Ashley Montanaro

COMS21103

Finding the shortest path

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

28 October 2013




Given a (weighted, directed) graph G and a pair of vertices s and t, we
would like to find a shortest path from s to .
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Given a (weighted, directed) graph G and a pair of vertices s and t, we
would like to find a shortest path from s to .

A fundamental task with many applications:
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Other applications

Internet routing (e.g. the OSPF routing algorithm)
VLSI routing

Traffic information systems

Robot motion planning

Routing telephone calls

Avoiding nuclear contamination

Destabilising currency markets

vV V.V vV vV VY VY

| Qg self-driving car
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Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence
V1, Ve, ..., Vp such that the total weight of the edges s — v4, vi — v, ...,
Vm — tis minimal.
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Single-source shortest paths
» In fact, the algorithms we will discuss for this problem give us more:
given a source s, they output a shortest path from s to every other
vertex.
» This is known as the single-source shortest path problem (SSSP).
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Negative-weight edges

» If some of the edges have negative weights, the idea of a shortest
path might not make sense.

» If there is a cycle in G which is reachable on a path from s to t, and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.
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Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.
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» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

» The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

» |t also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from sto t in turn.
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Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

» The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

» |t also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from sto t in turn.

» There can be exponentially many paths so such an algorithm cannot
be efficient.
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Notation

We will use the following notation (essentially the same as CLRS):
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Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.
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We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

» We write ¢(u, v) for the distance from u to v, i.e. the length (total
weight) of a shortest path from v to v.
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Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

» We write ¢(u, v) for the distance from u to v, i.e. the length (total
weight) of a shortest path from v to v.

» We write 6(u, v) = oo when there is no path from v to v.
(Mathematical note: in practice, co would be represented by a number
so large it could never occur in distance calculations...)
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Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

» We write ¢(u, v) for the distance from u to v, i.e. the length (total
weight) of a shortest path from u to v.

» We write 6(u, v) = oo when there is no path from v to v.
(Mathematical note: in practice, co would be represented by a number
so large it could never occur in distance calculations...)

» For each vertex v, we will maintain a guess for its distance from s; call
this v.d.
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Predecessors and shortest paths

» For each vertex v, we try to determine its predecessor v.r, which is
the previous vertex in some shortest path from s to v.

» Knowledge of v’s predecessor suffices to compute the whole path
from s to v, by following the predecessors back to s and reversing the
path.
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A general framework
The basic idea behind both shortest-path algorithms we will discuss is:
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The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v.d for the distance from the source s: s.d = 0, and
v.d = oo for all other vertices v.
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A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v.d for the distance from the source s: s.d = 0, and
v.d = oo for all other vertices v.

2. Update our guesses by relaxing edges:
» If there is an edge u — v and our guess for the distance from sto v is

greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.
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A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v.d for the distance from the source s: s.d = 0, and
v.d = oo for all other vertices v.

2. Update our guesses by relaxing edges:

» If there is an edge u — v and our guess for the distance from sto v is
greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Relax(u, v)

1. ifvid > u.d +w(u,v)
2. v.d + u.d+ w(u,v)
3. v =u

Note that co + x = oo for any real number x.
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The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2. s.d«+0
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The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2.sd+0

3. fori=1to V-1

4 foreachedge u — vin G

5 Relax(u, v)
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The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2.5d+0

3. fori=1to V-1

4 foreachedge u — vin G

B Relax(u, v)

6. foreachedge u — vin G

7 if v.d > u.d+ w(u,v)

8 error(“Negative-weight cycle detected”)
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The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2.5d+0

3. fori=1to V-1

4 foreachedge u — vin G

B Relax(u, v)

6. foreachedge u — vin G

7 if v.d > u.d+ w(u,v)

8 error(“Negative-weight cycle detected”)

» Time complexity: ©(V) + ©(VE) + ©(E) = ©(VE).
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Example 1: no negative-weight cycles

Imagine we want to find shortest paths from vertex A in the following graph:
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Example 1: no negative-weight cycles
At the start of the algorithm:

oo, nil oo, nil

» In the above diagram, the red text is the distance from the source A,
(i.e. v.d), and the green text is the predecessor vertex (i.e. v.m).
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Example 1: no negative-weight cycles

The first iteration of the for loop:

oo, nil oo, nil

E@ [=Jp][+]

» Note that the edges are picked in arbitrary order.
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Example 1: no negative-weight cycles

The second iteration of the for loop:

1,A 4,D

K<<l [> ] E

» Note that the edges are picked in arbitrary order.
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Example 1: no negative-weight cycles
The 4 iterations of the for loop that follow do not update any distance or
predecessor values, so the final state is:

» So the shortest path from A to G (for example) has weight 1.

» To output a shortest path itself, we can trace back the predecessor
values from G.
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Example 2: negative-weight cycle

We now consider an input graph that has a negative-weight cycle.
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Example 2: negative-weight cycle

At the start of the algorithm:

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 18/39 BRISTOL




Example 2: negative-weight cycle

The first iteration of the for loop:

K] <J ][> =l +]

» As before, the order in which we consider the edges is arbitrary (here
we use the order A — B,C — A,B — C).
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Example 2: negative-weight cycle

The second iteration of the for loop:

K] <alp] >~ E
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Example 2: negative-weight cycle

The second iteration of the for loop:

K] <[] ][> E

» At the end of the algorithm, B.d > A.d + w(A, B).
» So the algorithm terminates with “Negative-weight cycle detected”.
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Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.
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Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Proof

If a path p contains a cycle vy — v — - -+ — V such that the sum of the
weights of the edges is non-negative, deleting this cycle from p cannot
increase p's total weight.
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Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).
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Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from ato ¢ with total weight
o(a, b) + d(b, c).
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Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from ato ¢ with total weight
o(a, b) + d(b, c).

Note that this holds even if some edge weights are negative.
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Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
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Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;
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Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

» the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).
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Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

» the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).

Then, at the end of this process, v.d = (s, v).
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Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

» the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).

Then, at the end of this process, v.d = (s, v).

Proof: exercise.
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

» A shortest path cannot contain a cycle,som < V — 1.
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

» A shortest path cannot contain a cycle,som < V — 1.

» In the /’th iteration of the for loop, the edge v;_1 — V; is relaxed
(among others).
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

» A shortest path cannot contain a cycle,som < V — 1.

» In the /’th iteration of the for loop, the edge v;_1 — V; is relaxed
(among others).

» By the path-relaxation property, after V — 1 iterations, v.d = é(s, v).
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

A shortest path cannot contain a cycle,so m < V — 1.

In the /’th iteration of the for loop, the edge v;_1 — v; is relaxed
(among others).

By the path-relaxation property, after V — 1 iterations, v.d = é(s, v).
So V — 1 iterations suffice to set v.d correctly for all v.

v

v

v

v
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,
i(s,v) <d(s,u) + w(u,v).
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,
i(s,v) <d(s,u) + w(u,v).

» By the claim on the previous slide, v.d = 4(s, v) for all vertices v.
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,

i(s,v) <d(s,u) + w(u,v).
» By the claim on the previous slide, v.d = 4(s, v) for all vertices v.
» So, for all edges u — v, v.d < u.d + w(u, v).
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Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,
i(s,v) <é(s,u)+ w(u,v).
» By the claim on the previous slide, v.d = 4(s, v) for all vertices v.
» So, for all edges u — v, v.d < u.d + w(u, v).
» So the check in step (7) of the algorithm never fails.
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Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.
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Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

Ashley Montanaro

s.ac.uk % University of

ng the shortest path Slide 26/39 BRISTOL



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

» Let v, ..., vk be a negative-weight cycle, where vk = v.
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Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

» Let vp,. .., vk be a negative-weight cycle, where v = vy.
» Then by definition ZL w(vi—1,V;) <O0.

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 26/39 BRISTOL



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

» Let v, ..., vk be a negative-weight cycle, where vk = v.
» Then by definition ZL w(vi_1,V;) <O.
» As BellmanFord does not exit with an error, for all 1 < i < k,

vi.d < vi_1.d+ W(V,'_1, V,').
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Proof of correctness
Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» Summing this inequality over i between 1 and k,

k k
ZVi.d < Z\//_1.d+ w(vi_1, V) = ZVI 1d+z (Vie1, Vi)
i=1

i=1

k k—1
< Z V,'_1.d = Z V,'.d.
i=1 i=0
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Proof of correctness
Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» Summing this inequality over i between 1 and k,

k k
ZVi.d < Z\//_1.d+ w(vi_1, V) = ZVI 1d+z (Vie1, Vi)
i=1

i=1

k k—1
< Z V,'_1.d = Z V,'.d.
i=1 i=0

» Subtracting 3%, v;.d from both sides, we get v;.d < vo.d.
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Proof of correctness
Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» Summing this inequality over i between 1 and k,

k k
Zvi'd < Z\//_1.d+ w(vi_1, V) = ZVI 1d+z (Vie1, Vi)
i=1

i=1

k k—1
< Z V,'_1.d = Z V,'.d.
i=1 i=0

» Subtracting 3%, v;.d from both sides, we get v;.d < vo.d.
» But vy = vk, so we have a contradiction.
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Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.
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Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:

X=X <5, X—-x3<-2, Xx31—x4<0.
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Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:
X=X <5, X—-x3<-2, Xx31—x4<0.
» Given a system of m difference constraints in n variables, we would

like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.
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Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:
X=X <5, X—-x3<-2, Xx31—x4<0.
» Given a system of m difference constraints in n variables, we would

like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

» For example, the above system is satisfied by x; =0, xo = -1, x3 =1,
X4 = 7 (among other solutions).
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Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:
X=X <5, X—-x3<-2, Xx31—x4<0.
» Given a system of m difference constraints in n variables, we would

like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

» For example, the above system is satisfied by x; =0, xo = -1, x3 =1,
X4 = 7 (among other solutions).

» We will show that this problem can be solved using Bellman-Ford in
time O(nm + n?).
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Graph representation of difference constraints

Given m difference constraints in n variables, we create a graph on n+ 1
vertices vy, . . ., vV, with m 4+ n edges where:

» for each constraint x; — x; < bj;, we add an edge v; — v; with weight b;
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Graph representation of difference constraints

Given m difference constraints in n variables, we create a graph on n+ 1
vertices vy, . . ., vV, with m 4+ n edges where:

» for each constraint x; — x; < bj;, we add an edge v; — v; with weight b;
» forall 1 <7< nthere is an additional edge vy — v; with weight 0.

For example:

X1 =X <5 Xx-x3<-2, Xx1—x<0

corresponds to
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Claim

Let G be the graph corresponding to a system of difference constraints. If
G does not contain a negative-weight cycle, the assignment x; = §(vo, vi),
forall 1 </ < n, is a valid solution to the system of constraints.
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Claim
Let G be the graph corresponding to a system of difference constraints. If

G does not contain a negative-weight cycle, the assignment x; = §(vo, vi),
forall 1 </ < n, is a valid solution to the system of constraints.
Proof
» We need to prove that
5(‘/05 Vi) - 5(‘/07 Vj) S blj

for all i, j in the list of constraints.
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Claim
Let G be the graph corresponding to a system of difference constraints. If

G does not contain a negative-weight cycle, the assignment x; = §(vo, vi),
forall 1 </ < n, is a valid solution to the system of constraints.
Proof
» We need to prove that
5(‘/0; Vi) - 5(‘/07 Vj) S blj

for all i, j in the list of constraints.
» This follows from the triangle inequality

5(‘/0’ Vi) < 5(‘/07 Vl) + 6(‘/17 Vi) < 5(‘/07 Vj) + W(Vjv VI) = 5(‘/07 Vj) + b/]

and rearranging. O
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Claim

Let G be the graph corresponding to a system of difference constraints. If

G contains a negative-weight cycle, there is no valid solution to the system
of constraints.
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Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.
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Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities

Xo— X1 < b2, X3—X2< bz, ... , X3—Xk< byt
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Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities
Xo — Xy < bra, X3 — X2 < bpg, ;o Xt — Xk < Dy

» If there is a valid solution x;, then all the inequalities are satisfied.
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Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities

Xo — Xy < bz, X3 — X2 < bog, , X1 — Xk < by

» If there is a valid solution x;, then all the inequalities are satisfied.

» Summing the inequalities we get 0 for the left-hand side, and the
weight of ¢ for the right-hand side.
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Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities

Xo— X1 < b2, X3—X2< bz, ... , X3—Xk< byt

» If there is a valid solution x;, then all the inequalities are satisfied.

» Summing the inequalities we get 0 for the left-hand side, and the
weight of ¢ for the right-hand side.

» So c has weight at least 0, and is not a negative-weight cycle. 0
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Example
The set of inequalities

Xp—=X%2 <5 XxX-x3<-2, X1—x<0

corresponds to the graph

Ashley Montanaro

Slide 32/39



Example
The set of inequalities

Xp—=X%2 <5 XxX-x3<-2, X1—x<0

corresponds to the graph

with shortest paths

(5(V0,V1) =0, 5(V0,V2) = —2, 5(V0,V3) ZO7 (5(V0,V4) =0.
So

x1=0, x=-2, x3=0, x4=0
is a solution to the constraints.
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Solving difference constraints

» We can run Bellman-Ford with v, as the source.
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Solving difference constraints

» We can run Bellman-Ford with v, as the source.

» If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output x; = 6(vo, v;) as the
solution.
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Solving difference constraints

We can run Bellman-Ford with v; as the source.

v

v

If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output x; = 6(vo, v;) as the
solution.

For a solution to a system of m difference constraints on n variables,
the graph produced has n+ 1 vertices and m + n edges.

v

v

The running time of Bellman-Ford is thus O(VE) = O(mn + n?).
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Solving difference constraints

We can run Bellman-Ford with v; as the source.

v

v

If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output x; = 6(vo, v;) as the
solution.

For a solution to a system of m difference constraints on n variables,
the graph produced has n+ 1 vertices and m + n edges.

v

v

The running time of Bellman-Ford is thus O(VE) = O(mn + n?).

v

This can be improved to O(mn) time (CLRS exercise 24.4-5).
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Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to
currency j. For example:
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Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to
currency j. For example:

£ $ €
£ 1 161 1.18
$ 062 1 074
€ 085 135 1

» |f we convert currency i — j — k, the rate we get is the product of the
individual rates.
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Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to

currency j. For example:

£
£ 1
$ 062
€ 0.85

» |f we convert currency i — j — k, the rate we get is the product of the

individual rates.

» If we converti — j — --- — i, and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is

called arbitrage.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path

Slide 34/39 B BRISTOL



Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to

currency j. For example:

£
£ 1
$ 062
€ 0.85

» |f we convert currency i — j — k, the rate we get is the product of the

individual rates.

» If we converti — j — --- — i, and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is

called arbitrage.

» We can use Bellman-Ford to determine whether arbitrage is possible.
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Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj. For example:
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Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj;. For example:

» Then the weight of a cycle co — ¢1 — -+ — ¢k (with cx = &) is

k k
=1 j=1
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Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj;. For example:

» Then the weight of a cycle co — ¢1 — -+ — ¢k (with cx = &) is
k k
j=1 j=1

» This will be negative if and only if [[; T¢, , > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.
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Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj;. For example:

» Then the weight of a cycle co — ¢1 — -+ — ¢k (with cx = &) is

k k
=1 j=1

» This will be negative if and only if [[; T¢, , > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.
» So G has a negative-weight cycle if and only if arbitrage is possible.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 35/39 BRI BRISTOL



Summary

v

The Bellman-Ford algorithm solves the single-source shortest paths
problem in time O(VE).

» It works if the input graph has negative-weight edges, and can detect
negative-weight cycles.

» Although the proof of correctness is a bit technical, the algorithm is
easy to implement and doesn’t use any complicated data structures.

» It can be used to solve a system of difference constraints and to
determine whether arbitrage is possible.
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Further Reading

» Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

» Chapter 24 — Single-Source Shortest Paths

» Algorithms
S. Dasgupta, C.H. Papadimitriou and U.V. Vazirani
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/
» Chapter 4, Section 4.6 — Shortest paths in the presence of negative
edges

» Algorithms lecture notes, University of lllinois
Jeff Erickson
http://www.cs.uiuc.edu/~Jjeffe/teaching/algorithms/

» Lecture 19 — Single-source shortest paths
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http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Biographical notes

Richard E. Bellman (1920—1984)

» American mathematician who worked at
Princeton, Stanford, the RAND Corporation
and the University of Southern California.

» Author of at least 621 papers and 41 books,
including 100 papers after the removal of a
brain tumour left him severely disabled.

» Winner of the IEEE Medal of Honor in 1979 for
his invention of dynamic programming.

e
Pic: IEEE Global History Network
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Biographical notes

Lester Ford, Jr. (1927-)

» Another American mathematician
whose other contributions include the
Ford-Fulkerson algorithm for maximum
flow problems.

» His father was also a mathematician
and, at one point, President of the
Mathematical Association of America.

Pic: tangrammit.com
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