
COMS21103

Finding the shortest path

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

28 October 2013

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 1/39



Given a (weighted, directed) graph G and a pair of vertices s and t , we
would like to find a shortest path from s to t .

A fundamental task with many applications:

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 2/39



Given a (weighted, directed) graph G and a pair of vertices s and t , we
would like to find a shortest path from s to t .

A fundamental task with many applications:

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 2/39



Other applications
I Internet routing (e.g. the OSPF routing algorithm)
I VLSI routing
I Traffic information systems
I Robot motion planning
I Routing telephone calls
I Avoiding nuclear contamination
I Destabilising currency markets
I . . .

Pics: Wikipedia, autoevolution.com, autoblog.com

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 3/39



Shortest paths problem
Formally, a shortest path from s to t in a graph G is a sequence
v1, v2, . . . , vm such that the total weight of the edges s → v1, v1 → v2, . . . ,
vm → t is minimal.

A GD

C F

EB

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 4/39



Shortest paths problem
Formally, a shortest path from s to t in a graph G is a sequence
v1, v2, . . . , vm such that the total weight of the edges s → v1, v1 → v2, . . . ,
vm → t is minimal.

A GD

C F

EB

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 4/39



Shortest paths problem
Formally, a shortest path from s to t in a graph G is a sequence
v1, v2, . . . , vm such that the total weight of the edges s → v1, v1 → v2, . . . ,
vm → t is minimal.

A GD

C F

EB

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 4/39



Single-source shortest paths
I In fact, the algorithms we will discuss for this problem give us more:

given a source s, they output a shortest path from s to every other
vertex.

I This is known as the single-source shortest path problem (SSSP).

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 5/39



Single-source shortest paths
I In fact, the algorithms we will discuss for this problem give us more:

given a source s, they output a shortest path from s to every other
vertex.

I This is known as the single-source shortest path problem (SSSP).

A D

C F

EB

G

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 5/39



Single-source shortest paths
I In fact, the algorithms we will discuss for this problem give us more:

given a source s, they output a shortest path from s to every other
vertex.

I This is known as the single-source shortest path problem (SSSP).

A D

C F

EB

G

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 5/39



Single-source shortest paths
I In fact, the algorithms we will discuss for this problem give us more:

given a source s, they output a shortest path from s to every other
vertex.

I This is known as the single-source shortest path problem (SSSP).

A D

C F

EB

G

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 5/39



Negative-weight edges
I If some of the edges have negative weights, the idea of a shortest

path might not make sense.

I If there is a cycle in G which is reachable on a path from s to t , and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

-1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 6/39



Negative-weight edges
I If some of the edges have negative weights, the idea of a shortest

path might not make sense.

I If there is a cycle in G which is reachable on a path from s to t , and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

-1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 6/39



Negative-weight edges
I If some of the edges have negative weights, the idea of a shortest

path might not make sense.

I If there is a cycle in G which is reachable on a path from s to t , and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

-1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 6/39



Today’s lecture

I Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

I The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

I It also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from s to t in turn.

I There can be exponentially many paths so such an algorithm cannot
be efficient.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 7/39



Today’s lecture

I Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

I The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

I It also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from s to t in turn.

I There can be exponentially many paths so such an algorithm cannot
be efficient.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 7/39



Today’s lecture

I Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

I The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

I It also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from s to t in turn.

I There can be exponentially many paths so such an algorithm cannot
be efficient.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 7/39



Today’s lecture

I Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

I The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

I It also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from s to t in turn.

I There can be exponentially many paths so such an algorithm cannot
be efficient.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 7/39



Today’s lecture

I Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

I The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

I It also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from s to t in turn.

I There can be exponentially many paths so such an algorithm cannot
be efficient.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 7/39



Notation
We will use the following notation (essentially the same as CLRS):

I We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

I We write u → v for an edge from u to v , and w(u, v) for the weight of
this edge.

I We write δ(u, v) for the distance from u to v , i.e. the length (total
weight) of a shortest path from u to v .

I We write δ(u, v) =∞ when there is no path from u to v .
(Mathematical note: in practice,∞ would be represented by a number
so large it could never occur in distance calculations...)

I For each vertex v , we will maintain a guess for its distance from s; call
this v .d .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 8/39



Notation
We will use the following notation (essentially the same as CLRS):

I We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

I We write u → v for an edge from u to v , and w(u, v) for the weight of
this edge.

I We write δ(u, v) for the distance from u to v , i.e. the length (total
weight) of a shortest path from u to v .

I We write δ(u, v) =∞ when there is no path from u to v .
(Mathematical note: in practice,∞ would be represented by a number
so large it could never occur in distance calculations...)

I For each vertex v , we will maintain a guess for its distance from s; call
this v .d .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 8/39



Notation
We will use the following notation (essentially the same as CLRS):

I We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

I We write u → v for an edge from u to v , and w(u, v) for the weight of
this edge.

I We write δ(u, v) for the distance from u to v , i.e. the length (total
weight) of a shortest path from u to v .

I We write δ(u, v) =∞ when there is no path from u to v .
(Mathematical note: in practice,∞ would be represented by a number
so large it could never occur in distance calculations...)

I For each vertex v , we will maintain a guess for its distance from s; call
this v .d .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 8/39



Notation
We will use the following notation (essentially the same as CLRS):

I We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

I We write u → v for an edge from u to v , and w(u, v) for the weight of
this edge.

I We write δ(u, v) for the distance from u to v , i.e. the length (total
weight) of a shortest path from u to v .

I We write δ(u, v) =∞ when there is no path from u to v .
(Mathematical note: in practice,∞ would be represented by a number
so large it could never occur in distance calculations...)

I For each vertex v , we will maintain a guess for its distance from s; call
this v .d .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 8/39



Notation
We will use the following notation (essentially the same as CLRS):

I We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

I We write u → v for an edge from u to v , and w(u, v) for the weight of
this edge.

I We write δ(u, v) for the distance from u to v , i.e. the length (total
weight) of a shortest path from u to v .

I We write δ(u, v) =∞ when there is no path from u to v .
(Mathematical note: in practice,∞ would be represented by a number
so large it could never occur in distance calculations...)

I For each vertex v , we will maintain a guess for its distance from s; call
this v .d .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 8/39



Notation
We will use the following notation (essentially the same as CLRS):

I We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

I We write u → v for an edge from u to v , and w(u, v) for the weight of
this edge.

I We write δ(u, v) for the distance from u to v , i.e. the length (total
weight) of a shortest path from u to v .

I We write δ(u, v) =∞ when there is no path from u to v .
(Mathematical note: in practice,∞ would be represented by a number
so large it could never occur in distance calculations...)

I For each vertex v , we will maintain a guess for its distance from s; call
this v .d .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 8/39



Predecessors and shortest paths

I For each vertex v , we try to determine its predecessor v .π, which is
the previous vertex in some shortest path from s to v .

I Knowledge of v ’s predecessor suffices to compute the whole path
from s to v , by following the predecessors back to s and reversing the
path.

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 9/39



Predecessors and shortest paths

I For each vertex v , we try to determine its predecessor v .π, which is
the previous vertex in some shortest path from s to v .

I Knowledge of v ’s predecessor suffices to compute the whole path
from s to v , by following the predecessors back to s and reversing the
path.

A D

C F

EB

G

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 9/39



Predecessors and shortest paths
I For each vertex v , we try to determine its predecessor v .π, which is

the previous vertex in some shortest path from s to v .

I Knowledge of v ’s predecessor suffices to compute the whole path
from s to v , by following the predecessors back to s and reversing the
path.

A D

C

CB FD

E
D

B
A

G F

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 9/39



Predecessors and shortest paths
I For each vertex v , we try to determine its predecessor v .π, which is

the previous vertex in some shortest path from s to v .

I Knowledge of v ’s predecessor suffices to compute the whole path
from s to v , by following the predecessors back to s and reversing the
path.

A D

C

CB FD

E
D

B
A

G F

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 9/39



A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v .d for the distance from the source s: s.d = 0, and
v .d =∞ for all other vertices v .

2. Update our guesses by relaxing edges:

I If there is an edge u → v and our guess for the distance from s to v is
greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Relax(u, v )

1. if v .d > u.d + w(u, v)

2. v .d ← u.d + w(u, v)

3. v .π = u

Note that∞+ x =∞ for any real number x .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 10/39



A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v .d for the distance from the source s: s.d = 0, and
v .d =∞ for all other vertices v .

2. Update our guesses by relaxing edges:

I If there is an edge u → v and our guess for the distance from s to v is
greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Relax(u, v )

1. if v .d > u.d + w(u, v)

2. v .d ← u.d + w(u, v)

3. v .π = u

Note that∞+ x =∞ for any real number x .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 10/39



A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v .d for the distance from the source s: s.d = 0, and
v .d =∞ for all other vertices v .

2. Update our guesses by relaxing edges:

I If there is an edge u → v and our guess for the distance from s to v is
greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Relax(u, v )

1. if v .d > u.d + w(u, v)

2. v .d ← u.d + w(u, v)

3. v .π = u

Note that∞+ x =∞ for any real number x .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 10/39



A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v .d for the distance from the source s: s.d = 0, and
v .d =∞ for all other vertices v .

2. Update our guesses by relaxing edges:

I If there is an edge u → v and our guess for the distance from s to v is
greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Relax(u, v )

1. if v .d > u.d + w(u, v)

2. v .d ← u.d + w(u, v)

3. v .π = u

Note that∞+ x =∞ for any real number x .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 10/39



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v ∈ G: v .d ←∞, v .π ← nil
2. s.d ← 0

3. for i = 1 to V − 1
4. for each edge u → v in G
5. Relax(u, v )
6. for each edge u → v in G
7. if v .d > u.d + w(u, v)

8. error(“Negative-weight cycle detected”)

I Time complexity: Θ(V ) + Θ(VE) + Θ(E) = Θ(VE).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 11/39



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v ∈ G: v .d ←∞, v .π ← nil
2. s.d ← 0
3. for i = 1 to V − 1
4. for each edge u → v in G
5. Relax(u, v )

6. for each edge u → v in G
7. if v .d > u.d + w(u, v)

8. error(“Negative-weight cycle detected”)

I Time complexity: Θ(V ) + Θ(VE) + Θ(E) = Θ(VE).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 11/39



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v ∈ G: v .d ←∞, v .π ← nil
2. s.d ← 0
3. for i = 1 to V − 1
4. for each edge u → v in G
5. Relax(u, v )
6. for each edge u → v in G
7. if v .d > u.d + w(u, v)

8. error(“Negative-weight cycle detected”)

I Time complexity: Θ(V ) + Θ(VE) + Θ(E) = Θ(VE).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 11/39



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v ∈ G: v .d ←∞, v .π ← nil
2. s.d ← 0
3. for i = 1 to V − 1
4. for each edge u → v in G
5. Relax(u, v )
6. for each edge u → v in G
7. if v .d > u.d + w(u, v)

8. error(“Negative-weight cycle detected”)

I Time complexity: Θ(V ) + Θ(VE) + Θ(E) = Θ(VE).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 11/39



Example 1: no negative-weight cycles

Imagine we want to find shortest paths from vertex A in the following graph:

A GDD

C F

EB

1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 12/39



Example 1: no negative-weight cycles
At the start of the algorithm:

A

0, nil

G

∞, nil

D

∞, nil

D

∞, nil

C∞, nil F∞, nil

E

∞, nil

B

∞, nil

1

-2

1

3
-1

2

2

2

1

1

4

I In the above diagram, the red text is the distance from the source A,
(i.e. v .d), and the green text is the predecessor vertex (i.e. v .π).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 13/39



Example 1: no negative-weight cycles
The first iteration of the for loop:

I Note that the edges are picked in arbitrary order.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 14/39



Example 1: no negative-weight cycles
The second iteration of the for loop:

I Note that the edges are picked in arbitrary order.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 15/39



Example 1: no negative-weight cycles
The 4 iterations of the for loop that follow do not update any distance or
predecessor values, so the final state is:

A

0, nil

B

1, A

C−1, B

D

−2, C

E

0, D

F0, D

G

1, F
1

-2

1

3
-1

2

2

2

1

1

4

I So the shortest path from A to G (for example) has weight 1.
I To output a shortest path itself, we can trace back the predecessor

values from G.
Ashley Montanaro

ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 16/39



Example 1: no negative-weight cycles
The 4 iterations of the for loop that follow do not update any distance or
predecessor values, so the final state is:

A

0, nil

B

1, A

C−1, B

D

−2, C

E

0, D

F0, D

G

1, F
1

-2

1

3
-1

2

2

2

1

1

4

I So the shortest path from A to G (for example) has weight 1.
I To output a shortest path itself, we can trace back the predecessor

values from G.
Ashley Montanaro

ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 16/39



Example 2: negative-weight cycle

We now consider an input graph that has a negative-weight cycle.

A

B

C

1

-3

1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 17/39



Example 2: negative-weight cycle

At the start of the algorithm:

A

0, nil

B ∞, nil

C ∞, nil

1

-3

1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 18/39



Example 2: negative-weight cycle
The first iteration of the for loop:

I As before, the order in which we consider the edges is arbitrary (here
we use the order A→ B, C→ A, B→ C).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 19/39



Example 2: negative-weight cycle
The second iteration of the for loop:

I At the end of the algorithm, B.d > A.d + w(A,B).
I So the algorithm terminates with “Negative-weight cycle detected”.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 20/39



Example 2: negative-weight cycle
The second iteration of the for loop:

I At the end of the algorithm, B.d > A.d + w(A,B).
I So the algorithm terminates with “Negative-weight cycle detected”.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 20/39



Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Proof
If a path p contains a cycle v0 → v1 → · · · → v0 such that the sum of the
weights of the edges is non-negative, deleting this cycle from p cannot
increase p’s total weight.

A B C D

E F

1 -3 2
-1

3
-1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 21/39



Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Proof
If a path p contains a cycle v0 → v1 → · · · → v0 such that the sum of the
weights of the edges is non-negative, deleting this cycle from p cannot
increase p’s total weight.

A B C D

E F

1 -3 2
-1

3
-1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 21/39



Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Proof
If a path p contains a cycle v0 → v1 → · · · → v0 such that the sum of the
weights of the edges is non-negative, deleting this cycle from p cannot
increase p’s total weight.

A B C D

E F

1 -3 2
-1

3
-1

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 21/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A G

C F

EB
1

-2

1
3

-1
2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A G

C F

EB
1

-2

1
3

-1
2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A G

C F

EB
1

-2

1
3

-1
2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries
Claim (triangle inequality)

For any vertices a, b, c, δ(a, c) ≤ δ(a,b) + δ(b, c).

Proof
Given a shortest path from a to b and a shortest path from b to c,
combining these two paths gives a path from a to c with total weight
δ(a,b) + δ(b, c).

Note that this holds even if some edge weights are negative.

A GD

C F

EB
1

-2

1

3
-1

2

2

2

1

1

4

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 22/39



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
I p = s → v1 → · · · → vk → v is a shortest path from s to v ;

I s.d is initially set to 0 and u.d is initially set to∞ for all u 6= s;
I the edges in p are relaxed in the order they appear in p (possibly with

other edges relaxed in between).
Then, at the end of this process, v .d = δ(s, v).

Proof: exercise.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 23/39



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
I p = s → v1 → · · · → vk → v is a shortest path from s to v ;
I s.d is initially set to 0 and u.d is initially set to∞ for all u 6= s;

I the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).

Then, at the end of this process, v .d = δ(s, v).

Proof: exercise.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 23/39



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
I p = s → v1 → · · · → vk → v is a shortest path from s to v ;
I s.d is initially set to 0 and u.d is initially set to∞ for all u 6= s;
I the edges in p are relaxed in the order they appear in p (possibly with

other edges relaxed in between).

Then, at the end of this process, v .d = δ(s, v).

Proof: exercise.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 23/39



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
I p = s → v1 → · · · → vk → v is a shortest path from s to v ;
I s.d is initially set to 0 and u.d is initially set to∞ for all u 6= s;
I the edges in p are relaxed in the order they appear in p (possibly with

other edges relaxed in between).
Then, at the end of this process, v .d = δ(s, v).

Proof: exercise.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 23/39



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
I p = s → v1 → · · · → vk → v is a shortest path from s to v ;
I s.d is initially set to 0 and u.d is initially set to∞ for all u 6= s;
I the edges in p are relaxed in the order they appear in p (possibly with

other edges relaxed in between).
Then, at the end of this process, v .d = δ(s, v).

Proof: exercise.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 23/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v .d = δ(s, v) for all vertices v .

Proof

I Write v0 = s, vm = v . If v is reachable from s, there must exist a
shortest path v0 → v1 → · · · → vm.

I A shortest path cannot contain a cycle, so m ≤ V − 1.
I In the i ’th iteration of the for loop, the edge vi−1 → vi is relaxed

(among others).
I By the path-relaxation property, after V − 1 iterations, v .d = δ(s, v).
I So V − 1 iterations suffice to set v .d correctly for all v .

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 24/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v .d = δ(s, v) for all vertices v .

Proof

I Write v0 = s, vm = v . If v is reachable from s, there must exist a
shortest path v0 → v1 → · · · → vm.

I A shortest path cannot contain a cycle, so m ≤ V − 1.
I In the i ’th iteration of the for loop, the edge vi−1 → vi is relaxed

(among others).
I By the path-relaxation property, after V − 1 iterations, v .d = δ(s, v).
I So V − 1 iterations suffice to set v .d correctly for all v .

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 24/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v .d = δ(s, v) for all vertices v .

Proof

I Write v0 = s, vm = v . If v is reachable from s, there must exist a
shortest path v0 → v1 → · · · → vm.

I A shortest path cannot contain a cycle, so m ≤ V − 1.

I In the i ’th iteration of the for loop, the edge vi−1 → vi is relaxed
(among others).

I By the path-relaxation property, after V − 1 iterations, v .d = δ(s, v).
I So V − 1 iterations suffice to set v .d correctly for all v .

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 24/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v .d = δ(s, v) for all vertices v .

Proof

I Write v0 = s, vm = v . If v is reachable from s, there must exist a
shortest path v0 → v1 → · · · → vm.

I A shortest path cannot contain a cycle, so m ≤ V − 1.
I In the i ’th iteration of the for loop, the edge vi−1 → vi is relaxed

(among others).

I By the path-relaxation property, after V − 1 iterations, v .d = δ(s, v).
I So V − 1 iterations suffice to set v .d correctly for all v .

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 24/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v .d = δ(s, v) for all vertices v .

Proof

I Write v0 = s, vm = v . If v is reachable from s, there must exist a
shortest path v0 → v1 → · · · → vm.

I A shortest path cannot contain a cycle, so m ≤ V − 1.
I In the i ’th iteration of the for loop, the edge vi−1 → vi is relaxed

(among others).
I By the path-relaxation property, after V − 1 iterations, v .d = δ(s, v).

I So V − 1 iterations suffice to set v .d correctly for all v .

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 24/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v .d = δ(s, v) for all vertices v .

Proof

I Write v0 = s, vm = v . If v is reachable from s, there must exist a
shortest path v0 → v1 → · · · → vm.

I A shortest path cannot contain a cycle, so m ≤ V − 1.
I In the i ’th iteration of the for loop, the edge vi−1 → vi is relaxed

(among others).
I By the path-relaxation property, after V − 1 iterations, v .d = δ(s, v).
I So V − 1 iterations suffice to set v .d correctly for all v .

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 24/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

I By the triangle inequality, for all edges u → v ,
δ(s, v) ≤ δ(s,u) + w(u, v).

I By the claim on the previous slide, v .d = δ(s, v) for all vertices v .
I So, for all edges u → v , v .d ≤ u.d + w(u, v).
I So the check in step (7) of the algorithm never fails.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 25/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

I By the triangle inequality, for all edges u → v ,
δ(s, v) ≤ δ(s,u) + w(u, v).

I By the claim on the previous slide, v .d = δ(s, v) for all vertices v .
I So, for all edges u → v , v .d ≤ u.d + w(u, v).
I So the check in step (7) of the algorithm never fails.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 25/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

I By the triangle inequality, for all edges u → v ,
δ(s, v) ≤ δ(s,u) + w(u, v).

I By the claim on the previous slide, v .d = δ(s, v) for all vertices v .

I So, for all edges u → v , v .d ≤ u.d + w(u, v).
I So the check in step (7) of the algorithm never fails.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 25/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

I By the triangle inequality, for all edges u → v ,
δ(s, v) ≤ δ(s,u) + w(u, v).

I By the claim on the previous slide, v .d = δ(s, v) for all vertices v .
I So, for all edges u → v , v .d ≤ u.d + w(u, v).

I So the check in step (7) of the algorithm never fails.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 25/39



Proof of correctness

Claim
If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

I By the triangle inequality, for all edges u → v ,
δ(s, v) ≤ δ(s,u) + w(u, v).

I By the claim on the previous slide, v .d = δ(s, v) for all vertices v .
I So, for all edges u → v , v .d ≤ u.d + w(u, v).
I So the check in step (7) of the algorithm never fails.

�

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 25/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

I Let v0, . . . , vk be a negative-weight cycle, where vk = v0.
I Then by definition

∑k
i=1 w(vi−1, vi ) < 0.

I As BellmanFord does not exit with an error, for all 1 ≤ i ≤ k ,

vi .d ≤ vi−1.d + w(vi−1, vi ).

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 26/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

I Let v0, . . . , vk be a negative-weight cycle, where vk = v0.
I Then by definition

∑k
i=1 w(vi−1, vi ) < 0.

I As BellmanFord does not exit with an error, for all 1 ≤ i ≤ k ,

vi .d ≤ vi−1.d + w(vi−1, vi ).

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 26/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

I Let v0, . . . , vk be a negative-weight cycle, where vk = v0.

I Then by definition
∑k

i=1 w(vi−1, vi ) < 0.
I As BellmanFord does not exit with an error, for all 1 ≤ i ≤ k ,

vi .d ≤ vi−1.d + w(vi−1, vi ).

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 26/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

I Let v0, . . . , vk be a negative-weight cycle, where vk = v0.
I Then by definition

∑k
i=1 w(vi−1, vi ) < 0.

I As BellmanFord does not exit with an error, for all 1 ≤ i ≤ k ,

vi .d ≤ vi−1.d + w(vi−1, vi ).

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 26/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

I Let v0, . . . , vk be a negative-weight cycle, where vk = v0.
I Then by definition

∑k
i=1 w(vi−1, vi ) < 0.

I As BellmanFord does not exit with an error, for all 1 ≤ i ≤ k ,

vi .d ≤ vi−1.d + w(vi−1, vi ).

. . .

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 26/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I Summing this inequality over i between 1 and k ,

k∑
i=1

vi .d ≤
k∑

i=1

vi−1.d + w(vi−1, vi ) =
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi )

<

k∑
i=1

vi−1.d =
k−1∑
i=0

vi .d .

I Subtracting
∑k−1

i=1 vi .d from both sides, we get vk .d < v0.d .
I But v0 = vk , so we have a contradiction. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 27/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I Summing this inequality over i between 1 and k ,

k∑
i=1

vi .d ≤
k∑

i=1

vi−1.d + w(vi−1, vi ) =
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi )

<

k∑
i=1

vi−1.d =
k−1∑
i=0

vi .d .

I Subtracting
∑k−1

i=1 vi .d from both sides, we get vk .d < v0.d .

I But v0 = vk , so we have a contradiction. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 27/39



Proof of correctness
Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

I Summing this inequality over i between 1 and k ,

k∑
i=1

vi .d ≤
k∑

i=1

vi−1.d + w(vi−1, vi ) =
k∑

i=1

vi−1.d +
k∑

i=1

w(vi−1, vi )

<

k∑
i=1

vi−1.d =
k−1∑
i=0

vi .d .

I Subtracting
∑k−1

i=1 vi .d from both sides, we get vk .d < v0.d .
I But v0 = vk , so we have a contradiction. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 27/39



Application 1: difference constraints

I A system of difference constraints is a set of inequalities of the form
xi − xj ≤ bij , where xi and xj are variables and bij is a real number.

I For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0.

I Given a system of m difference constraints in n variables, we would
like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

I For example, the above system is satisfied by x1 = 0, x2 = −1, x3 = 1,
x4 = 7 (among other solutions).

I We will show that this problem can be solved using Bellman-Ford in
time O(nm + n2).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 28/39



Application 1: difference constraints

I A system of difference constraints is a set of inequalities of the form
xi − xj ≤ bij , where xi and xj are variables and bij is a real number.

I For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0.

I Given a system of m difference constraints in n variables, we would
like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

I For example, the above system is satisfied by x1 = 0, x2 = −1, x3 = 1,
x4 = 7 (among other solutions).

I We will show that this problem can be solved using Bellman-Ford in
time O(nm + n2).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 28/39



Application 1: difference constraints

I A system of difference constraints is a set of inequalities of the form
xi − xj ≤ bij , where xi and xj are variables and bij is a real number.

I For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0.

I Given a system of m difference constraints in n variables, we would
like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

I For example, the above system is satisfied by x1 = 0, x2 = −1, x3 = 1,
x4 = 7 (among other solutions).

I We will show that this problem can be solved using Bellman-Ford in
time O(nm + n2).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 28/39



Application 1: difference constraints

I A system of difference constraints is a set of inequalities of the form
xi − xj ≤ bij , where xi and xj are variables and bij is a real number.

I For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0.

I Given a system of m difference constraints in n variables, we would
like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

I For example, the above system is satisfied by x1 = 0, x2 = −1, x3 = 1,
x4 = 7 (among other solutions).

I We will show that this problem can be solved using Bellman-Ford in
time O(nm + n2).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 28/39



Application 1: difference constraints

I A system of difference constraints is a set of inequalities of the form
xi − xj ≤ bij , where xi and xj are variables and bij is a real number.

I For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0.

I Given a system of m difference constraints in n variables, we would
like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

I For example, the above system is satisfied by x1 = 0, x2 = −1, x3 = 1,
x4 = 7 (among other solutions).

I We will show that this problem can be solved using Bellman-Ford in
time O(nm + n2).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 28/39



Graph representation of difference constraints
Given m difference constraints in n variables, we create a graph on n + 1
vertices v0, . . . , vn with m + n edges where:

I for each constraint xi − xj ≤ bij , we add an edge vj → vi with weight bij

I for all 1 ≤ i ≤ n there is an additional edge v0 → vi with weight 0.

For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0

corresponds to

v0

v1 v2

v3v4

0

5

-20 0

00

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 29/39



Graph representation of difference constraints
Given m difference constraints in n variables, we create a graph on n + 1
vertices v0, . . . , vn with m + n edges where:

I for each constraint xi − xj ≤ bij , we add an edge vj → vi with weight bij

I for all 1 ≤ i ≤ n there is an additional edge v0 → vi with weight 0.

For example:

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0

corresponds to

v0

v1 v2

v3v4

0

5

-20 0

00

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 29/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G does not contain a negative-weight cycle, the assignment xi = δ(v0, vi ),
for all 1 ≤ i ≤ n, is a valid solution to the system of constraints.

Proof

I We need to prove that

δ(v0, vi )− δ(v0, vj ) ≤ bij

for all i , j in the list of constraints.
I This follows from the triangle inequality

δ(v0, vi ) ≤ δ(v0, vj ) + δ(vj , vi ) ≤ δ(v0, vj ) + w(vj , vi ) = δ(v0, vj ) + bij

and rearranging. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 30/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G does not contain a negative-weight cycle, the assignment xi = δ(v0, vi ),
for all 1 ≤ i ≤ n, is a valid solution to the system of constraints.

Proof

I We need to prove that

δ(v0, vi )− δ(v0, vj ) ≤ bij

for all i , j in the list of constraints.

I This follows from the triangle inequality

δ(v0, vi ) ≤ δ(v0, vj ) + δ(vj , vi ) ≤ δ(v0, vj ) + w(vj , vi ) = δ(v0, vj ) + bij

and rearranging. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 30/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G does not contain a negative-weight cycle, the assignment xi = δ(v0, vi ),
for all 1 ≤ i ≤ n, is a valid solution to the system of constraints.

Proof

I We need to prove that

δ(v0, vi )− δ(v0, vj ) ≤ bij

for all i , j in the list of constraints.
I This follows from the triangle inequality

δ(v0, vi ) ≤ δ(v0, vj ) + δ(vj , vi ) ≤ δ(v0, vj ) + w(vj , vi ) = δ(v0, vj ) + bij

and rearranging. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 30/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

I We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

I Let c = v1, . . . , vk , v1 be an arbitrary cycle on vertices v1, . . . , vk
(without loss of generality). This corresponds to the inequalities

x2 − x1 ≤ b12, x3 − x2 ≤ b23, . . . , x1 − xk ≤ bk1.

I If there is a valid solution xi , then all the inequalities are satisfied.
I Summing the inequalities we get 0 for the left-hand side, and the

weight of c for the right-hand side.
I So c has weight at least 0, and is not a negative-weight cycle. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 31/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

I We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

I Let c = v1, . . . , vk , v1 be an arbitrary cycle on vertices v1, . . . , vk
(without loss of generality). This corresponds to the inequalities

x2 − x1 ≤ b12, x3 − x2 ≤ b23, . . . , x1 − xk ≤ bk1.

I If there is a valid solution xi , then all the inequalities are satisfied.
I Summing the inequalities we get 0 for the left-hand side, and the

weight of c for the right-hand side.
I So c has weight at least 0, and is not a negative-weight cycle. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 31/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

I We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

I Let c = v1, . . . , vk , v1 be an arbitrary cycle on vertices v1, . . . , vk
(without loss of generality). This corresponds to the inequalities

x2 − x1 ≤ b12, x3 − x2 ≤ b23, . . . , x1 − xk ≤ bk1.

I If there is a valid solution xi , then all the inequalities are satisfied.
I Summing the inequalities we get 0 for the left-hand side, and the

weight of c for the right-hand side.
I So c has weight at least 0, and is not a negative-weight cycle. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 31/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

I We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

I Let c = v1, . . . , vk , v1 be an arbitrary cycle on vertices v1, . . . , vk
(without loss of generality). This corresponds to the inequalities

x2 − x1 ≤ b12, x3 − x2 ≤ b23, . . . , x1 − xk ≤ bk1.

I If there is a valid solution xi , then all the inequalities are satisfied.

I Summing the inequalities we get 0 for the left-hand side, and the
weight of c for the right-hand side.

I So c has weight at least 0, and is not a negative-weight cycle. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 31/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

I We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

I Let c = v1, . . . , vk , v1 be an arbitrary cycle on vertices v1, . . . , vk
(without loss of generality). This corresponds to the inequalities

x2 − x1 ≤ b12, x3 − x2 ≤ b23, . . . , x1 − xk ≤ bk1.

I If there is a valid solution xi , then all the inequalities are satisfied.
I Summing the inequalities we get 0 for the left-hand side, and the

weight of c for the right-hand side.

I So c has weight at least 0, and is not a negative-weight cycle. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 31/39



Claim
Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

I We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

I Let c = v1, . . . , vk , v1 be an arbitrary cycle on vertices v1, . . . , vk
(without loss of generality). This corresponds to the inequalities

x2 − x1 ≤ b12, x3 − x2 ≤ b23, . . . , x1 − xk ≤ bk1.

I If there is a valid solution xi , then all the inequalities are satisfied.
I Summing the inequalities we get 0 for the left-hand side, and the

weight of c for the right-hand side.
I So c has weight at least 0, and is not a negative-weight cycle. �

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 31/39



Example
The set of inequalities

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0

corresponds to the graph

v0

v1 v2

v3v4

0

5

-20 0

00

with shortest paths

δ(v0, v1) = 0, δ(v0, v2) = −2, δ(v0, v3) = 0, δ(v0, v4) = 0.

So

x1 = 0, x2 = −2, x3 = 0, x4 = 0

is a solution to the constraints.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 32/39



Example
The set of inequalities

x1 − x2 ≤ 5, x2 − x3 ≤ −2, x1 − x4 ≤ 0

corresponds to the graph

v0

v1 v2

v3v4

0

5

-20 0

00

with shortest paths

δ(v0, v1) = 0, δ(v0, v2) = −2, δ(v0, v3) = 0, δ(v0, v4) = 0.

So

x1 = 0, x2 = −2, x3 = 0, x4 = 0

is a solution to the constraints.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 32/39



Solving difference constraints

I We can run Bellman-Ford with v0 as the source.

I If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output xi = δ(v0, vi ) as the
solution.

I For a solution to a system of m difference constraints on n variables,
the graph produced has n + 1 vertices and m + n edges.

I The running time of Bellman-Ford is thus O(VE) = O(mn + n2).

I This can be improved to O(mn) time (CLRS exercise 24.4-5).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 33/39



Solving difference constraints

I We can run Bellman-Ford with v0 as the source.

I If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output xi = δ(v0, vi ) as the
solution.

I For a solution to a system of m difference constraints on n variables,
the graph produced has n + 1 vertices and m + n edges.

I The running time of Bellman-Ford is thus O(VE) = O(mn + n2).

I This can be improved to O(mn) time (CLRS exercise 24.4-5).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 33/39



Solving difference constraints

I We can run Bellman-Ford with v0 as the source.

I If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output xi = δ(v0, vi ) as the
solution.

I For a solution to a system of m difference constraints on n variables,
the graph produced has n + 1 vertices and m + n edges.

I The running time of Bellman-Ford is thus O(VE) = O(mn + n2).

I This can be improved to O(mn) time (CLRS exercise 24.4-5).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 33/39



Solving difference constraints

I We can run Bellman-Ford with v0 as the source.

I If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output xi = δ(v0, vi ) as the
solution.

I For a solution to a system of m difference constraints on n variables,
the graph produced has n + 1 vertices and m + n edges.

I The running time of Bellman-Ford is thus O(VE) = O(mn + n2).

I This can be improved to O(mn) time (CLRS exercise 24.4-5).

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 33/39



Application 2: Currency exchange
Imagine we have n different currencies, and a table T whose (i , j)’th entry
Tij represents the exchange rate we get when converting currency i to
currency j . For example:

£ $ e
£ 1 1.61 1.18
$ 0.62 1 0.74
e 0.85 1.35 1

I If we convert currency i → j → k , the rate we get is the product of the
individual rates.

I If we convert i → j → · · · → i , and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is
called arbitrage.

I We can use Bellman-Ford to determine whether arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 34/39



Application 2: Currency exchange
Imagine we have n different currencies, and a table T whose (i , j)’th entry
Tij represents the exchange rate we get when converting currency i to
currency j . For example:

£ $ e
£ 1 1.61 1.18
$ 0.62 1 0.74
e 0.85 1.35 1

I If we convert currency i → j → k , the rate we get is the product of the
individual rates.

I If we convert i → j → · · · → i , and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is
called arbitrage.

I We can use Bellman-Ford to determine whether arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 34/39



Application 2: Currency exchange
Imagine we have n different currencies, and a table T whose (i , j)’th entry
Tij represents the exchange rate we get when converting currency i to
currency j . For example:

£ $ e
£ 1 1.61 1.18
$ 0.62 1 0.74
e 0.85 1.35 1

I If we convert currency i → j → k , the rate we get is the product of the
individual rates.

I If we convert i → j → · · · → i , and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is
called arbitrage.

I We can use Bellman-Ford to determine whether arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 34/39



Application 2: Currency exchange
Imagine we have n different currencies, and a table T whose (i , j)’th entry
Tij represents the exchange rate we get when converting currency i to
currency j . For example:

£ $ e
£ 1 1.61 1.18
$ 0.62 1 0.74
e 0.85 1.35 1

I If we convert currency i → j → k , the rate we get is the product of the
individual rates.

I If we convert i → j → · · · → i , and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is
called arbitrage.

I We can use Bellman-Ford to determine whether arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 34/39



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i → j is − log2 Tij . For example:

£

$

e

-0.69

0.69

-0.23

0.23
0.43-0.43

I Then the weight of a cycle c0 → c1 → · · · → ck (with ck = c0) is

−
k∑

j=1

log2 Tcj cj−1 = − log2

k∏
j=1

Tcj cj−1 .

I This will be negative if and only if
∏

j Tcj cj−1 > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.

I So G has a negative-weight cycle if and only if arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 35/39



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i → j is − log2 Tij . For example:

£

$

e

-0.69

0.69

-0.23

0.23
0.43-0.43

I Then the weight of a cycle c0 → c1 → · · · → ck (with ck = c0) is

−
k∑

j=1

log2 Tcj cj−1 = − log2

k∏
j=1

Tcj cj−1 .

I This will be negative if and only if
∏

j Tcj cj−1 > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.

I So G has a negative-weight cycle if and only if arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 35/39



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i → j is − log2 Tij . For example:

£

$

e

-0.69

0.69

-0.23

0.23
0.43-0.43

I Then the weight of a cycle c0 → c1 → · · · → ck (with ck = c0) is

−
k∑

j=1

log2 Tcj cj−1 = − log2

k∏
j=1

Tcj cj−1 .

I This will be negative if and only if
∏

j Tcj cj−1 > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.

I So G has a negative-weight cycle if and only if arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 35/39



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i → j is − log2 Tij . For example:

£

$

e

-0.69

0.69

-0.23

0.23
0.43-0.43

I Then the weight of a cycle c0 → c1 → · · · → ck (with ck = c0) is

−
k∑

j=1

log2 Tcj cj−1 = − log2

k∏
j=1

Tcj cj−1 .

I This will be negative if and only if
∏

j Tcj cj−1 > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.

I So G has a negative-weight cycle if and only if arbitrage is possible.
Ashley Montanaro

ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 35/39



Summary

I The Bellman-Ford algorithm solves the single-source shortest paths
problem in time O(VE).

I It works if the input graph has negative-weight edges, and can detect
negative-weight cycles.

I Although the proof of correctness is a bit technical, the algorithm is
easy to implement and doesn’t use any complicated data structures.

I It can be used to solve a system of difference constraints and to
determine whether arbitrage is possible.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 36/39



Further Reading

I Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

I Chapter 24 – Single-Source Shortest Paths

I Algorithms
S. Dasgupta, C.H. Papadimitriou and U.V. Vazirani
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/

I Chapter 4, Section 4.6 – Shortest paths in the presence of negative
edges

I Algorithms lecture notes, University of Illinois
Jeff Erickson
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

I Lecture 19 – Single-source shortest paths

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 37/39

http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/


Biographical notes

Richard E. Bellman (1920–1984)

I American mathematician who worked at
Princeton, Stanford, the RAND Corporation
and the University of Southern California.

I Author of at least 621 papers and 41 books,
including 100 papers after the removal of a
brain tumour left him severely disabled.

I Winner of the IEEE Medal of Honor in 1979 for
his invention of dynamic programming.

Pic: IEEE Global History Network

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 38/39



Biographical notes

Lester Ford, Jr. (1927–)

I Another American mathematician
whose other contributions include the
Ford-Fulkerson algorithm for maximum
flow problems.

I His father was also a mathematician
and, at one point, President of the
Mathematical Association of America.

Pic: tangrammit.com

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: Finding the shortest path Slide 39/39


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PlayPauseLeft: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PlayPauseLeft: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 
	4.0: 
	anm4: 
	4.EndLeft: 
	4.StepLeft: 
	4.PlayPauseLeft: 
	4.PlayPauseRight: 
	4.StepRight: 
	4.EndRight: 
	4.Minus: 
	4.Reset: 
	4.Plus: 


