 LES[x,y] =1

7 else

8 LES[x, y] = min(LES[x-1,y-1], LES[x,y-1], LES[x-1,y]) +

The runtime is clearly ©(n?).

Ashley Montanaro

.% University of

ash
COMS21103: Dynamic programming Slide 22/37 .. BRISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

1 1
1
1 1
1

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
niversity of

COMS21103: Dynamic programming Slide 23/37 RISTOL

Example

1 1
1

1 1
112

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
1k

namic programming Slide 23/37

Example

1 1 1
1

1 1
112

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro
1k

namic programming Slide 23/37

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

1k
namic programming Slide 23/37

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

1k
namic programming Slide 23/37

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

1k
namic programming Slide 23/37

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

1k
namic programming Slide 23/37

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

.uk % University of

programming Slide 23/37 BRISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

.uk % University of

programming Slide 23/37 BRISTOL

Example

An example monochrome image, filled in with the contents of the
corresponding LES array.

Ashley Montanaro

.uk % University of

programming Slide 23/37 BRISTOL

Edit distance

» The final problem we discuss is computing the edit distance between
two strings s and ¢.

Ashley Montanaro

COMS21103: Dynamic programming Slide 24/37

Edit distance

» The final problem we discuss is computing the edit distance between
two strings s and ¢.

» The edit distance ED(s,t) is defined as the minimal number of
insertions, deletions and replacements of individual characters
required to change s into t. Each such operation is called an edit.

Ashley Montanaro

.uk % University of

programming Slide 24/37 BRISTOL

Edit distance

» The final problem we discuss is computing the edit distance between
two strings s and ¢.

» The edit distance ED(s,t) is defined as the minimal number of
insertions, deletions and replacements of individual characters
required to change s into t. Each such operation is called an edit.

» For example, consider the strings BRISTOL and HUSTLE, with edits

BRISTOL
BRISTOLE
BRISTOLE
HISTOLE
HUSTOLE
HUSTZLE
HUSTLE

Ashley Montanaro
1k

namic programming Slide 24/37

Edit distance

» The final problem we discuss is computing the edit distance between
two strings s and ¢.

» The edit distance ED(s,t) is defined as the minimal number of
insertions, deletions and replacements of individual characters
required to change s into t. Each such operation is called an edit.

» For example, consider the strings BRISTOL and HUSTLE, with edits

BRISTOL
BRISTOLE
BRISTOLE
HISTOLE
HUSTOLE
HUSTZLE
HUSTLE

» So ED(BRISTOL, HUSTLE) < 5. (In fact, ED(BRISTOL, HUSTLE) = 5.)

Ashley Montanaro
University of

COMS21103: Dynamic programming Slide 24/37 BRISTOL

Optimal alignment

» An equivalent way of looking at the edit distance problem is as the
problem of optimal alignment of strings.

Ashley Montanaro

1k
programming Slide 25/37

Optimal alignment

» An equivalent way of looking at the edit distance problem is as the
problem of optimal alignment of strings.

» Given two strings s and ¢, an alignment of the strings is simply writing
one above the other, possibly with gaps (‘-’) between the letters.

Ashley Montan:

.uk % University of
programming Slide 25/37 BRISTOL

Optimal alignment

» An equivalent way of looking at the edit distance problem is as the
problem of optimal alignment of strings.

» Given two strings s and ¢, an alignment of the strings is simply writing
one above the other, possibly with gaps (‘-’) between the letters.

» The cost of an alignment is the number of positions at which the
aligned strings differ.

Ashley Montanaro
ast Luk % University of

coMS21103 ynal i Slide 25/37 BRISTOL

Optimal alignment

» An equivalent way of looking at the edit distance problem is as the
problem of optimal alignment of strings.

» Given two strings s and ¢, an alignment of the strings is simply writing
one above the other, possibly with gaps (‘-’) between the letters.

» The cost of an alignment is the number of positions at which the
aligned strings differ.

» For example, the following alignment of BRISTOL and HUSTLE with
cost 5 corresponds to the sequence of edits on the previous slide:

B R I S T ©) L -
- H U S T - L E

Note that in an optimal alignment there is never any need to have two -’s
in the same column.

Ashley Montanaro

ast .uk Bl University of

COMS21103: Dynamic programming Slide 25/37 BRISTOL

Applications of edit distance
“Traditional” applications include:

» Word processing: identifying the closest dictionary word to a mistyped
input

» Plagiarism detection: determining whether two documents are
suspiciously close

Ashley Montan:

.uk % University of
programming Slide 26/37 BRISTOL

Applications of edit distance
“Traditional” applications include:

» Word processing: identifying the closest dictionary word to a mistyped
input

» Plagiarism detection: determining whether two documents are
suspiciously close

Computing edit distance has also become a basic task in bioinformatics:

» If s and t are strings of nucleotides representing genes (i.e. something
like AGTCATTC. . .), the edit distance can be used to measure how
similar the genes are.

Ashley Montanaro

ast uk % University of

COMS21103: Dynamic programming Slide 26/37 m BRISTOL

Applications of edit distance
“Traditional” applications include:

» Word processing: identifying the closest dictionary word to a mistyped
input

» Plagiarism detection: determining whether two documents are
suspiciously close

Computing edit distance has also become a basic task in bioinformatics:

» If s and t are strings of nucleotides representing genes (i.e. something
like AGTCATTC. . .), the edit distance can be used to measure how
similar the genes are.

» This can be used to determine genes which are expected to have a
similar function, or to infer evolutionary relationships between
organisms.

Ashley Montanaro
ast .uk Bl University of
BEI BRISTOL

COMS21103: Dynamic programming Slide 26/37

Applications of edit distance
“Traditional” applications include:
» Word processing: identifying the closest dictionary word to a mistyped
input
» Plagiarism detection: determining whether two documents are
suspiciously close

Computing edit distance has also become a basic task in bioinformatics:

» If s and t are strings of nucleotides representing genes (i.e. something
like AGTCATTC. . .), the edit distance can be used to measure how
similar the genes are.

» This can be used to determine genes which are expected to have a
similar function, or to infer evolutionary relationships between
organisms.

» Here insertions, deletions and substitutions all have a biological
meaning and may incur different costs.

Ashley Montanaro

ast .uk Bl University of

COMS21103: Dynamic programming Slide 26/37 BRISTOL

Applications of edit distance
“Traditional” applications include:
» Word processing: identifying the closest dictionary word to a mistyped
input
» Plagiarism detection: determining whether two documents are
suspiciously close

Computing edit distance has also become a basic task in bioinformatics:

» If s and t are strings of nucleotides representing genes (i.e. something
like AGTCATTC. . .), the edit distance can be used to measure how
similar the genes are.

» This can be used to determine genes which are expected to have a
similar function, or to infer evolutionary relationships between
organisms.

» Here insertions, deletions and substitutions all have a biological
meaning and may incur different costs.

» Variants include “Smith—Waterman”, “Needleman—-Wunsch”, ...

Ashley Montanaro

ast uk % University of

COMS21103: Dynamic programming Slide 26/37 BRISTOL

Writing down a recurrence

» Let s be length n, and t be length m.

Ashley Montanaro

.uk % University of

COMS21103: Dynamic programming Slide 27/37 BRISTOL

Writing down a recurrence

» Let s be length n, and t be length m.

» The key to computing ED(s,t) is a recurrence which expresses it in
terms of the edit distance of substrings of s and ¢.

% University of

Slide 27/37 BRISTOL

Writing down a recurrence

» Let s be length n, and t be length m.

» The key to computing ED(s,t) is a recurrence which expresses it in
terms of the edit distance of substrings of s and .

» For any integer k between 1 and n, let s[k] denote the k’th character
of s, and let s[1, ..., k] denote the substring formed from the first k
characters of s; define {[k] and {[1, ..., k] similarly for 1 < k < m.

Ashley Montanaro

ast % University of

coMS21103 ynal e Slide 27/37 BRISTOL

Writing down a recurrence

» Let s be length n, and t be length m.

» The key to computing ED(s,t) is a recurrence which expresses it in
terms of the edit distance of substrings of s and .

» For any integer k between 1 and n, let s[k] denote the k’th character
of s, and let s[1, ..., k] denote the substring formed from the first k
characters of s; define {[k] and {[1, ..., k] similarly for 1 < k < m.

» Consider any optimal alignment of non-empty strings s and t. The last
pair of characters in the alignment must be one of the following three
possibilities:

s[n] s[n] -
tm] - t[m]

Ashley Montanaro

ast .uk % University of

COMS21103: Dyna i Slide 27/37 AR BRISTOL

Writing down a recurrence

» Let s be length n, and t be length m.

» The key to computing ED(s,t) is a recurrence which expresses it in
terms of the edit distance of substrings of s and .

» For any integer k between 1 and n, let s[k] denote the k’th character
of s, and let s[1, ..., k] denote the substring formed from the first k
characters of s; define {[k] and {[1, ..., k] similarly for 1 < k < m.

» Consider any optimal alignment of non-empty strings s and t. The last
pair of characters in the alignment must be one of the following three
possibilities:

s[n] s[n] -
t[m] - {[m]
» We now calculate the cost of each of these possibilities in turn.

Ashley Montanaro

ash e Bl University of

COMS21103: Dyna i Slide 27/37 AR BRISTOL

Writing down a recurrence

The last pair of characters in the alignment must be one of the following
three possibilities:

s[n] s[n] -
tm] - t[m]

In each case in turn, the cost of the optimal alignment of this form is the
same as the cost of the optimal alignment of . ..

1. the strings s[1,...,n—1]and t[1,...,m — 1], plus 1 (if s[n] # {[m]).
2. the strings s[1,...,n— 1] and ¢, plus 1
3. the strings sand t[1,...,m— 1], plus 1

Ashley Montanaro

ast .uk % University of

CoMS21103 ynal i Slide 28/37 BRISTOL

Writing down a recurrence

The last pair of characters in the alignment must be one of the following
three possibilities:

s[n] s[n] -
tm] - t[m]

In each case in turn, the cost of the optimal alignment of this form is the
same as the cost of the optimal alignment of ...
1. the strings s[1,...,n—1]and t[1,...,m — 1], plus 1 (if s[n] # {[m]).
2. the strings s[1,...,n— 1] and ¢, plus 1
3. the strings sand t[1,...,m— 1], plus 1

So the globally optimal alignment is the minimal cost of all three. This lets
us write down a recurrence. . .

Ashley Montanaro

ast .uk % University of

COMS21103: Dyna i Slide 28/37 AR BRISTOL

Writing down a recurrence

Assuming that n > 1, m > 1, we have the following recurrence:
Recurrence
ED(s,t) = min{ ED(s[1,...,n—1],t[1,....m—1])+[s[n] # t[m]],

ED(s[1,...,n—1], 1) +1,
ED(s, f[1,...,m—1])+1}

(NB: we use the notation [X] for an expression which evaluates to 1 if X is
true, 0 otherwise.)

Ashley Montanaro

uk % University of

nami rogre;mming Slide 29/37 m BRISTOL

Writing down a recurrence

Assuming that n > 1, m > 1, we have the following recurrence:
Recurrence
ED(s,t) = min{ ED(s[1,...,n—1],t[1,....m—1])+[s[n] # t[m]],

ED(s[1,...,n—1], 1) +1,
ED(s, f[1,...,m—1])+1}

(NB: we use the notation [X] for an expression which evaluates to 1 if X is
true, 0 otherwise.)

» If n=0 (i.e. sis empty), then ED(s,f) = m; similarly, if m=0 (i.e. t is
empty), then ED(s,t) = n.

Ashley Montanaro

uk % University of

nami rogre;mming Slide 29/37 m BR_[STOL

Writing down a recurrence
Assuming that n > 1, m > 1, we have the following recurrence:

Recurrence

ED(s,t) = min{ ED(s[1,...,n—1],t[1,....m—1])+[s[n] # t[m]],
ED(s[1,...,n—1],1) +1,
ED(s, f[1,...,m—1])+1}

(NB: we use the notation [X] for an expression which evaluates to 1 if X is
true, 0 otherwise.)
» If n=0 (i.e. sis empty), then ED(s,f) = m; similarly, if m=0 (i.e. t is
empty), then ED(s,t) = n.

» Now we have the above recurrence, as before we can easily write
down a memoized algorithm computing edit distance efficiently.

Ashley Montanaro
% University of

ash .u
i Slide 29/37 BRISTOL

COMS21103: Dyna

Writing down an algorithm

The following algorithm computes the edit distance between s[1, ..., p]
and {[1,..., g] for arbitrary integers p and q.

MemoED(s,t,p,q)

. if p=0return g
. ifg=0returnp
. if ED[p, q] undefined

ED[p, g] <— min (MemoED(s, t, p —1, g — 1) + [s[p] # t[q]],
MemoED(s, t, p — q)
MemoED(s, t, p, g — 1) + 1)

ENEAR S

5. return ED[p, q]

» By the previous discussion, MemoED(s, t, n, m) returns ED(s, t).

Ashley Montanaro

.% University of

ash
COMS21103: Dynamic programming Slide 30/37 .. BRISTOL

A bottom-up algorithm
It suffices to compute edit distances in increasing order of p and g.
Therefore, we can write down the following bottom-up algorithm.

lterED(s,t)

1. forg=0tom

2 forpo=0ton

3 if p=0

4 ED[p,q] < q
B, elseifg=0

6 ED[p,q] < p
7 else

8

EDIp, q] <~ min (ED[p — 1,9 — 1] + [s[p] # t[q]],
ED[p—1,q] + 1,
ED[p,g - 1]+ 1)

9. return ED[n, m]

Ashley Montanaro

ash % University of

COMS21103: Dynamic programming Slide 31/37 BRISTOL

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

Mm e 3 n o

Ashley Montanaro
1k

programming Slide 32/37

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

sl
—
95}
H
| O
~| =

0 wnamxm

Ashley Montanaro
1k

programming Slide 32/37

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

B R I S T O L
o 1 2 3 4 5 6 7
1 1 2 3 4 5 6 17

0 wnamxm

Ashley Montanaro
1k

programming Slide 32/37

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

B R I S T O L
o 1 2 3 4 5 6 7
1 1 2 3 4 5 6 17
2 2 2 3 4 5 6 17

0 wnamxm

Ashley Montan:
% University of

COMS21103: Dynamic programming Slide 32/37

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

HEedwnamx

w N o

w N~ W
w NN N
W w w wiH
w DD
NG NG IS |
g o o | O
o - g

Ashley Montan:
% University of

COMS21103: Dynamic programming Slide 32/37

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

HEedwnamx

S W N o

INOVIN SRR Y N v]
Sw NN N
S W W W W
[INNRGV IR O N N 05}
w > oo | H
SOy oy | O
Ol oy 3 3|

Ashley Montan:
% University of

COMS21103: Dynamic programming Slide 32/37

Example

We write down the table corresponding to computing the edit distance
between BRISTOL and HUSTLE.

g W N P
g w NN N
O W W w wlH
(€2 I SNV RN NN N I 05
S W o o o a1 A
S 01 oy o V| O
SO oy 0

H e H 0@
g W N o

University of
BRI L

COMS21103: Dynami i Slide 32/37

Example

The completed table corresponding to computing the edit distance
between BRISTOL and HUSTLE is:

oy Ul W N W
o U W NN N
oY U1 W W W W|H
g w0 ool
G > 0oy oy O

o W s 0
[3, WG B NG G S

HEHnam
o Ul WN O

So ED(BRISTOL, HUSTLE) = 5.

University of

COMS21103: Dynami i Slide 33/37

Notes on this algorithm

» The algorithm runs in time O(mn).

Ashley Montanaro

COMS21103: Dynamic programming Slide 34/37

Notes on this algorithm

» The algorithm runs in time O(mn).

» As with many other dynamic programming algorithms, the above
algorithm can easily be modified to output an optimal sequence of
edits, rather than just the edit distance.

% University of

Slide 34/37 BRISTOL

Notes on this algorithm

» The algorithm runs in time O(mn).

» As with many other dynamic programming algorithms, the above
algorithm can easily be modified to output an optimal sequence of
edits, rather than just the edit distance.

» Step (8) is modified to store which one of the three values compared
is smallest. The first corresponds to a replacement, the second an
insertion, and the third a deletion.

Ashley Montanaro

ast .uk % University of

COMS21103: Dyna i Slide 34/37 BRISTOL

Notes on this algorithm

» The algorithm runs in time O(mn).

» As with many other dynamic programming algorithms, the above
algorithm can easily be modified to output an optimal sequence of
edits, rather than just the edit distance.

» Step (8) is modified to store which one of the three values compared
is smallest. The first corresponds to a replacement, the second an
insertion, and the third a deletion.

» This process can also be seen as choosing a path in a certain
directed graph...

Ashley Montanaro

ast .uk % University of

COMS21103: Dyna i Slide 34/37 BRI BRISTOL

Edit distance and shortest paths

» A graph is created on a grid of (m+ 1) x (n+ 1) vertices where the
shortest path from the top left to the bottom right is precisely the edit
distance between s and t.

% University of

Slide 35/37 BRISTOL

Edit distance and shortest paths

» A graph is created on a grid of (m+ 1) x (n+ 1) vertices where the
shortest path from the top left to the bottom right is precisely the edit
distance between s and t.

» Each vertex corresponds to a position in the tables filled in by the
dynamic programming algorithm.

Ashley Montanaro

ast .uk % University of

CoMS21103 ynal i Slide 35/37 BRISTOL

Edit distance and shortest paths

» A graph is created on a grid of (m+ 1) x (n+ 1) vertices where the
shortest path from the top left to the bottom right is precisely the edit
distance between s and t.

» Each vertex corresponds to a position in the tables filled in by the
dynamic programming algorithm.

» All vertices have an edge with weight 1 to adjacent vertices
immediately to the right and below

Ashley Montanaro

ast .uk Bl University of

COMS21103: Dyna i Slide 35/37 AR BRISTOL

Edit distance and shortest paths

» A graph is created on a grid of (m+ 1) x (n+ 1) vertices where the
shortest path from the top left to the bottom right is precisely the edit
distance between s and t.

» Each vertex corresponds to a position in the tables filled in by the
dynamic programming algorithm.

» All vertices have an edge with weight 1 to adjacent vertices
immediately to the right and below

» There are also diagonal edges right and downwards; these have
weight 0 wherever the corresponding characters in the strings are the
same, and weight 1 otherwise.

Ashley Montanaro

ash e Bl University of

COMS21103: Dyna i Slide 35/37 AR BRISTOL

Edit distance and shortest paths

» A graph is created on a grid of (m+ 1) x (n+ 1) vertices where the
shortest path from the top left to the bottom right is precisely the edit
distance between s and f.

» Each vertex corresponds to a position in the tables filled in by the
dynamic programming algorithm.

» All vertices have an edge with weight 1 to adjacent vertices
immediately to the right and below

» There are also diagonal edges right and downwards; these have
weight 0 wherever the corresponding characters in the strings are the
same, and weight 1 otherwise.

» This is a directed acyclic graph, so a shortest path can be found in
time O(mn) (see CLRS §24.2).

Ashley Montanaro

ash e Bl University of

CoMS21103: Dynal i Slide 35/37 BRISTOL

Example

» In the above diagram, thick red diagonal edges have weight 0, and all
other edges have weight 1.

Ashley Montanaro

COMS21103: Dynamic programming Slide 36/37

Example

» The thick blue edges give a shortest path with weight 5,
corresponding to an optimal sequence of edits.

Ashley Montanaro

1k
namic programming Slide 37/37

When does dynamic programming succeed (or fail)?

» The three problems that we have seen seem quite different, but share
a feature which makes them good candidates for an efficient dynamic
programming algorithm: optimal substructure.

% University of

Slide 38/37 BRISTOL

When does dynamic programming succeed (or fail)?

» The three problems that we have seen seem quite different, but share
a feature which makes them good candidates for an efficient dynamic
programming algorithm: optimal substructure.

» A problem has optimal substructure if any optimal solution to the
problem can be constructed out of optimal solutions to subproblems
(which may overlap).

Ashley Montanaro

uk % University of

nam rogre;mming Slide 38/37 BRISTOL

When does dynamic programming succeed (or fail)?

» The three problems that we have seen seem quite different, but share
a feature which makes them good candidates for an efficient dynamic
programming algorithm: optimal substructure.

» A problem has optimal substructure if any optimal solution to the
problem can be constructed out of optimal solutions to subproblems
(which may overlap).

» If this property holds, there is a hope that a dynamic programming
algorithm can efficiently construct and combine solutions to the
subproblems.

Ashley Montanaro

ash e Bl University of

COMS21103: Dyna i Slide 38/37 AR BRISTOL

When does dynamic programming succeed (or fail)?

» The three problems that we have seen seem quite different, but share
a feature which makes them good candidates for an efficient dynamic
programming algorithm: optimal substructure.

» A problem has optimal substructure if any optimal solution to the
problem can be constructed out of optimal solutions to subproblems
(which may overlap).

» If this property holds, there is a hope that a dynamic programming
algorithm can efficiently construct and combine solutions to the
subproblems.

» Dynamic programming is not a panacea: in some cases, a more
efficient algorithm can be developed using other techniques that
exploit problem structure more closely.

Ashley Montanaro

% University of

Slide 38/37 BRISTOL

Dynamic vs. greedy and divide-and-conquer

» There is an important distinction between dynamic programming and
two other kinds of algorithms you have seen: greedy algorithms and
divide-and-conquer.

% University of

Slide 39/37 BRISTOL

Dynamic vs. greedy and divide-and-conquer

» There is an important distinction between dynamic programming and
two other kinds of algorithms you have seen: greedy algorithms and
divide-and-conquer.

» A greedy algorithm makes the locally optimal choice at each step;
however, this may not be the globally optimal choice.

% University of

Slide 39/37 BRISTOL

Dynamic vs. greedy and divide-and-conquer

» There is an important distinction between dynamic programming and
two other kinds of algorithms you have seen: greedy algorithms and
divide-and-conquer.

» A greedy algorithm makes the locally optimal choice at each step;
however, this may not be the globally optimal choice.

» A dynamic programming algorithm takes a global view of the input but
relies on the problem having the optimal substructure property.

Ashley Montanaro

uk % University of

nami rogre;mming Slide 39/37 m BRISTOL

Dynamic vs. greedy and divide-and-conquer

» There is an important distinction between dynamic programming and
two other kinds of algorithms you have seen: greedy algorithms and
divide-and-conquer.

» A greedy algorithm makes the locally optimal choice at each step;
however, this may not be the globally optimal choice.

» A dynamic programming algorithm takes a global view of the input but
relies on the problem having the optimal substructure property.

» A divide-and-conquer algorithm also works recursively, by dividing the
problem being solved into subproblems; but the subproblems do not
overlap.

Ashley Montanaro

ac.uk Bl University of

nam ;oéramming Slide 39/37 BRISTOL

Dynamic vs. greedy and divide-and-conquer

» There is an important distinction between dynamic programming and
two other kinds of algorithms you have seen: greedy algorithms and
divide-and-conquer.

» A greedy algorithm makes the locally optimal choice at each step;
however, this may not be the globally optimal choice.

» A dynamic programming algorithm takes a global view of the input but
relies on the problem having the optimal substructure property.

» A divide-and-conquer algorithm also works recursively, by dividing the
problem being solved into subproblems; but the subproblems do not
overlap.

» Dynamic programming is a more general and powerful technique than
either of these.

Ashley Montanaro

ash U % University of

CoMS21103: Dynal i Slide 39/37 BRISTOL

Summary

» Dynamic programming is a powerful technique for developing efficient
algorithms.

Ashley Montanaro

COMS21103: Dynamic programming Slide 40/37

Summary

» Dynamic programming is a powerful technique for developing efficient
algorithms.

» The process of developing such an algorithm can sometimes be
almost completely mechanical:

1. Start out with a problem which can be presented recursively in terms of
overlapping subproblems.
2. Write down a naive recursive algorithm.
3. Memoize the recursive algorithm.
4. Finally, restructure the algorithm to compute solutions in an efficient
order.

Ashley Montanaro
k % University of

COMS21103: Dynamic programming Slide 40/37

Summary

» Dynamic programming is a powerful technique for developing efficient
algorithms.

» The process of developing such an algorithm can sometimes be
almost completely mechanical:

1. Start out with a problem which can be presented recursively in terms of
overlapping subproblems.
2. Write down a naive recursive algorithm.
3. Memoize the recursive algorithm.
4. Finally, restructure the algorithm to compute solutions in an efficient
order.

» However, sometimes applying dynamic programming can require a
good deal of thought and creativity!

Ashley Montanaro

% University of

COMS21103: Dynamic programming Slide 40/37 m BRISTOL

Summary

» Dynamic programming is a powerful technique for developing efficient
algorithms.

» The process of developing such an algorithm can sometimes be
almost completely mechanical:

1. Start out with a problem which can be presented recursively in terms of
overlapping subproblems.

2. Write down a naive recursive algorithm.

3. Memoize the recursive algorithm.

4. Finally, restructure the algorithm to compute solutions in an efficient
order.

» However, sometimes applying dynamic programming can require a
good deal of thought and creativity!

» Sometimes it can be more efficient to leave the algorithm in its
memoized, top-down form. In particular, this can be the case when
some subproblems do not need to be computed to solve the problem.

Ashley Montanaro
as u University of

COMS21103: i Slide 40/37 RISTOL

Further reading

» Introduction to Algorithms
T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

» Chapter 15 — Dynamic Programming

» Algorithms
S. Dasgupta, C. H. Papadimitriou and U. V. Vazirani
http://www.cs.berkeley.edu/~vazirani/algorithms.html
» Chapter 6 — Dynamic Programming

» Algorithms lecture notes, University of lllinois
Jeff Erickson
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

» Lecture 5 — Dynamic programming

Ashley Montanaro

k % University of

COMS21103: Dynamic programming Slide 41/37 BRISTOL

http://www.cs.berkeley.edu/~vazirani/algorithms.html
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

