COMS21103

All-pairs shortest paths

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

5 November 2013

Ashley Montanaro

% University of

ashley@cs.bris.ac.uk

All-pairs shortest paths

» We have seen two different ways of determining the shortest path
from a vertex s to all other vertices.

» What if we want to determine the shortest paths between all pairs of
vertices?

» For example, we might want to store these paths in a database for
efficient access later.

» We could use Dijkstra (if the edge weights are non-negative) or
Bellman-Ford, with each vertex in turn as the source, which would
achieve complexity O(VE + V?log V) and O(V2E) respectively.

» Can we do better?

Today: algorithms for general graphs with better runtimes than this.
» The Floyd-Warshall algorithm: time O(V3).
» Johnson's algorithm: time O(VE + V2log V).
Assume for simplicity that the input graph has no negative-weight cycles.

Ashley Montanaro

Vé University of

ashley@cs.bris.ac.uk

BRISTOL

COMS21103: All-pairs shortest paths Slide 1/22

COMS21103: All-pairs shortest paths Slide 2/22 BRISTOL

All-pairs shortest paths
» In the Floyd-Warshall algorithm, we assume we are given access to a
graph G with n vertices as a n x n adjacency matrix W. The weights
of the edges in G are represented as follows:

0 ifi=j
W; = { the weight of the edge i — j if such an edge exists
00 otherwise.

» We use the optimal substructure property of shortest paths (the
triangle inequality) to write down a dynamic programming recurrence.

» For a path p = py, ..., px, define the intermediate vertices of p to be
the vertices po, ..., Pk_1-

> Let d,;-k) be the weight of a shortest path from 7 to j such that the
intermediate vertices are all in the set {1,..., k}.

» If there is no shortest path from i to j of this form, then dg.k) = o0.
> Inthe case k =0, d\”) = W.

» On the other hand, for k = n, d,/(.”) = 6(i, §).
Ashley Montanaro

ashley@cs.bris.ac.uk

COMS21103: All-pairs shortest paths Slide 3/22

Bl University of

BRISTOL |

A dynamic-programming recurrence

Let p be a shortest (i.e. minimum-weight) path from j to j with all
intermediate vertices in the set {1,..., k}. Then observe that:

» If k is not an intermediate vertex of p, then p is also a minimum-weight
path with all intermediate vertices in the set {1,...,k —1}.

» If k is an intermediate vertex of p, then we decompose p into a path p;
between i and k, and a path p, between k and j.

» By the triangle inequality, ps is a shortest path from j to k. Further, it
does not include k (as otherwise it would contain a cycle).

» The same reasoning shows that p. is a shortest path from k to j.

We therefore have the following recurrence for dg.k):

Ashley Montanaro o
ashley@cs.bris.ac.uk University of

COMS21103: All-pairs shortest paths Slide 4/22 BRISTOL

The Floyd-Warshall algorithm

Based on the above recurrence, we can give the following bottom-up
algorithm for computing d,j.") for all pairs i, j.

FloydWarshall(W)
1. dO — w
2. fork=1ton
3 fori=1ton
4. forj=1ton
5 df? « min(a ", af" + dif V)
6. return d(",

» The time complexity is clearly O(n®) and the algorithm is very simple.
» Correctness follows from the argument on the previous slide.

Ashley Montanaro
ashley@cs.bris.ac.uk % University of

COMS21103: All-pairs shortest paths Slide 5/22

BRISTOL |

Example

Consider the following graph and its corresponding adjacency matrix:

0 1 o o

o 0 1 o

2 4 0 O

-1 o0 oo 0

0 1 oo o 0 1 2

g — oo 0 1 o d® — oo 0 1 o0
2 3 0 o0} 2 3 0 O

-1 0 oo O -1 0 1 0

Ashley Montanaro
ashley@cs.bris.ac.uk Bl University of
BRISTOL

COMS21103: All-pairs shortest paths Slide 6/22

Example

Consider the following graph and its corresponding adjacency matrix:

0

0 1 oo o©

o 0 1 o~

-1 4 2 4 0 O

-1 o0 oo 0
0 1 2 2 o 1 2 2
@_|13 011 @w_|10 011
a = 2 3 0 0}’ d -1 0 0 O
-1 0 1 0 -1 0 1 0

Ashley Montanaro

ashley@cs.bris.ac.uk

Bl University of

Constructing the shortest paths

» We would like to construct a predecessor matrix I such that I1; is the
predecessor vertex of j in a shortest path from i to j.

» We can do this in a similar way to computing the distance matrix. We
define a sequence of matrices M©), ... N such that I'I,(-jk) is the

predecessor of j in a shortest path from i to j only using vertices in the
set{1,...,k}.

» Then, for kK = 0,

0
no -

nil ifi=jor Wy=o0
i ifi#jand Wy # oc.

» For k > 1, we have essentially the same recurrence as for d(.
Formally,

e

k=1) ¢ (k=1 k=1 k—1
K otherwise.

Ashley Montanaro

ashley@cs.bris.ac.uk

% University of

COMS21103: All-pairs shortest paths Slide 7/22

LI BRISTOL |

COMS21103: All-pairs shortest paths Slide 8/22

BRISTOL

The Floyd-Warshall algorithm with predecessors
FloydWarshall(W)

1. dO « w

2. fork=1ton

3 fori=1ton

4 forj=1ton

5 if of " < o 4 g

6. o ot~

7 Nt i

8 else

9 i) df ™ + o
10. rl,(j") « n%“”
11. return d(".,

Ashley Montanaro
ashley@cs.bris.ac.uk % University of

Johnson’s algorithm

» For sparse graphs with non-negative weight edges, running Dijkstra
with each vertex in turn as the source is more efficient than the
Floyd-Warshall algorithm.

» Johnson’s algorithm uses Dijkstra’s algorithm to solve the all-pairs
shortest paths problem for graphs which may have negative-weight
edges. It is based around the idea of first reweighting G so that all the
weights are non-negative, then using Dijkstra.

» For sparse graphs, its complexity O(VE + V2 log V) (the same as
Dijkstra) is faster than the Floyd-Warshall algorithm.

» We assume that we are given G as an adjacency list, and have
access to a weight function w(u, v) which tells us the weight of the
edge u — v.

Ashley Montanaro

COMS21103: All-pairs shortest paths Slide 9/22 BRISTOL |

ashley@cs.bris.ac.uk % University of
COMS21103: All-pairs shortest paths Slide 10/22 BRISTOL

Claim
For any edge u — v, define

w(u,v) := w(u,v) + h(u) — h(v),

where h is an arbitrary function mapping vertices to real numbers. Then
any path p = vo, ..., vk is a shortest path from v, to v with respect to the
weight function w if and only if it is a shortest path with respect to the
weight function w.

Proof
The total weights of p under w and w are closely related:

k k
W(Vi_1, V,') = Z W(V,'_17 V,‘) + h(V,'_1) = h(V,’)

1 i=1

k
= h(w) — h(vk) + Z w(Vi-1, V)
i=1

Ashley Montanaro
ashley@cs.bris.ac.uk Bl University of

COMS21103: All-pairs shortest paths Slide 11/22 BRISTOL |

Claim
For any edge u « v, define

w(u,v) := w(u,v) + h(u) — h(v),

where his an arbitrary function mapping vertices to real numbers. Then
any path p = v, .. ., vk is a shortest path from v to v, with respect to the
weight function w if and only if it is a shortest path with respect to the
weight function w.

Proof

» So the weight of p under w only differs from its weight under w by an
additive term which does not depend on p.

» So pis a shortest path with respect to w if and only if it is a shortest
path with respect to w.

O

Ashley Montanaro
ashley@cs.bris.ac.uk =74 University of

COMS21103: All-pairs shortest paths Slide 12/22 BRISTOL

Negative-weight cycles

Claim

A graph has a negative-weight cycle under weight function w if and only if
if has one under weight function w.

Proof

» Letc=v,..., v, where vy = v, be any cycle.

» As v = W, h(vy) = h(vk), so the weight of ¢ under w is the same as
its weight under w.

» So c is negative-weight under w if and only if it is negative-weight
under w.

Ashley Montanaro

% University of

ashley@cs.bris.ac.uk

Reweighting

» Given a graph G, to define our new weight function, we add a new
vertex s which has an edge of weight 0 to all other vertices in G.

» This cannot create a new negative-weight cycle if there was not one
there already.

» We then define h(v) = d(s, v) for all vertices v in G.

» Now observe that i(s, v) < d(s, u) + w(u, v) for all edges u — v by
the triangle inequality, so h(v) — h(u) < w(u, v).

» So, if we reweight according to the function h,
W(u,v) = w(u, v) + h(u) — h(v) > 0
for all edges u — v.

~

» Then, if §(u, v) is the weight of a shortest path from u to v with weight
function w, §(u, v) = §(u, v) + h(v) — h(u).

Ashley Montanaro
ashley@cs.bris.ac.uk M University of

COMS21103: All-pairs shortest paths Slide 13/22

BRISTOL |

COMS21103: All-pairs shortest paths Slide 14/22 BRISTOL

Example

Imagine we want to reweight the following graph:

h(A)= -2, h(B)=-1, h(C)=0, h(D)=—-1.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: All-pairs shortest paths Slide 15/22

Bl University of

LI BRISTOL |

Example

Reweighting according to h gives the following graph:

~

» For each pair of vertices u, v, §(u, v) = é(u, v) + h(v) — h(u).

» For example, 6(C,A) =0 -2 — 0 = —2 as expected.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: All-pairs shortest paths Slide 16/22

% University of
BRISTOL

Johnson’s algorithm

From the above discussion, we can write down the following algorithm.

Johnson(G)

1. form a new graph G’ by adding s to G, as defined above
2. compute 4(s, v) for all v € G using BellmanFord

3. foreachedge u — vin G

4 w(u,v) + w(u,v) + (s, u) — (s, v)

5. for each vertex u € G

6 compute (u, v) for all v using Dijkstra

7 for each vertex v € G

8. duy g(u, v) 4+ 4(s,v) —d(s, u)

9. return d

Ashley Montanaro

% University of

ashley@cs.bris.ac.uk

Summary of all-pairs shortest paths algorithms

We have now seen two different algorithms for this problem.

» Both algorithms work for graphs which may have negative-weight
edges.

» The Floyd-Warshall algorithm runs in time O(V?) and is based on
ideas from dynamic programming.

» Johnson'’s algorithm is based on reweighting edges in the graph and
running Dijkstra’s algorithm.

» The runtime of Johnson’s algorithm is dominated by the complexity of
running Dijkstra’s algorithm once for each vertex, which is
O(VE + V?log V) if implemented using a Fibonacci heap, and
O(VE log V) if implemented using a binary heap.

» This can be significantly smaller than the runtime of the
Floyd-Warshall algorithm if the input graph is sparse.

Ashley Montanaro

COMS21103: All-pairs shortest paths Slide 17/22

BRISTOL |

ashley@cs.bris.ac.uk Bl University of
COMS21103: All-pairs shortest paths Slide 18/22 BRISTOL

Shortest path algorithms: the summary

To compute single-source shortest paths in a directed graph G which is. ..

» unweighted: use breadth-first search in time O(V + E);

» weighted with non-negative weights: use Dijkstra’s algorithm in time
O(E + Vlog V);
» weighted with negative weights: use Bellman-Ford in time O(VE).

To compute all-pairs shortest paths in a directed graph G which is. ..

» unweighted: use breadth-first search from each vertex in time
O(VE + V?);

» weighted with non-negative weights: use Dijkstra’s algorithm from
each vertex in time O(VE + V?log V);

» weighted with negative weights: use Johnson'’s algorithm in time
O(VE + V2log V).

Ashley Montanaro

Bl University of

ashley@cs.bris.ac.uk

COMS21103: All-pairs shortest paths Slide 19/22

LI BRISTOL |

Further Reading

» Introduction to Algorithms
T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein.
MIT Press/McGraw-Hill, ISBN: 0-262-03293-7.

» Chapter 25 — All-Pairs Shortest Paths

» Algorithms lecture notes, University of lllinois
Jeff Erickson
http://www.cs.uiuc.edu/~Jjeffe/teaching/algorithms/

» Lecture 20 — All-pairs shortest paths

Ashley Montanaro
ashley@cs.bris.ac.uk
COMS21103: All-pairs shortest paths Slide 20/22

% University of
BRISTOL

Biographical notes

The Floyd-Warshall algorithm was invented independently by Floyd and
Warshall (and also Bernard Roy).

Robert W. Floyd (1936-2001)

» American computer scientist who did major work
on compilers and initiated the field of
programming language semantics.

» He completed his first degree (in liberal arts) at
the age of 17 and won the Turing Award in 1978.

» Had his middle name legally changed to “W”.

Pic: IEEE

Ashley Montanaro

ashley@cs.bris.ac.uk

% University of

Biographical notes

Stephen Warshall (1935—-2006)

» Another American computer scientist whose other work included
operating systems and compiler design.

» Supposedly he and a colleague bet a bottle of rum on who could first
prove correctness of his algorithm.

» Warshall found his proof overnight and won the bet (and the rum).

Donald B. Johnson (d. 1994)

» Yet another American computer scientist. Founded the computer
science department at Dartmouth College and invented the d-ary
heap.

Ashley Montanaro
ashley@cs.bris.ac.uk

COMS21103: All-pairs shortest paths Slide 21/22

BRISTOL |

% University of

COMS21103: All-pairs shortest paths Slide 22/22 BRISTOL

