Ashley Montanaro

COMS21103

Finding the shortest path

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

28 October 2013




Given a (weighted, directed) graph G and a pair of vertices s and t, we
would like to find a shortest path from s to .

Ashley Montanaro

Slide 2/39



Given a (weighted, directed) graph G and a pair of vertices s and t, we
would like to find a shortest path from s to .

A fundamental task with many applications:

sty Montanaro -

Google

Walking diroctions aroin bota.
s cauton - This ovts may be misting
sidealks o padetian plfs.

Woodand Rd 05mi, 10 mins

Woodiand R nd St Michaals 0.5, 10 mine
i

Woodland R, Tyndal Aveand 0.5 mi, 10 mins
St Micnaets il

Walking directions to Highbury Vaults,
164 St Michael's Hil, Bristol BS2 8DE,
UK

Ashley Montanaro

hle:
COMS21103: Finding the shortest path Slide 2/39



Other applications

Internet routing (e.g. the OSPF routing algorithm)
VLSI routing

Traffic information systems

Robot motion planning

Routing telephone calls

Avoiding nuclear contamination

Destabilising currency markets

vV V.V vV vV VY VY

| Qg self-driving car

Slide 3/39



Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence
V1, Ve, ..., Vp such that the total weight of the edges s — v4, vi — v, ...,
Vm — tis minimal.

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 4/39 BRISTOL




Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence
V1, Ve, ..., Vp such that the total weight of the edges s — v4, vi — v, ...,
Vm — tis minimal.

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 4/39 BRISTOL




Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence
V1, Ve, ..., Vp such that the total weight of the edges s — v4, vi — v, ...,
Vm — tis minimal.

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 4/39 BRISTOL




Single-source shortest paths
» In fact, the algorithms we will discuss for this problem give us more:
given a source s, they output a shortest path from s to every other
vertex.
» This is known as the single-source shortest path problem (SSSP).

Ashley Montanaro
! Bl University of

BRISTOL

Slide 5/39

COMS21103: Finding the sh



Single-source shortest paths

» In fact, the algorithms we will discuss for this problem give us more:
given a source s, they output a shortest path from s to every other

vertex.
» This is known as the single-source shortest path problem (SSSP).

Ashley Montanaro
c % University of

BRISTOL

Slide 5/39

COMS21103: Finding the sh



Single-source shortest paths

» In fact, the algorithms we will discuss for this problem give us more:
given a source s, they output a shortest path from s to every other

vertex.
» This is known as the single-source shortest path problem (SSSP).

Ashley Montanaro
% University of
Slide 5/39 BEI BRISTOL

COMS21103: Finding the shortest path



Single-source shortest paths

» In fact, the algorithms we will discuss for this problem give us more:
given a source s, they output a shortest path from s to every other

vertex.
» This is known as the single-source shortest path problem (SSSP).

Ashley Montanaro
% University of
Slide 5/39 BEI BRISTOL

COMS21103: Finding the shortest path



Negative-weight edges

» If some of the edges have negative weights, the idea of a shortest
path might not make sense.

» If there is a cycle in G which is reachable on a path from s to t, and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.

Ashley Montanaro
Bl University of
BEI BRISTOL

COMS21103: Finding the shortest path Slide 6/39



Negative-weight edges

» If some of the edges have negative weights, the idea of a shortest
path might not make sense.

» If there is a cycle in G which is reachable on a path from s to t, and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.

Ashley Montanaro
Bl University of
BEI BRISTOL

COMS21103: Finding the shortest path Slide 6/39



Negative-weight edges

» If some of the edges have negative weights, the idea of a shortest
path might not make sense.

» If there is a cycle in G which is reachable on a path from s to t, and
the sum of the weights of the edges in the cycle is negative, then we
can get from s to t with a path of arbitrarily low weight by repeatedly
going round the cycle.

Ashley Montanaro
Bl University of
BEI BRISTOL

COMS21103: Finding the shortest path Slide 6/39



Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

Ashley Montanaro




Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

» The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 7/39 BRISTOL



Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

» The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

» |t also has applications to solving systems of difference constraints
and detecting arbitrage.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 7/39 BRISTOL



Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

» The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

» |t also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from sto t in turn.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 7/39 BRISTOL



Today’s lecture

» Today we will discuss an algorithm for the single-source shortest
paths problem called the Bellman-Ford algorithm.

» The algorithm can be used for graphs with negative weights and can
detect negative-weight cycles.

» |t also has applications to solving systems of difference constraints
and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try
every possible path from sto t in turn.

» There can be exponentially many paths so such an algorithm cannot
be efficient.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 7/39 BRI BRISTOL



Notation

We will use the following notation (essentially the same as CLRS):




Notation
We will use the following notation (essentially the same as CLRS):
» We always let G denote the graph in which we want to find a shortest

path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 8/39 BRISTOL



Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

Ashley Montanaro

% University of
BRISTOL

COMS21103: Finding the s Slide 8/39



Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

» We write ¢(u, v) for the distance from u to v, i.e. the length (total
weight) of a shortest path from v to v.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 8/39 BRI BRISTOL



Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

» We write ¢(u, v) for the distance from u to v, i.e. the length (total
weight) of a shortest path from v to v.

» We write 6(u, v) = oo when there is no path from v to v.
(Mathematical note: in practice, co would be represented by a number
so large it could never occur in distance calculations...)

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 8/39 BRISTOL



Notation

We will use the following notation (essentially the same as CLRS):

» We always let G denote the graph in which we want to find a shortest
path. We use V for the number of vertices in G, and E for the number
of edges. s always denotes the source.

» We write u — v for an edge from u to v, and w(u, v) for the weight of
this edge.

» We write ¢(u, v) for the distance from u to v, i.e. the length (total
weight) of a shortest path from u to v.

» We write 6(u, v) = oo when there is no path from v to v.
(Mathematical note: in practice, co would be represented by a number
so large it could never occur in distance calculations...)

» For each vertex v, we will maintain a guess for its distance from s; call
this v.d.

Ashley Montanaro

1k % University of

COMS21103: Finding the shortest path Slide 8/39 BRISTOL



Predecessors and shortest paths

» For each vertex v, we try to determine its predecessor v.r, which is
the previous vertex in some shortest path from s to v.

» Knowledge of v’s predecessor suffices to compute the whole path
from s to v, by following the predecessors back to s and reversing the
path.

Ashley Montanaro

% University of

COMS21103: Finding the sh Slide 9/39 BRISTOL



Predecessors and shortest paths

» For each vertex v, we try to determine its predecessor v.r, which is
the previous vertex in some shortest path from s to v.

» Knowledge of v’s predecessor suffices to compute the whole path
from s to v, by following the predecessors back to s and reversing the
path.

Ashley Montanaro

as 3 % University of
COMS21103: Finding the shortest path Slide 9/39 BRISTOL




Predecessors and shortest paths

» For each vertex v, we try to determine its predecessor v.x, which is
the previous vertex in some shortest path from s to v.

» Knowledge of v’s predecessor suffices to compute the whole path
from s to v, by following the predecessors back to s and reversing the

path.

% University of
Slide 9/39 BEI BRISTOL




Predecessors and shortest paths

» For each vertex v, we try to determine its predecessor v.x, which is
the previous vertex in some shortest path from s to v.

» Knowledge of v’s predecessor suffices to compute the whole path
from s to v, by following the predecessors back to s and reversing the

path.

% University of
Slide 9/39 BEI BRISTOL




A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

Ashley Montanaro

Slide 10/39



A general framework

The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v.d for the distance from the source s: s.d = 0, and
v.d = oo for all other vertices v.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 10/39 BRISTOL



A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v.d for the distance from the source s: s.d = 0, and
v.d = oo for all other vertices v.

2. Update our guesses by relaxing edges:
» If there is an edge u — v and our guess for the distance from sto v is

greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Ashley Montanaro
% University of
Slide 10/39 BEI BRISTOL

COMS21103: Finding the shortest path



A general framework
The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess v.d for the distance from the source s: s.d = 0, and
v.d = oo for all other vertices v.

2. Update our guesses by relaxing edges:

» If there is an edge u — v and our guess for the distance from sto v is
greater than our guess for the distance from s to u, plus w(u, v), then
we can improve our guess by using this edge.

Relax(u, v)

1. ifvid > u.d +w(u,v)
2. v.d + u.d+ w(u,v)
3. v =u

Note that co + x = oo for any real number x.

Ashley Montanaro
as % University of

s.ac.uk
Slide 10/39 BRISTOL

ng the shortest path



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2. s.d«+0

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 11/39 AR BRISTOL



The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2.sd+0

3. fori=1to V-1

4 foreachedge u — vin G

5 Relax(u, v)

Ashley Montanaro

X % University of

Luk
the shortest path Slide 11/39 AR BRISTOL



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2.5d+0

3. fori=1to V-1

4 foreachedge u — vin G

B Relax(u, v)

6. foreachedge u — vin G

7 if v.d > u.d+ w(u,v)

8 error(“Negative-weight cycle detected”)

Ashley Montanaro

X % University of

.uk
the shortest path Slide 11/39 BRISTOL



The Bellman-Ford algorithm
This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex v € G: v.d + oo, V.7 < nil
2.5d+0

3. fori=1to V-1

4 foreachedge u — vin G

B Relax(u, v)

6. foreachedge u — vin G

7 if v.d > u.d+ w(u,v)

8 error(“Negative-weight cycle detected”)

» Time complexity: ©(V) + ©(VE) + ©(E) = ©(VE).

Ashley Montanaro

X % University of

uk
the shortest path Slide 11/39 BRISTOL



Example 1: no negative-weight cycles

Imagine we want to find shortest paths from vertex A in the following graph:

Ashley Montanaro
ast uk Bl University of
COMS21103: Finding the Slide 12/39 BRISTOL




Example 1: no negative-weight cycles
At the start of the algorithm:

oo, nil oo, nil

» In the above diagram, the red text is the distance from the source A,
(i.e. v.d), and the green text is the predecessor vertex (i.e. v.m).

Ashley Montanaro

% University of

Slide 13/39 BRISTOL



Example 1: no negative-weight cycles

The first iteration of the for loop:

oo, nil oo, nil

E@ [=Jp][+]

» Note that the edges are picked in arbitrary order.

Ashley Montanaro

.% University of

uk
COMS21103: Finding the Slide 14/39 BRI BRISTOL



Example 1: no negative-weight cycles

The second iteration of the for loop:

1,A 4,D

K<<l [> ] E

» Note that the edges are picked in arbitrary order.

Ashley Montanaro

.% University of

uk
COMS21103: Finding the Slide 15/39 BRI BRISTOL



Example 1: no negative-weight cycles
The 4 iterations of the for loop that follow do not update any distance or
predecessor values, so the final state is:

» So the shortest path from A to G (for example) has weight 1.

» To output a shortest path itself, we can trace back the predecessor
values from G.

Ashley Montanaro

X % University of

Luk
ding the shortest path Slide 16/39 BRI BRISTOL



Example 1: no negative-weight cycles
The 4 iterations of the for loop that follow do not update any distance or
predecessor values, so the final state is:

» So the shortest path from A to G (for example) has weight 1.

» To output a shortest path itself, we can trace back the predecessor
values from G.

Ashley Montanaro

X % University of

Luk
ding the shortest path Slide 16/39 BRI BRISTOL



Example 2: negative-weight cycle

We now consider an input graph that has a negative-weight cycle.

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 17/39 BRISTOL




Example 2: negative-weight cycle

At the start of the algorithm:

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 18/39 BRISTOL




Example 2: negative-weight cycle

The first iteration of the for loop:

K] <J ][> =l +]

» As before, the order in which we consider the edges is arbitrary (here
we use the order A — B,C — A,B — C).

Ashley Montanaro

% University of

Slide 19/39 BRISTOL



Example 2: negative-weight cycle

The second iteration of the for loop:

K] <alp] >~ E

.% University of

Slide 20/39 B BRISTOL



Example 2: negative-weight cycle

The second iteration of the for loop:

K] <[] ][> E

» At the end of the algorithm, B.d > A.d + w(A, B).
» So the algorithm terminates with “Negative-weight cycle detected”.

Ashley Montanaro

.% University of

Slide 20/39 B BRISTOL



Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Ashley Montanaro

% University of

COMS21103: Finding the sh Slide 21/39 BRISTOL



Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Proof

If a path p contains a cycle vy — v — - -+ — V such that the sum of the
weights of the edges is non-negative, deleting this cycle from p cannot
increase p's total weight.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 21/39 AR BRISTOL



Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a
shortest path from s to t cannot contain a cycle.

Proof

If a path p contains a cycle vy — v — - -+ — V such that the sum of the
weights of the edges is non-negative, deleting this cycle from p cannot
increase p's total weight.

% University of
Slide 21/39 BRISTOL




Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

% University of

Slide 22/39 BRISTOL



Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from ato ¢ with total weight
o(a, b) + d(b, c).

Ashley Montanaro

b % University of

COMS21103: Finding the shortest path Slide 22/39 BRI BRISTOL



Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from ato ¢ with total weight
o(a, b) + d(b, c).

Note that this holds even if some edge weights are negative.

Ashley Montanaro

X % University of

Luk
the shortest path Slide 22/39 BRI BRISTOL



Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from a to ¢ with total weight
o(a, b) + d(b, c).

Note that this holds even if some edge weights are negative.

Ashley Montanaro
ast uk Bl University of
COMS21103: Finding the shortest path Slide 22/39 BRISTOL




Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from a to ¢ with total weight
o(a, b) + d(b, c).

Note that this holds even if some edge weights are negative.

Ashley Montanaro
ast uk Bl University of
COMS21103: Finding the shortest path Slide 22/39 BRISTOL




Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from a to ¢ with total weight
o(a, b) + d(b, c).

Note that this holds even if some edge weights are negative.

Ashley Montanaro
ast uk Bl University of
COMS21103: Finding the shortest path Slide 22/39 BRISTOL




Proof of correctness: Preliminaries
Claim (triangle inequality)
For any vertices a, b, ¢, é(a,c) < §(a, b) + é(b, c).

Proof

Given a shortest path from ato b and a shortest path from b to c,
combining these two paths gives a path from a to ¢ with total weight
o(a, b) + d(b, c).

Note that this holds even if some edge weights are negative.

Ashley Montanaro
ast uk Bl University of
COMS21103: Finding the shortest path Slide 22/39 BRISTOL




Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 23/39 BRISTOL



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 23/39 AR BRISTOL



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

» the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).

Ashley Montanaro
uk

% University of

g the shortest path Slide 23/39 BRISTOL



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

» the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).

Then, at the end of this process, v.d = (s, v).

Ashley Montanaro

uk % University of

g the shortest path Slide 23/39 BRISTOL



Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by
induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:
» p=S— Vi — -+ — Vx — vis a shortest path from s to v;
» s.d is initially set to 0 and wu.d is initially set to oo for all u # s;

» the edges in p are relaxed in the order they appear in p (possibly with
other edges relaxed in between).

Then, at the end of this process, v.d = (s, v).

Proof: exercise.

Ashley Montanaro

uk % University of

g the shortest path Slide 23/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 24/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

Ashley Montanaro

uk % University of

COMS21103: Finding the shortest path Slide 24/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

» A shortest path cannot contain a cycle,som < V — 1.

Ashley Montanaro

1k % University of

COMS21103: Finding the shortest path Slide 24/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

» A shortest path cannot contain a cycle,som < V — 1.

» In the /’th iteration of the for loop, the edge v;_1 — V; is relaxed
(among others).

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 24/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

» A shortest path cannot contain a cycle,som < V — 1.

» In the /’th iteration of the for loop, the edge v;_1 — V; is relaxed
(among others).

» By the path-relaxation property, after V — 1 iterations, v.d = é(s, v).

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 24/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the
completion of BellmanFord, v.d = (s, v) for all vertices v.

Proof

» Write vy = s, v, = v. If vis reachable from s, there must exist a
shortest path vp - vi — -+ — vy

A shortest path cannot contain a cycle,so m < V — 1.

In the /’th iteration of the for loop, the edge v;_1 — v; is relaxed
(among others).

By the path-relaxation property, after V — 1 iterations, v.d = é(s, v).
So V — 1 iterations suffice to set v.d correctly for all v.

v

v

v

v

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 24/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Ashley Montanaro

Slide 25/39



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,
i(s,v) <d(s,u) + w(u,v).

Ashley Montanaro

c.uk Bl University of

COMS21103: Finding the shortest path Slide 25/39 AR BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,
i(s,v) <d(s,u) + w(u,v).

» By the claim on the previous slide, v.d = 4(s, v) for all vertices v.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 25/39 AR BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,

i(s,v) <d(s,u) + w(u,v).
» By the claim on the previous slide, v.d = 4(s, v) for all vertices v.
» So, for all edges u — v, v.d < u.d + w(u, v).

Ashley Montanaro

% University of

g the shortest path Slide 25/39 BRISTOL



Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then
BellmanFord does not exit with an error.

Proof

» By the triangle inequality, for all edges u — v,
i(s,v) <é(s,u)+ w(u,v).
» By the claim on the previous slide, v.d = 4(s, v) for all vertices v.
» So, for all edges u — v, v.d < u.d + w(u, v).
» So the check in step (7) of the algorithm never fails.

Ashley Montanaro

- . uk % University of

g the shortest path Slide 25/39 BRISTOL



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Ashley Montanaro

Slide 26/39



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

Ashley Montanaro

s.ac.uk % University of

ng the shortest path Slide 26/39 BRISTOL



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

» Let v, ..., vk be a negative-weight cycle, where vk = v.

Ashley Montanaro

s.ac.uk % University of

ng the shortest path Slide 26/39 BRISTOL



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

» Let vp,. .., vk be a negative-weight cycle, where v = vy.
» Then by definition ZL w(vi—1,V;) <O0.

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 26/39 BRISTOL



Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» We will assume that G contains a negative-weight cycle reachable
from s, and that BellmanFord does not exit with an error, and prove
that this implies a contradiction.

» Let v, ..., vk be a negative-weight cycle, where vk = v.
» Then by definition ZL w(vi_1,V;) <O.
» As BellmanFord does not exit with an error, for all 1 < i < k,

vi.d < vi_1.d+ W(V,'_1, V,').

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 26/39 BRISTOL



Proof of correctness
Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» Summing this inequality over i between 1 and k,

k k
ZVi.d < Z\//_1.d+ w(vi_1, V) = ZVI 1d+z (Vie1, Vi)
i=1

i=1

k k—1
< Z V,'_1.d = Z V,'.d.
i=1 i=0

Ashley Montanaro

.% University of

COM821103 Finding the shonest path Slide 27/39 AR BRISTOL



Proof of correctness
Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» Summing this inequality over i between 1 and k,

k k
ZVi.d < Z\//_1.d+ w(vi_1, V) = ZVI 1d+z (Vie1, Vi)
i=1

i=1

k k—1
< Z V,'_1.d = Z V,'.d.
i=1 i=0

» Subtracting 3%, v;.d from both sides, we get v;.d < vo.d.

Ashley Montanaro

s.ac.uk .% University of

ng the shortest path Slide 27/39 .. BRISTOL



Proof of correctness
Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord
exits with an error.

Proof

» Summing this inequality over i between 1 and k,

k k
Zvi'd < Z\//_1.d+ w(vi_1, V) = ZVI 1d+z (Vie1, Vi)
i=1

i=1

k k—1
< Z V,'_1.d = Z V,'.d.
i=1 i=0

» Subtracting 3%, v;.d from both sides, we get v;.d < vo.d.
» But vy = vk, so we have a contradiction.

Ashley Montanaro

s.ac.uk .% University of

ng the shortest path Slide 27/39 .. BRISTOL



Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

Ashley Montanaro

Slide 28/39



Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:

X=X <5, X—-x3<-2, Xx31—x4<0.

Ashley Montanaro

Slide 28/39



Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:
X=X <5, X—-x3<-2, Xx31—x4<0.
» Given a system of m difference constraints in n variables, we would

like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

Ashley Montanaro

Slide 28/39



Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:
X=X <5, X—-x3<-2, Xx31—x4<0.
» Given a system of m difference constraints in n variables, we would

like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

» For example, the above system is satisfied by x; =0, xo = -1, x3 =1,
X4 = 7 (among other solutions).

Ashley Montanaro

c.uk Bl University of

COMS21103: Finding the shortest path Slide 28/39 AR BRISTOL



Application 1: difference constraints

» A system of difference constraints is a set of inequalities of the form
X;i — X; < by, where x; and x; are variables and b; is a real number.

» For example:
X=X <5, X—-x3<-2, Xx31—x4<0.
» Given a system of m difference constraints in n variables, we would

like to find an assignment of real numbers to the variables such that
the constraints are all satisfied, if such an assignment exists.

» For example, the above system is satisfied by x; =0, xo = -1, x3 =1,
X4 = 7 (among other solutions).

» We will show that this problem can be solved using Bellman-Ford in
time O(nm + n?).

Ashley Montanaro

uk % University of

COMS21103: Finding the shortest path Slide 28/39 AR BRISTOL



Graph representation of difference constraints

Given m difference constraints in n variables, we create a graph on n+ 1
vertices vy, . . ., vV, with m 4+ n edges where:

» for each constraint x; — x; < bj;, we add an edge v; — v; with weight b;

Ashley Montanaro

% University of

COMS21103: Finding the sh Slide 29/39 BRISTOL



Graph representation of difference constraints

Given m difference constraints in n variables, we create a graph on n+ 1
vertices vy, . . ., vV, with m 4+ n edges where:

» for each constraint x; — x; < bj;, we add an edge v; — v; with weight b;
» forall 1 <7< nthere is an additional edge vy — v; with weight 0.

For example:

X1 =X <5 Xx-x3<-2, Xx1—x<0

corresponds to

Ashley Montanaro

as 3 % University of
COMS21103: Finding the sh Slide 29/39 BRISTOL




Claim

Let G be the graph corresponding to a system of difference constraints. If
G does not contain a negative-weight cycle, the assignment x; = §(vo, vi),
forall 1 </ < n, is a valid solution to the system of constraints.

Ashley Montanaro

Slide 30/39



Claim
Let G be the graph corresponding to a system of difference constraints. If

G does not contain a negative-weight cycle, the assignment x; = §(vo, vi),
forall 1 </ < n, is a valid solution to the system of constraints.
Proof
» We need to prove that
5(‘/05 Vi) - 5(‘/07 Vj) S blj

for all i, j in the list of constraints.

Ashley Montanaro
uk % University of

ng the shortest path Slide 30/39



Claim
Let G be the graph corresponding to a system of difference constraints. If

G does not contain a negative-weight cycle, the assignment x; = §(vo, vi),
forall 1 </ < n, is a valid solution to the system of constraints.
Proof
» We need to prove that
5(‘/0; Vi) - 5(‘/07 Vj) S blj

for all i, j in the list of constraints.
» This follows from the triangle inequality

5(‘/0’ Vi) < 5(‘/07 Vl) + 6(‘/17 Vi) < 5(‘/07 Vj) + W(Vjv VI) = 5(‘/07 Vj) + b/]

and rearranging. O

Ashley Montanaro
s.ac.uk % University of

ng the shortest path Slide 30/39 BRISTOL



Claim

Let G be the graph corresponding to a system of difference constraints. If

G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Ashley Montanaro

Slide 31/39



Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

Ashley Montanaro
uk % University of

ng the shortest path Slide 31/39



Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities

Xo— X1 < b2, X3—X2< bz, ... , X3—Xk< byt

Ashley Montanaro
i W University of

is.ac.uk
the shortest path Slide 31/39



Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities
Xo — Xy < bra, X3 — X2 < bpg, ;o Xt — Xk < Dy

» If there is a valid solution x;, then all the inequalities are satisfied.

Ashley Montanaro
is.ac.uk Bl University of

ng the shortest path Slide 31/39



Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities

Xo — Xy < bz, X3 — X2 < bog, , X1 — Xk < by

» If there is a valid solution x;, then all the inequalities are satisfied.

» Summing the inequalities we get 0 for the left-hand side, and the
weight of ¢ for the right-hand side.

Ashley Montanaro

% University of

Slide 31/39



Claim

Let G be the graph corresponding to a system of difference constraints. If
G contains a negative-weight cycle, there is no valid solution to the system
of constraints.

Proof (sketch)

» We prove the converse: if the system has a valid solution, there is no
negative-weight cycle.

» Letc=vq,..., v, vy be an arbitrary cycle on vertices vy, ..., v
(without loss of generality). This corresponds to the inequalities

Xo— X1 < b2, X3—X2< bz, ... , X3—Xk< byt

» If there is a valid solution x;, then all the inequalities are satisfied.

» Summing the inequalities we get 0 for the left-hand side, and the
weight of ¢ for the right-hand side.

» So c has weight at least 0, and is not a negative-weight cycle. 0

Ashley Montanaro

% University of

Slide 31/39



Example
The set of inequalities

Xp—=X%2 <5 XxX-x3<-2, X1—x<0

corresponds to the graph

Ashley Montanaro

Slide 32/39



Example
The set of inequalities

Xp—=X%2 <5 XxX-x3<-2, X1—x<0

corresponds to the graph

with shortest paths

(5(V0,V1) =0, 5(V0,V2) = —2, 5(V0,V3) ZO7 (5(V0,V4) =0.
So

x1=0, x=-2, x3=0, x4=0
is a solution to the constraints.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 32/39 BRISTOL



Solving difference constraints

» We can run Bellman-Ford with v, as the source.

Ashley Montanaro

Slide 33/39



Solving difference constraints

» We can run Bellman-Ford with v, as the source.

» If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output x; = 6(vo, v;) as the
solution.

Ashley Montanaro

% University of

COMS21103: Finding the sl Slide 33/39 BRISTOL



Solving difference constraints

We can run Bellman-Ford with v; as the source.

v

v

If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output x; = 6(vo, v;) as the
solution.

For a solution to a system of m difference constraints on n variables,
the graph produced has n+ 1 vertices and m + n edges.

v

v

The running time of Bellman-Ford is thus O(VE) = O(mn + n?).

Ashley Montanaro

% University of

COMS21103: Finding the sh Slide 33/39 BRISTOL



Solving difference constraints

We can run Bellman-Ford with v; as the source.

v

v

If there is a negative-weight cycle, the algorithm detects it (and we
output “no solution”); otherwise, we output x; = 6(vo, v;) as the
solution.

For a solution to a system of m difference constraints on n variables,
the graph produced has n+ 1 vertices and m + n edges.

v

v

The running time of Bellman-Ford is thus O(VE) = O(mn + n?).

v

This can be improved to O(mn) time (CLRS exercise 24.4-5).

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 33/39 AR BRISTOL



Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to
currency j. For example:

Ashley Montanaro

% University of

Slide 34/39 BRISTOL



Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to
currency j. For example:

£ $ €
£ 1 161 1.18
$ 062 1 074
€ 085 135 1

» |f we convert currency i — j — k, the rate we get is the product of the
individual rates.

Ashley Montanaro

% University of

COMS21103: Finding the sh Slide 34/39 BRISTOL



Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to

currency j. For example:

£
£ 1
$ 062
€ 0.85

» |f we convert currency i — j — k, the rate we get is the product of the

individual rates.

» If we converti — j — --- — i, and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is

called arbitrage.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path

Slide 34/39 B BRISTOL



Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (/,j)’'th entry
T; represents the exchange rate we get when converting currency i to

currency j. For example:

£
£ 1
$ 062
€ 0.85

» |f we convert currency i — j — k, the rate we get is the product of the

individual rates.

» If we converti — j — --- — i, and the product of the rates is greater
than 1, we have made money by exploiting the exchange rates! This is

called arbitrage.

» We can use Bellman-Ford to determine whether arbitrage is possible.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path

Slide 34/39 B BRISTOL



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj. For example:

Ashley Montanaro

% University of

Slide 35/39 BRISTOL



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj;. For example:

» Then the weight of a cycle co — ¢1 — -+ — ¢k (with cx = &) is

k k
=1 j=1

Ashley Montanaro

% University of

COMS21103: Finding the sh Slide 35/39 BRISTOL



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj;. For example:

» Then the weight of a cycle co — ¢1 — -+ — ¢k (with cx = &) is
k k
j=1 j=1

» This will be negative if and only if [[; T¢, , > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 35/39 AR BRISTOL



Application: Currency exchange
We produce a weighted graph G from the currency table, where the weight
of edge i — jis —log, Tj;. For example:

» Then the weight of a cycle co — ¢1 — -+ — ¢k (with cx = &) is

k k
=1 j=1

» This will be negative if and only if [[; T¢, , > 1, i.e. the sequence of
transactions corresponds to an arbitrage opportunity.
» So G has a negative-weight cycle if and only if arbitrage is possible.

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 35/39 BRI BRISTOL



Summary

v

The Bellman-Ford algorithm solves the single-source shortest paths
problem in time O(VE).

» It works if the input graph has negative-weight edges, and can detect
negative-weight cycles.

» Although the proof of correctness is a bit technical, the algorithm is
easy to implement and doesn’t use any complicated data structures.

» It can be used to solve a system of difference constraints and to
determine whether arbitrage is possible.

Ashley Montanaro

c.uk Bl University of

COMS21103: Finding the shortest path Slide 36/39 BRI BRISTOL



Further Reading

» Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

» Chapter 24 — Single-Source Shortest Paths

» Algorithms
S. Dasgupta, C.H. Papadimitriou and U.V. Vazirani
http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/
» Chapter 4, Section 4.6 — Shortest paths in the presence of negative
edges

» Algorithms lecture notes, University of lllinois
Jeff Erickson
http://www.cs.uiuc.edu/~Jjeffe/teaching/algorithms/

» Lecture 19 — Single-source shortest paths

Ashley Montanaro

% University of

COMS21103: Finding the shortest path Slide 37/39 BRISTOL


http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Biographical notes

Richard E. Bellman (1920—1984)

» American mathematician who worked at
Princeton, Stanford, the RAND Corporation
and the University of Southern California.

» Author of at least 621 papers and 41 books,
including 100 papers after the removal of a
brain tumour left him severely disabled.

» Winner of the IEEE Medal of Honor in 1979 for
his invention of dynamic programming.

e
Pic: IEEE Global History Network

Ashley Montanaro

X % University of

Luk
the shortest path Slide 38/39 AR BRISTOL



Biographical notes

Lester Ford, Jr. (1927-)

» Another American mathematician
whose other contributions include the
Ford-Fulkerson algorithm for maximum
flow problems.

» His father was also a mathematician
and, at one point, President of the
Mathematical Association of America.

Pic: tangrammit.com

Ashley Montanaro

1k % University of

COMS21103: Finding the shortest path Slide 39/39 BRISTOL



	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	anm1: 
	1.EndLeft: 
	1.StepLeft: 
	1.PlayPauseLeft: 
	1.PlayPauseRight: 
	1.StepRight: 
	1.EndRight: 
	1.Minus: 
	1.Reset: 
	1.Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PlayPauseLeft: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 
	3.0: 
	3.1: 
	3.2: 
	3.3: 
	3.4: 
	anm3: 
	3.EndLeft: 
	3.StepLeft: 
	3.PlayPauseLeft: 
	3.PlayPauseRight: 
	3.StepRight: 
	3.EndRight: 
	3.Minus: 
	3.Reset: 
	3.Plus: 
	4.0: 
	anm4: 
	4.EndLeft: 
	4.StepLeft: 
	4.PlayPauseLeft: 
	4.PlayPauseRight: 
	4.StepRight: 
	4.EndRight: 
	4.Minus: 
	4.Reset: 
	4.Plus: 


