
Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

Lecture notes

Ashley Montanaro, DAMTP Cambridge
am994@cam.ac.uk

Contents

1 Complementary reading and acknowledgements 2

2 Motivation 3

3 The Turing machine model 4

4 Efficiency and time-bounded computation 13

5 Certificates and the class NP 21

6 Some more NP-complete problems 27

7 The P vs. NP problem and beyond 33

8 Space complexity 39

9 Randomised algorithms 45

10 Counting complexity and the class #P 53

11 Complexity classes: the summary 60

12 Circuit complexity 61

13 Decision trees 70

14 Communication complexity 77

15 Interactive proofs 86

16 Approximation algorithms and probabilistically checkable proofs 94

Health warning: There are likely to be changes and corrections to these notes throughout the
course. For updates, see http://www.qi.damtp.cam.ac.uk/node/251/.

Most recent changes: corrections to proof of correctness of Miller-Rabin test (Section 9.1) and
minor terminology change in description of Subset Sum problem (Section 6).

Version 1.14 (May 28, 2013).

1

http://www.qi.damtp.cam.ac.uk/node/251/

1 Complementary reading and acknowledgements

Although this course does not follow a particular textbook closely, the following books and addi-
tional resources may be particularly helpful.

• Computational Complexity: A Modern Approach, Sanjeev Arora and Boaz Barak. Cambridge
University Press.

Encyclopaedic and recent textbook which is a useful reference for almost every topic covered
in this course (a first edition, so beware typos!). Also contains much more material than we
will be able to cover in this course, for those who are interested in learning more. A draft is
available online at http://www.cs.princeton.edu/theory/complexity/.

• Computational Complexity, Christos Papadimitriou. Addison-Wesley.

An excellent, mathematically precise and clearly written reference for much of the more
classical material in the course (especially complexity classes).

• Introduction to the Theory of Computation, Michael Sipser. PWS Publishing Company.

A more gentle introduction to complexity theory. Also contains a detailed introduction to
automata theory, which we will not discuss in this course.

• Computers and Intractability: A Guide to the Theory of NP-Completeness, Michael Garey
and David Johnson. W. H. Freeman.

The standard resource for NP-completeness results.

• Introduction to Algorithms, Thomas Cormen, Charles Leiserson, Ronald Rivest and Clifford
Stein. MIT Press and McGraw-Hill.

A standard introductory textbook to algorithms, known as CLRS.

• There are many excellent sets of lecture notes for courses on computational complexity avail-
able on the Internet, including a course in the Computer Lab here at Cambridge1 and a course
at the University of Maryland by Jonathan Katz2.

These notes have benefited substantially from the above references (the exposition here sometimes
follows one or another closely), and also from notes from a previous course on computational
complexity by Richard Jozsa.

Thanks to those who have commented on previous versions of these notes, including Raphaël
Clifford, Karen Habermann, Ben Millwood and Nicholas Teh.

1http://www.cl.cam.ac.uk/teaching/1112/Complexity/
2http://www.cs.umd.edu/~jkatz/complexity/f11/

2

http://www.cs.princeton.edu/theory/complexity/
http://www.cl.cam.ac.uk/teaching/1112/Complexity/
http://www.cs.umd.edu/~jkatz/complexity/f11/

2 Motivation

Computational complexity theory is the study of the intrinsic difficulty of computational problems.
It is a young field by mathematical standards; while the foundations of the theory were laid by Alan
Turing and others in the 1930’s, computational complexity in its modern sense has only been an
object of serious study since the 1970’s, and many of the field’s most basic and accessible questions
remain open. The sort of questions which the theory addresses range from the immediately practical
to the deeply philosophical, including:

• Are there problems which cannot be solved by computer?

• Is there an efficient algorithm for register allocation in a computer’s central processing unit?

• Can we automate the process of discovering mathematical theorems?

• Can all algorithms be written to run efficiently on a computer with many processors?

• How quickly can we multiply two n× n matrices?

• Are some types of computational resource more powerful than others?

In general, we will be concerned with the question of which problems we can solve, given that
we have only limited resources (e.g. restrictions on the amount of time or space available to us).
Rather than consider individual problems (e.g. “is the Riemann hypothesis true?”), it will turn out
to be more fruitful to study families of problems of growing size (e.g. “given a mathematical claim
which is n characters long, does it have a proof which is at most n2 characters long?”), and study
how the resources required to solve the problem in question grow with its size. This perspective
leads to a remarkably intricate and precise classification of problems by difficulty.

2.1 Notation

We collect here some notation which will be used throughout the course. Σ will usually denote
an alphabet, i.e. a finite set of symbols. Notable alphabets include the binary alphabet {0, 1}; an
element x ∈ {0, 1} is known as a bit. A string over Σ is an ordered sequence (possibly empty) of
elements of Σ. For strings σ, |σ| denotes the length of σ. Σk denotes the set of length k strings
over Σ, and Σ∗ denotes the set of all finite length strings over Σ, i.e. Σ∗ =

⋃
k≥0 Σk. For σ ∈ Σ,

the notation σk denotes the string consisting of k σ’s (e.g. 03 = 000).

We will sometimes need to write strings in lexicographic order. This is the ordering where all
strings are first ordered by length (shortest first), then strings of length n are ordered such that
a ∈ Σn comes before b ∈ Σn if, for the first index i on which ai 6= bi, ai comes before bi in Σ. For
example, lexicographic ordering of the set of nonempty binary strings is {0, 1, 00, 01, 10, 11, 000, . . . }.

We use the notation A ⊆ B (resp. A ⊂ B) to imply that A is contained (resp. strictly contained)
within B. A∆B is used for the symmetric difference of sets A and B, i.e. (A∪B)\(A∩B). We let
[n] denote the set {1, . . . , n}. For x ≥ 0, bxc and dxe denote the floor and ceiling of x respectively,
i.e. bxc = max{n ∈ Z : n ≤ x}, dxe = min{n ∈ Z : n ≥ x}.

We will often need to encode elements s ∈ S, for some set S, as binary strings. We write s for
such an encoding of s, which will usually be done in some straightforward manner. For example,
integers x ∈ N are represented as x ∈ {0, 1}∗ by just writing the digits of x in binary.

3

. 1 0 � 2 � � . . .

s

. 2 1 � � . . .

START

Figure 1: A typical configuration of a Turing machine, and the starting configuration on input 21.

3 The Turing machine model

How are we to model the idea of computation? For us a computation will be the execution of an
algorithm. An algorithm is a method for solving a problem; more precisely, an effective method for
calculating a function, expressed as a finite list of well-defined instructions. We will implement our
algorithms using a basic, yet surprisingly powerful, kind of computer called a Turing machine.

A Turing machine can be thought of as a physical computational device consisting of a tape
and a head. The head moves along the tape, scanning and modifying its contents according to the
currently scanned symbol and its internal state. A “program” for a Turing machine specifies how
it should operate at each step of its execution (i.e. in which direction it should move and how it
should update the tape and its internal state). We assume that the tape is infinite in one direction
and the head starts at the leftmost end.

Formally, a Turing machine M is specified by a triple (Σ,K, δ), where:

• Σ is a finite set of symbols, called the alphabet of M . We assume that Σ contains two special
symbols � and ., called the blank and start symbols, respectively.

• K is a finite set of states. We assume that K contains a designated start state START, and
a designated halting state HALT. K describes the set of possible “mental states” of M .

• δ is a function such that δ : K × Σ → K × Σ × {←,−,→}. δ describes the behaviour of M
and is called the transition function of M .

A tape is an infinite sequence of cells, each of which holds an element of Σ. The tape initially
contains ., followed by a finite string x ∈ (Σ\{�})k called the input, followed by an infinite number
of blank cells �� For brevity, in future we will often suppress the trailing infinite sequence of
�’s when we specify what the tape contains.

At any given time, the current state of the computation being performed by M is completely
specified by a configuration. A configuration is given by a triple (`, q, r), where q ∈ K is a state
and specifies the current “state of mind” of M , and `, r ∈ Σ∗ are strings, where ` describes the
tape to the left of the head (including the current symbol scanned by the head, which is thus the
last element in `) and r describes the tape to the right of the head. Thus the initial configuration
of M on input x is (.,START, x).

At each step of M ’s operation, it updates its configuration according to δ. Assume that at a
given step M is in state q, and the symbol currently being scanned by the head is σ. Then, if
δ(q, σ) = (q′, σ′, d), where d ∈ {←,−,→}:

• the symbol on the tape at the position currently scanned by the head is replaced with σ′;

• the state of M is replaced with q′;

4

• if d =←, the head moves one place to the left; if d = −, the head stays where it is; if d =→,
the head moves one place to the right.

We assume that, for all states p and q, if δ(p, .) = (q, σ, d) then σ = . and d 6=←. That is, the
head never falls off the left end of the tape and never erases the start symbol. We also assume
that δ(HALT, σ) = (HALT, σ,−). That is, when M is in the halt state, it can no longer modify
its configuration. If M has halted, we call the contents of the tape the output (excluding the .
symbol on the left of the tape and the infinite string of �’s on the right). If M halts with output
y on input x, we write M(x) = y, and write M : Σ∗ → Σ∗ for the function computed by M . Of
course, some machines M may not halt at all on certain inputs x, but just run forever. If M does
not halt on input x, we can write M(x) =↗ (in fact, we will never need to do so).

3.1 Example

We describe a Turing machine M below which computes the function RMZ : {0, 1}∗ → {0, 1}∗,
where RMZ(x) is equal to x with the rightmost 0 changed to a 1. If there are no 0’s in x, the
machine outputs x unchanged. M operates on alphabet {.,�, 0, 1}, has states {START,TOEND,
FINDZERO,HALT}, and has transition function δ which performs the following maps.

(START, .) 7→ (TOEND, .,→)

(TOEND, 0) 7→ (TOEND, 0,→)

(TOEND, 1) 7→ (TOEND, 1,→)

(TOEND,�) 7→ (FINDZERO,�,←)

(FINDZERO, 0) 7→ (HALT, 1,−)

(FINDZERO, 1) 7→ (FINDZERO, 1,←)

(FINDZERO, .) 7→ (HALT, .,→)

For brevity, transitions that can never occur are not specified above; however, it should already be
clear that writing programs in the Turing machine model directly is a tedious process. In future,
we will usually describe algorithms in this model more informally.

3.2 Observations about Turing machines

• Alphabet. We immediately observe that we can fix the alphabet Σ = {.,�, 0, 1} (i.e. use a
binary alphabet, with two additional special symbols) without restricting the model, because
we can encode any more complicated alphabets in binary. Imagine that we have a machine
M whose alphabet Σ contains K symbols (other than ., �). Encode the i’th symbol as a
k := dlog2Ke-bit binary number, i.e. a string of k 0’s and 1’s. Define a new Turing machine

M̃ which will simulate M as follows.

The tape on which M̃ operates contains the binary encodings of the symbols of the tape on
which M operates, in the same order. In order to simulate one step of M , the machine M̃ :

1. Reads the k bits from its tape which encode the current symbol of Σ which M is scanning,
using its state to store what this current symbol is. If the bits read do not correspond
to a symbol of Σ, M̃ can just halt.

2. Uses M ’s transition function to decide what the next state of M should be, given this
input symbol, and stores this information in its own state.

5

3. Updates the k bits on the tape to encode the new symbol which M would write to the
tape.

This gives a very simple example of an encoding, i.e. a map which allows us to translate
between different alphabets. Henceforth, we will often assume that our Turing machines
operate on a binary alphabet. Similarly, we can assume that the states of the Turing machine
are given by the integers 1, . . . ,m, for some finite m.

• Encoding of the input. We may sometimes wish to pass multiple inputs x1, . . . , xk to M .
To do so, we can simply introduce a new symbol “,” to the alphabet, enabling M to determine
when one input ends and another begins.

• Representation and countability. A Turing machine M ’s behaviour is completely speci-
fied by its transition function and the identity of the special states and symbols �, ., START,
HALT. Thus M can be represented by a finite sequence of integers, or (equivalently) a finite
length bit-string. There are many reasonable ways that this representation can be imple-
mented, and the details are not too important. Henceforth we simply assume that we have
fixed one such representation method, and use the notation M for the bit-string represent-
ing M . The existence of such a representation implies that the set of Turing machines is
countable, i.e. in bijection with N.

It will be convenient later on to assume that every string x ∈ {0, 1}∗ actually corresponds to
some Turing machine. This can be done, for example, by associating each string M which
is not a valid encoding of some Turing machine M with a single fixed machine, such as a
machine which immediately halts, whatever the input.

3.3 Big-O notation

Later on, we will need to compare running times of different Turing machines. In order to do so
while eliding irrelevant details, an important tool will be asymptotic (big-O) notation, which is
defined as follows. Let f, g : N→ R be functions. We say that:

• f(n) = O(g(n)) if there exist c > 0 and integer n0 such that for all n ≥ n0, f(n) ≤ c g(n).

• f(n) = Ω(g(n)) if there exist c > 0 and integer n0 such that for all n ≥ n0, f(n) ≥ c g(n).

• f(n) = Θ(g(n)) if there exist c1, c2 > 0 and integer n0 such that for all n ≥ n0, c1 g(n) ≤
f(n) ≤ c2 g(n).

• f(n) = o(g(n)) if, for all ε > 0, there exists integer n0 such that for all n ≥ n0, f(n) ≤ εg(n).

• f(n) = ω(g(n)) if, for all ε > 0, there exists integer n0 such that for all n ≥ n0, g(n) ≤ εf(n).

Thus: f(n) = O(g(n)) if and only if g(n) = Ω(f(n)); f(n) = Θ(g(n)) if and only if f(n) = O(g(n))
and f(n) = Ω(g(n)); and f(n) = o(g(n)) if and only if g(n) = ω(f(n)). The notations O,Ω,Θ, o, ω
can be viewed as asymptotic versions of ≤,≥,=, <,> respectively. Beware that elsewhere in math-
ematics the notation f(n) = O(g(n)) is sometimes used for what we write as f(n) = Θ(g(n)). For
example, in our notation n2 = O(n3).

Some simple examples:

6

. 1 0 1 2 � 3 1 � 2 � 1 � 3 � � . . .

s

Figure 2: A typical configuration of a Turing machine with three tapes (input, work and output)
on input 1012.

• If f(n) = 100n3 +3n2 +7, then f(n) = O(n3). In general, if f(n) is a degree k polynomial, we
have f(n) = Θ(nk), f(n) = ω(nk−1), f(n) = o(nk+1). In future, we write “f(n) = poly(n)”
as shorthand for “f(n) = O(nk) for some k”.

• Take f(n) = nk for some fixed k, g(n) = cn for some fixed c > 1. Then f(n) = o(g(n)). For
example, n1000 = o(1.0001n).

We sometimes use big-O notation as part of a more complicated mathematical expression. For
example, f(n) = 2O(n) is shorthand for “there exist c > 0 and integer n0 such that for all n ≥ n0,
f(n) ≤ 2cn”. One can even write (valid!) expressions like “O(n) +O(n) = O(n)”.

3.4 Multiple-tape Turing machines

The Turing machine model is very simple and there are many ways in which it can (apparently!)
be generalised. Remarkably, these “generalisations” usually turn out not to be any more powerful
than the original model.

A natural example of such a generalisation is to give the machine access to multiple tapes. A
k-tape Turing machine M is a machine equipped with k tapes and k heads. The input is provided
on a designated input tape, and the output is written on a designated (separate) output tape. The
input tape is usually considered to be read-only, i.e. M does not modify it during its operation.
The remaining k − 2 tapes are work tapes that can be written to and read from throughout M ’s
operation. The work and output tapes are initially empty, apart from the start symbol. At each
stage of the computation, M scans the tapes under each of its heads, and performs an action on
each (modifying the tape under the head and moving to the left or right, or staying still). M ’s
transition function is thus of the form δ : K × Σk → K × (Σ × {←,−,→})k. Observe that M ’s
internal state is shared across tapes.

Theorem 3.1. Given a description of any k-tape Turing machine M operating within T (n) steps
on inputs of length n, we can give a single tape Turing machine M ′ operating within O(T (n)2) steps
such that M ′(x) = M(x) for all inputs x.

Proof. Let the input x be of length n. The basic idea is that our machine M ′ will encode the k
tapes of M within one tape by storing the j’th cell of the i’th tape of M at position n+(j−1)k+ i.
Thus the first tape is stored at n + 1, n + k + 1, n + 2k + 1, . . . , etc. The alphabet of M ′ will be
twice the size of the alphabet of M , containing two elements a, â for each element a of the alphabet
of M . A “hat” implies that there is a head at that position. Exactly one cell in the encoding of
each tape will include an element with a hat.

To start with, M ′ copies its input into the correct positions to encode the input tape and
initialises the first block n+1, . . . , n+k to .̂. This uses O(n2) steps (note that k is constant). Then,

7

to simulate each step of M ’s computation, M ′ scans the tape from left to right to determine the
symbols scanned by each of the k heads, which it stores in its internal state. Once M ′ knows these
symbols, it can compute M ’s transition function and update the encodings of the head positions
and tapes accordingly. As M operates within T (n) steps, it never reaches more than T (n) locations
in each of its tapes, so simulating each step of M ’s computation takes at most O(T (n)) steps. When
M halts, M ′ copies the contents of the output tape to the start of its tape and halts. As there are
at most T (n) steps of M to simulate, the overall simulation is within O(T (n)2) steps.

We say that a model of computation is equivalent to the Turing machine model if it can simulate
a Turing machine, and can also be simulated by a Turing machine. Thus the above theorem states
that multiple-tape Turing machines are equivalent to single-tape Turing machines. The simple fact
used in the proof that the amount of space used by a computation cannot be greater than the
amount of time used will come up again later.

3.5 The universal Turing machine

The fact that Turing machines M can be represented as bit-strings M allows M to be given as
input to another Turing machine U , raising the possibility of universal Turing machines: Turing
machines which simulate the behaviour of any possible M . We now briefly describe (without going
into the technical details) how such a simulation can be done.

Theorem 3.2. There exists a two-tape Turing machine U such that U(M,x) = M(x) for all Turing
machines M .

Proof. As discussed in Section 3.4, we may assume that M has one tape. U ’s input tape stores a
description of M (which is indeed fully specified by its transition function δ and identities of the
special states START, HALT) and the input x. U ’s second tape stores the current configuration
(`, q, r) of M simply by concatenating the three elements of the configuration, separated by “,”
symbols. To simulate a step of M , U scans the input tape to find the new state, new symbol to be
written and head movement to be performed. U then updates the second tape accordingly. If M
halts, U cleans up the second tape to (`, r) and then halts.

The overloading of the notation M highlights the triple role of Turing machines: they are
simultaneously machines, functions, and data!

3.6 Computability

It is not the case that all functions f : {0, 1}∗ → {0, 1} can be computed by some Turing machine.
Indeed, this follows from quite general arguments: as discussed, the set of Turing machines is
in bijection with the countable set {0, 1}∗, while the set of all functions f : {0, 1}∗ → {0, 1} is
in bijection with the uncountable set of all subsets of {0, 1}∗. Explicitly, we have the following
theorem.

Theorem 3.3. There exists a function UC : {0, 1}∗ → {0, 1} which is not computable by a Turing
machine.

Proof. Define UC as follows. For every M ∈ {0, 1}∗, if M(M) = 1, then UC(M) = 0; otherwise
(i.e. if M(M) 6= 1 or M does not halt on input M), UC(M) = 1. Assume towards a contradiction

8

0 1 00 01 . . . N

0 0 1 0 0

1 0 1 0 1

00 1 1 1 0

01 0 1 0 0
...

. . .

M 1−M(N)

Figure 3: Diagonalisation for proving undecidability.

that UC is computable, so there exists a Turing machine N such that, for all M ∈ {0, 1}∗, N(M) =
UC(M). In particular, N(N) = UC(N). But we have defined

UC(N) = 1⇔ N(N) 6= 1,

so this is impossible.

This sort of argument is known as diagonalisation, for the following reason. We write down an
(infinite!) matrix A whose rows and columns are indexed by bit-strings x, y ∈ {0, 1}∗, in lexico-
graphic order. The rows are intended to correspond to (encodings of) Turing machines, and the
columns correspond to inputs to Turing machines. Define Axy = 1 if machine x halts with output
1 on input y, and Axy = 0 otherwise. Then the function UC(x) is defined by negating the diagonal
of this table. Since the rows represent all Turing machines, and for all x, UC(x) differs on the
i’th input from the function computed by the i’th Turing machine, the function UC(x) cannot be
computed for all x by a Turing machine. See Figure 3 for an illustration.

The function UC may appear fairly contrived. However, it turns out that some very natural
functions are also not computable by Turing machines; the canonical example of this phenomenon
is the so-called halting problem. The function HALT(M,x) is defined as:

HALT(M,x) =

{
1 if M halts on input x

0 otherwise.

Theorem 3.4. HALT is not computable by a Turing machine.

Proof. Suppose for a contradiction that there exists a Turing machine M which computes HALT;
we will show that this implies the existence of a machine M ′ which computes UC(N) for any N ,
contradicting Theorem 3.3. On input N , M ′ computes HALT(N,N). If the answer is 0 (i.e. N
does not halt on input N), M ′ outputs 1. Otherwise, M ′ simulates N on input N using Theorem
3.2, and outputs 0 if N ’s output would be 1, or 1 if N ’s output would not be 1. Note that this can
be done in finite time because we know that N halts.

This is our first example of a fundamental technique in computational complexity theory: prov-
ing hardness of some problem A by reducing some problem B, which is known to be hard, to solving
problem A. We state without proof some other problems corresponding to functions which are now
known to be uncomputable.

• Hilbert’s tenth problem: given the description of a multivariate polynomial with integer
coefficients, does it have an integer root?

9

• The Post correspondence problem. We are given a collection S of dominos, each containing
two strings from some alphabet Σ (one on the top half of the domino, one on the bottom).
For example,

S =

{[
a

ab

]
,

[
b

a

]
,

[
abc

c

]}
.

The problem is to determine whether, by lining up dominos from S (with repetitions allowed)
one can make the concatenated strings on the top of the dominos equal to the concatenated
strings on the bottom. For example,[

a

ab

] [
b

a

] [
a

ab

] [
abc

c

]
would be a valid solution.

• A Wang tile is a unit square with coloured edges. Given a set S of Wang tiles, determine
whether tiles picked from S (without rotations or reflections) can be arranged edge-to-edge to
tile the plane, such that abutting edges of adjacent tiles have the same colour. For example,
the following set S does satisfy this property.

S =

{
, , ,

}
.

Could there be other “reasonable” models of computation beyond the Turing machine which can
do things that the Turing machine cannot, such as solving the halting problem? Here “reasonable”
should be taken to mean: “corresponding to computations we can perform in our physical universe”.
The (unprovable!) Church-Turing thesis is that this is not the case: informally, “everything
that can be computed can be computed by a Turing machine”. Some evidence for this thesis is
provided by the fact that many apparent generalisations of the Turing machine model turn out
to be equivalent to Turing machines. Here we will assume the truth of the Church-Turing thesis
throughout, and hence simply use the term “computable” as shorthand for “computable by a Turing
machine”.

Those of you taking the Quantum Computation course next term will learn about the potential
challenge to the Turing machine model posed by quantum computers, which are machines designed
to use quantum mechanics in an essential manner to do things which computers based only on
the laws of classical physics cannot. It turns out that quantum computers can be simulated by
the (purely classical!) Turing machine. However, we do not know how to perform this simulation
efficiently, in a certain sense. This notion of efficiency will be the topic of the next section.

3.7 Decision problems and languages

We will often be concerned with decision problems, i.e. problems with a yes/no answer. Such
problems can be expressed naturally in terms of languages. A language is a subset of strings,
L ⊆ Σ∗. We say that L is trivial if either L = ∅, or L = Σ∗. Let M be a Turing machine. For each
input x, if M(x) = 1, we say that M accepts x; if M halts on input x and M(x) 6= 1, we say that M
rejects x. We say that M decides L if it computes the function fL : Σ∗ → {0, 1}, where fL(x) = 1
if x ∈ L, and fL(x) = 0 if x /∈ L. If there exists such an M then we say that L is decidable. On
the other hand, we say that L is undecidable if fL is uncomputable. Theorem 3.4 above therefore
says that the language

Halt = {(M,x) : M is a Turing machine that halts on input x}

10

is undecidable. We also say that M recognises L if:

• M(x) = 1 for all x ∈ L;

• for all x /∈ L, either M halts with output 6= 1, or M does not halt.

Thus all decidable languages are recognisable, but the converse is not necessarily true.

3.8 The Entscheidungsproblem

We now informally discuss a way in which the concrete-seeming Turing machine model can be used
to attack problems in the foundations of mathematics itself. The forbidding-sounding “Entschei-
dungsproblem” (which is simply German for “decision problem”) is the following question, first
posed by Hilbert in 1928. Does there exist an algorithm which, given a set of axioms and a mathe-
matical proposition, decides whether it is provable from the axioms? In other words, is the language
of valid mathematical statements in a given axiomatic system decidable?

For example, consider statements about the natural numbers. We would like an algorithm which
determines whether statements like the following are true:

∀a, b, c, n[(a, b, c > 0 ∧ n > 2)⇒ an + bn 6= cn].

We can define the alphabet of statements about the natural numbers as

ΣN := {∧,∨,¬, (,),∀,∃,=, <,>,+,×, 0, 1, x},

where x denotes the possibility to have variables in our statements. In order to determine whether
such statements are provable, we also need to choose a set of axioms. A standard set of axioms for
the natural numbers is called Peano arithmetic; the details of these are not so important for the
high-level discussion here.

Theorem 3.5. The language of statements about the natural numbers provable from the axioms of
Peano arithmetic is undecidable.

Proof idea. Let M be a Turing machine and w be a bit-string. The idea is to construct a formula
φM,w in the language of statements about the natural numbers that contains one free variable x,
and such that ∃xφM,w is true if and only if M accepts w. x is intended to encode a computation
history (i.e. a complete description of the operation of a Turing machine) as an integer, and the
formula φM,w is designed to check whether x is a valid computation history for M on input w,
corresponding to M accepting w. This checking can be performed using arithmetic operations +,
×. The details of this process are quite technical, but it should at least be plausible that such an
encoding can be carried out; any possible configuration of M can be encoded as an integer, and
given two configurations c1, c2, the constraint that M maps c1 to c2 can be enforced by “local”
arithmetical checks, corresponding to the locality of Turing machines.

3.9 Historical notes and further reading

The Turing machine was invented by Alan Turing in 1936, while a Fellow of King’s College,
Cambridge. His seminal paper “On Computable Numbers, with an Application to the Entschei-
dungsproblem” can easily be found online and is worth reading. Turing was actually not the first

11

to prove that the Entscheidungsproblem is unsolvable; Alonzo Church beat him by a few months,
using a different model of computation (the so-called λ-calculus). In an appendix to Turing’s paper,
he proves that Church’s model is in fact equivalent to the Turing machine, giving the first evidence
for what is now called the Church-Turing thesis.

Every introductory textbook on computational complexity has its own description of the Tur-
ing machine model (each one usually explained slightly differently), e.g. Arora-Barak chapter 1,
Papadimitriou chapter 2. The discussion here about the Entscheidungsproblem is essentially taken
from Sipser chapter 6 (see also Arora-Barak, end of chapter 1).

Hilbert’s tenth problem was proposed in 1900 but only proven undecidable in 1970. An in-
teresting survey of undecidability in various areas of mathematics has recently been produced by
Poonen1. For more on the connections between undecidability and the foundations of mathematics,
including Gödel’s incompleteness theorem, see Papadimitriou chapter 6 or Sipser chapter 6.

1http://arxiv.org/pdf/1204.0299v1.pdf

12

http://arxiv.org/pdf/1204.0299v1.pdf

4 Efficiency and time-bounded computation

It is intuitively clear that some algorithms are more efficient than others; the Turing machine model
allows us to formalise this notion. The first important resource which we will consider is time. Let
f : Σ∗ → Σ∗, T : N→ N be functions. If M is a Turing machine with alphabet Σ, we say that M
computes f in time T (n) if, for all x ∈ Σ∗, M halts with output f(x) using at most T (|x|) steps.
We stress that the “n” in T (n) is used as a placeholder; there is no implication that |x| = n. In
particular, we say M computes f in time poly(n) if, for all x ∈ Σ∗, M halts with output f(x) in
time poly(|x|).

For example, the Turing machine in Section 3.1 computes the function RMZ in time 2(n+ 1).
Observe that this is a “worst-case” notion: for some inputs, this machine halts more quickly, but
we are interested in its behaviour on the worst possible input. We first show that there is little
point in calculating running times exactly for Turing machines, as one can essentially always tweak
the machine to make it run faster.

Theorem 4.1 (Linear Speedup Theorem). For any function f : Σ∗ → Σ∗, if there is a k-tape
Turing machine M which computes f in time T (n) ≥ n, then for any ε > 0 there is a k′-tape
Turing machine N which computes f in time εT (n) + n + 2. If k = 1, then k′ = 2; otherwise
k′ = k.

Proof. For simplicity, assume in the proof that k = 1, k′ = 2 (the general case is similar). We
define a new Turing machine N with two tapes. N ’s alphabet contains, as well as every symbol in
M ’s alphabet, a new symbol for each possible m-tuple of symbols in the alphabet of M , for some
m. That is, if M had alphabet Σ, N has alphabet Σ ∪ Σm. The idea will be to simulate m steps
of M ’s operation using only one step of N . To start with, N reads its input tape. Whenever it
reads a m-tuple (σ1, . . . , σm), it writes the corresponding symbol in its extended alphabet to its
work tape; if a � is encountered partway through a m-tuple (meaning N has got to the end of the
input), the symbol is padded by the right number of �’s. When N has finished reading the input x
(which uses |x|+ 2 steps), it returns the head of its work tape to the start (using a further d|x|/me
steps). The work tape of N is henceforth treated as its input tape.

Now m steps of M can be simulated using 6 steps of N , as follows. First, N reads the cells
under its head and the cells immediately to the left and right (by moving its head one step to
the left, then two to the right, then one to the left). Dependent on the contents of these cells, N
updates them according to m steps of M ’s transition function, using at most two more steps. This
can be done because m steps of M cannot travel further than the current cell of N , or the cells
immediately to the left and right; the updates made by m steps of M can only modify the current
cell of N , or one of its two neighbours, so require at most two more steps to simulate.

The overall number of steps used to simulate M ’s computation on input x is thus at most
|x| + 2 + d|x|/me + 6dT (|x|)/me. Recalling that T (|x|) ≥ |x| and taking m = d7/εe implies the
claimed result.

The restriction that T (n) ≥ n in the Linear Speedup Theorem is not very significant, as Turing
machines running in time less than this bound are generally considered uninteresting because they
cannot read all of their input. The proof of the theorem crucially used the fact that computation is
local in the Turing machine model, i.e. the head can only affect the tape around its current position.
This idea will occur again later.

13

1

2 3

4
5

0 0 1 0 0
1 0 1 1 1
0 0 0 0 0
0 1 0 0 1
0 0 1 0 0

 (
{3}, {1, 3, 4, 5}, {}, {2, 5}, {3}

)

Figure 4: A directed graph and its representation as an adjacency matrix and an adjacency list.

4.1 Problems and complexity classes

A complexity class is a family of languages1. We write the names of complexity classes in SANS
SERIF, and usually write the names of languages in Small Caps. A major goal of computational
complexity theory is to classify decision problems (i.e. languages; we will use the terms “decision
problem” and “language” essentially interchangeably throughout) into complexity classes of similar
levels of difficulty. Here are some examples of the sort of decision problems which we will consider.

• Primes. Given an integer N specified as n binary digits, is N prime? Equivalently, decide
the language Primes = {N ∈ {0, 1}∗ : ∀p, q ≥ 2, N 6= p × q}, where × is usual integer
multiplication. Observe that we could have specified N in decimal without significantly
changing the complexity of this problem.

• We will frequently be interested in problems associated with graphs. A graph G = (V,E) is a
set of n vertices V andm edges E ⊆ V ×V . G is said to be undirected if (i, j) ∈ E ⇔ (j, i) ∈ E,
and directed otherwise. We write v → w if there is an edge from v to w. Conventionally,
vertices and edges in directed graphs are known as nodes and arcs, respectively. One way to
specify G is by its adjacency matrix: an n × n matrix A where Aij = 1 if (i, j) ∈ E, and
Aij = 0 otherwise. Alternatively, G can be specified by an adjacency list, which associates
with each vertex a list of integers identifying which its neighbours are.

A particularly important graph problem is known as Path. We are given as input a graph G
(in one of the above representations) and two vertices s and t. Our task is to decide whether
there is a path in G from s to t, i.e. a sequence s→ v1 → v2 → · · · → t.

We could have defined Path as (for example) the language specified as the subset of {(A, s, t) : A ∈
{0, 1}∗, s, t ∈ {0, 1}∗} such that |A| = n2 for some integer n, 1 ≤ s, t ≤ n, and there is a path from
s to t in the graph corresponding to the adjacency matrix A, but this level of formality rapidly
becomes tedious. In future, when we talk about problems of the form “given x ∈ S, determine
whether x satisfies property P”, we will assume that x is specified in a sensible manner, and that
it is possible to easily determine whether x ∈ S.

4.2 Time complexity

We are now ready to define the first complexity class we will consider.

Definition 4.1. Let T : N→ N be a function. A language L ⊆ {0, 1}∗ is said to be in DTIME(T (n))
if there is a multiple tape Turing machine that runs in time c T (n) for some constant c > 0 and
decides L.

1Later on we will generalise this definition to functional problems.

14

The Linear Speedup Theorem justifies our choosing arbitrary c > 0 in this definition. The “D”
stands for “deterministic”; later on we will also study nondeterministic and randomised models.

By contrast with the Linear Speedup Theorem, it turns out that some problems really do require
more time to be solved than others. That is, if we allow a Turing machine more time, it can solve
more problems. In what follows we will need to restrict ourselves to so-called time-constructible
functions for technical reasons; T : N→ N is said to be time-constructible if T (n) ≥ n and there is a
multiple tape Turing machine M which computes the function M(x) = T (|x|), x ∈ {0, 1}∗, in time
O(T (n)). Time-constructibility is not a very significant restriction, as most “natural” functions
(e.g. polynomials, exponentials) are time-constructible.

Theorem 4.2 (Time Hierarchy Theorem, weak version). If f(n) is time-constructible, DTIME(f(n))
is strictly contained within DTIME((f(2n+ 1))3).

Proof. For any time-constructible f , consider the following language:

Hf = {(M,x) : M accepts x in f(|x|) steps}.

Here M is (the binary description of) a multiple tape Turing machine, and x is its input. Hf

can be decided as follows. First, calculate f(|x|) and write its binary representation onto a work
tape. We will use this as a counter to determine when we need to stop simulating M . We now run
the universal Turing machine U to simulate M for f(|x|) steps, requiring time at most O(f(|x|)3).
The construction of U given in Theorem 3.2 would normally use at most O(f(|x|)2) steps for this
simulation (because of the quadratic penalty we obtain from simulating M by a single tape Turing
machine), but at each step we need to decrement the counter; O(f(|x|)) time is a generous upper
bound to do this. We therefore have Hf ∈ DTIME(O(f(n)3)). By the Linear Speedup Theorem,
this implies Hf ∈ DTIME(f(n)3).

On the other hand, we will show that Hf /∈ DTIME(f(bn/2c)) by a diagonalisation argument.
Suppose towards a contradiction that there does exist a Turing machine MHf which decides Hf in
f(bn/2c) steps. Then define a machine Df which computes

Df (M) =

{
0 if MHf (M,M) = 1

1 otherwise.

Consider applying Df to itself, i.e. computing Df (Df), and assume that the answer is 0. This

implies that MHf (Df , Df) = 1 and hence that Df accepts Df , contradicting the assumption.

Conversely, assume that the answer is 1. This implies that Df does not accept Df within f(|Df |)
steps. But for any M , Df (M) uses the same number of steps as MHf does on input (M,M), i.e.
at most f(b(2|M | + 1)/2c) = f(|M |) steps. So if Df accepts Df it does so within f(|Df |) steps.
We have reached a contradiction.

Combining these two claims, we have DTIME(f(n)) ⊂ DTIME((f(2n+ 1))3).

By using a more efficient universal Turing machine, one can improve this to the following
theorem, which we state without proof (see Arora-Barak chapter 1).

Theorem 4.3 (Time Hierarchy Theorem). If f and g are time-constructible functions such that
f(n) log f(n) = o(g(n)), then

DTIME(f(n)) ⊂ DTIME(g(n)).

15

4.3 Polynomial time

We now come to an important concept, the complexity class P. This class is simply defined by

P =
⋃
c≥1

DTIME(nc).

Crucially, c does not grow with n. In words, P is the family of languages which can be decided by
a Turing machine in polynomial time (i.e. time which is polynomial in the input size). This class
will capture our notion of “efficient computation”. Why is this a reasonable notion of efficiency?
After all, an algorithm which runs in time Θ(n100) can hardly be said to be “efficient”; for some
applications, even algorithms which run in time Θ(n2) may be too slow. A simple empirical reason
to like the class P is that in most cases (but not all!) where we have an algorithm for a problem
which runs in polynomial time, the degree of the polynomial is in fact reasonable (say 3 or 4).

A class of languages which certainly does not correspond to a real-world notion of efficiency is

EXP =
⋃
c≥1

DTIME(2n
c
),

the class of languages which can be decided in exponential time. In particular,

Corollary 4.4. P ⊂ EXP.

Proof. As nc = O(2n) for any constant c, DTIME(nc) ⊆ DTIME(2n). On the other hand, by the
Time Hierarchy Theorem DTIME(2n) ⊂ DTIME((22n+1)3) ⊆ EXP.

To stress the vast gulf between polynomial and exponential time, consider the following thought
experiment. Imagine we have two algorithms for some problem, the first of which runs in time
n2, the second in time 2n, and we execute these algorithms on a computer which performs one
elementary operation per microsecond (10−6 seconds). Then, on a problem instance of size 100,
the first algorithm will complete in a hundredth of a second; however, after 40 quadrillion years we
will still be waiting for the second algorithm to complete.

There are many problems for which it is easy to find an exponential-time algorithm, but it is far
more challenging to find an algorithm which runs in polynomial time. A good example is provided
by the problem Integer Factorisation: given an n-digit integer N and an integer K, both
expressed in binary, does N have a prime factor smaller than K? There is an easy exponential-
time algorithm for this problem: simply try every possible prime number 2 ≤ j ≤ K, and see if
j divides N . The most efficient algorithm currently known for Integer Factorisation runs in
time eO(n1/3(logn)2/3) and is based on advanced number-theoretic ideas. However, it is not known
whether there exists a polynomial-time algorithm for this problem.

An important tool for us to understand which problems are in P is the notion of polynomial-time
reductions. We say that f : {0, 1}∗ → {0, 1}∗ is a polynomial-time computable function if there is a
Turing machine that, when started with input x on the tape, halts in time poly(|x|) with output
f(x). By analogy with P, FP is defined to be the set of all polynomial-time computable functions.
We then say that the language A is polynomial time reducible to B if there is a polynomial-time
computable function f such that w ∈ A if and only if f(w) ∈ B. Here f is called a polynomial-time
reduction from A to B and we write A ≤P B.

It is clear from these definitions that, if A ≤P B and B ∈ P, A ∈ P. A nice aspect of polynomial-
time reductions is that they compose: if A ≤P B, and B ≤P C, then A ≤P C. This is another major
motivation for choosing P as our class of “reasonable” problems.

16

4.4 A good algorithm: finding paths

There are many problems for which a näıve algorithm would run in exponential time, but which
are nevertheless in P. We now give a couple of examples of this phenomenon. From now on, to
avoid the painful prospect of calculating time complexities directly in the Turing machine model,
we will take a more informal approach and calculate running time based on a model of an idealised
“real computer”. For example, we will assume that any symbol in the input can be accessed in time
O(1). As our main concern will be to distinguish polynomial-time algorithms from exponential-time
algorithms, the details of this model are not so important; all that matters is that n steps of a
computation in such a model can be simulated in poly(n) time on a Turing machine.

Theorem 4.5. Path is in P.

Here the input size is O(n2) bits, so we look for an algorithm which runs in time poly(n2) =
poly(n). Before proving this theorem, we observe that there is a trivial inefficient algorithm for
Path: simply enumerate all valid paths of length up to n that start from vertex s and see if one of
them ends up in t. However, there could be as many as nn such paths, so this algorithm uses time
super-polynomial in n.

Proof of Theorem 4.5. Recall that in the Path problem we are given a directed graph G = (V,E)
and two nodes s and t, and have to decide if there is a path from s to t. Our algorithm will be
based on a data structure known as a queue, which allows the operations of addition (to the end
of the queue) and removal (from the start of the queue). The algorithm proceeds as follows.

1. Mark node s and add it to the queue.

2. While the queue is not empty:

(a) Remove the first node y from the queue.

(b) For all edges (y, u) such that u is not marked, mark u and add u to the end of the queue.

3. Accept if t is marked.

It is easy to see that this algorithm is correct; we now discuss its running time. A queue can be
implemented such that enqueuing and dequeuing an element takes only time O(1). Each node is
only added to the queue at most once. Therefore, an upper bound on the running time is given by
the sum over all nodes y of the time required to check each of y’s neighbours. If the input graph G
has n vertices and m edges and is given in terms of an adjacency matrix, we get a bound of O(n2),
and if G is given as an adjacency list we get a bound of only O(n + m), as each edge is checked
only once1. In either case, this is polynomial in the input size.

The above algorithm is known as breadth-first search. Observe that the algorithm can easily
be modified to actually output a path from s to t (if one exists), by maintaining a tree containing
all nodes visited thus far. When we mark a node u neighbouring a node y, we add it to the tree
as a leaf descending from y. Then, if we find t, we explore the tree in reverse, repeatedly visiting
the parent of the current node until we get back to s. Reversing the direction of each of these arcs
gives a path from s to t.

1The meaning of big-O notation may not be clear in the case of expressions involving more than one independently
growing parameter. Here, we tacitly understand m to be a function of n.

17

a b b a

0 1 2 3 4

b 1 1 1 2 3

a 2 1 2 2 2

c 3 2 2 3 3

a 4 3 3 3 3

Figure 5: A completed table demonstrating that ED(baca, abba) = 3.

4.5 Another good algorithm: computing edit distance

The second example we will consider is the problem of calculating edit distance between strings, an
important problem in bioinformatics and elsewhere. Given two strings x, y ∈ Σ∗, the edit distance
ED(x, y) is the number of edits required to change x into y, where an edit consists of removing,
inserting or replacing a symbol in x. For example, ED(baca, abba) = 3 via the sequence of edits

baca 7→ baba 7→ aba 7→ abba.

For any given pair of strings there are infinitely many sequences of edits which can transform one
into the other. However, it turns out that we can find a shortest such sequence very efficiently.

Theorem 4.6. Given two strings x, y of length at most n, ED(x, y) can be computed in time
O(n2).

Proof. The technique we will use is known as dynamic programming, which is an important tool in
algorithm design. Roughly speaking, the method works by breaking a problem down into simpler
overlapping subproblems, then efficiently combining the solutions to the subproblems. Assume the
string x is of length m, and y is of length n. Let x[i] denote the string consisting of the first i
characters of x (if i = 0, x[i] is the empty string). We construct a (m+ 1)× (n+ 1) table E such
that Eij = ED(x[i], y[j]) (where 0 ≤ i ≤ m and 0 ≤ j ≤ n). This can be done using the observation
(which should be checked!) that

Eij =

i if j = 0

j if i = 0

min{Ei−1,j + 1, Ei,j−1 + 1, Ei−1,j−1 + [xi 6= yj]} otherwise.

Here we define [xi 6= yj] = 1 if xi 6= yj and [xi 6= yj] = 0 if xi = yj . Thus we can first fill in the
first row and column of E (which do not depend on x and y), then fill the remaining entries of E
row by row, starting at the top left. ED(x, y) is then the bottom-right entry in E. As there are
(m+ 1)(n+ 1) entries in E, and each requires O(1) time to compute, the time required to compute
ED(x, y) is O(mn). This process is illustrated in Figure 5.

4.6 One more good algorithm: finding a maximum matching

The final problem we will consider is graph-theoretic in nature: finding a maximum matching in a
bipartite graph. A matching M in an undirected graph G is a subset of the edges of G such that
no pair of edges has a vertex in common. M is said to be a maximum matching if it is as large

18

Figure 6: A bipartite graph with a (non-maximum) matching, and an augmenting path with respect
to that matching, which results in a perfect matching.

as possible, and perfect if every vertex in G is included in an edge of M . Finally, G is said to be
bipartite if its vertices can be partitioned into sets L and R such that every edge in G connects a
vertex in L to a vertex in R. See Figure 6 for an illustration.

If we let the sets L and R correspond to “workers” and “jobs”, and an edge correspond to “this
worker can do that job”, G has a perfect matching if and only if every job can be assigned to a
worker. A simple criterion is known for whether such a perfect matching exists.

Theorem 4.7 (Hall’s marriage theorem). Let G = (V,E) be a bipartite undirected graph with
bipartition V = L∪R, and |L| = |R|. Then G has a perfect matching if and only if, for all X ⊆ L,
|X| ≤ |{(x, y) : x ∈ X, (x, y) ∈ E}|.

Observe that Hall’s marriage theorem does not imply an efficient algorithm to determine whether
G has a perfect matching. If |L| = |R| = n, to verify the conditions of the theorem could require
testing 2n different subsets of L. However, a different approach does lead to an efficient algorithm;
in fact, an efficient algorithm for the more general task of finding a maximum matching.

The approach we will use is known as the augmenting path algorithm. Let M ⊆ E be a
matching in a bipartite graph G = (V,E). We say that v ∈ V is unmatched if v is not included
in M . An augmenting path for M is a sequence of edges that starts and ends with an unmatched
vertex and alternates between edges of E\M and edges of M . The algorithm proceeds as follows.

1. Set M to ∅.

2. While there is an augmenting path P for M , replace M with M∆P .

3. If there is no augmenting path, return M .

From the definition of an augmenting path, we see that replacing M with M∆P increases the size
of M by 1; a little thought shows that the resulting set is still a matching. Augmenting paths have
the following additional nice property.

Lemma 4.8. Let M be a matching. If M is not maximum, there exists an augmenting path for
M .

Proof. Assume that M is not maximum, let N be a maximum matching, and consider the graph
with edges X = M∆N . This graph is of degree at most 2, so consists of a collection of disconnected
paths and cycles, where a cycle is a path whose initial vertex is the same as its final vertex, i.e. a
path of the form v1 → v2 → v3 → . . . v1. Each path and cycle alternates between edges from M
and edges from N . As |N | > |M |, X contains more edges from N than from M . Each cycle in X

19

has the same number of edges from each, so there must exist a path with exactly one more edge
from N than from M . This is an augmenting path as desired.

This lemma implies that the augmenting path algorithm is correct (i.e. will always output
a maximum matching of M). The remaining question is how to find such an augmenting path
efficiently, which can be achieved as follows for bipartite graphs G. Form a directed graph from
G by directing edges from L to R if they do not belong to M , and from R to L if they do, and
call this directed graph G′. Then any path in G′ from an unmatched node in L to an unmatched
node in R corresponds to an augmenting path in G with respect to M . In order to find such a
path, we add a new node s to G′, and add an arc from s to every unmatched node in L. We then
apply the algorithm for Path, starting at s and terminating when we find an unmatched node in
R. The path which is output gives our desired augmenting path. The whole algorithm runs in time
poly(n).

4.7 Historical notes and further reading

Papadimitriou chapter 2 has a careful discussion of how a simple model of a “real” computer, known
as the RAM model, can be simulated efficiently by a Turing machine.

The Time Hierarchy Theorem is one of the founding results of the modern era of computational
complexity, and was proven by Richard Stearns and Juris Hartmanis in 1965.

It should hopefully be clear from the three examples given above that designing efficient algo-
rithms is far from a trivial process. The book CLRS is a comprehensive introduction to efficient
algorithms, and includes considerably more detail about breadth-first search and other graph search
techniques. Some beautiful notes about dynamic programming have been written by Jeff Erick-
son1. There are also some nice notes about matchings from a course by Uri Zwick2. There is a
generalisation of the algorithm for finding a maximum matching to arbitrary graphs. This is due
to Jack Edmonds, whose 1965 paper called “Paths, trees, and flowers” contains one of the first
discussions of the role of efficiency in algorithms.

1http://cs.uiuc.edu/~jeffe/teaching/algorithms/2009/notes/03-dynprog.pdf
2http://www.cs.tau.ac.il/~zwick/grad-algo-0910/match.pdf

20

http://cs.uiuc.edu/~jeffe/teaching/algorithms/2009/notes/03-dynprog.pdf
http://www.cs.tau.ac.il/~zwick/grad-algo-0910/match.pdf

5 Certificates and the class NP

There are many problems in life which we may not necessarily know how to solve, but for which
we can verify a claimed solution. This concept motivates the definition of the complexity class NP.

Definition 5.1. NP is the class of languages L ⊆ {0, 1}∗ such that there exists a polynomial
p : N → N and a polynomial-time Turing machine M such that, for all x ∈ {0, 1}∗, x ∈ L if and
only if there exists w ∈ {0, 1}p(|x|) such that M(x,w) = 1.

We call M a verifier for L and w a certificate or witness for x. To illustrate this definition,
consider the following examples of languages / decision problems in NP.

• The Path problem is in NP. Indeed, any language L ∈ P is automatically in NP; the verifier
can simply ignore the certificate w and decide membership in L in polynomial time.

• The language Composites, defined to be the set of integers {N : N = p × q, p, q ≥ 2},
where N is expressed in binary. A certificate is the factorisation (p, q); given p and q, it
can be checked in time polynomial in the input size (i.e. poly(logN)) that N = pq. In fact,
Composites is in P but this is not obvious!

• The problem Integer Factorisation: given two integers N , k, does N have a prime factor
smaller than k? Once again, a certificate is the factorisation of N . However, in this case
Integer Factorisation is not known to be in P.

Another, and very important, example of a problem in NP is known as boolean satisfiability (SAT).
In order to discuss this, we pause to introduce some notation and concepts relating to boolean
functions.

5.1 Boolean functions

• A boolean variable xi takes values 0 or 1 (corresponding to “false” or “true”).

• A boolean function f : {0, 1}n → {0, 1} is a function of n boolean variables. The list of the
values f takes on each input, written out in lexicographic order, is called the truth table of
f .

• Boolean operations AND (x1 ∧ x2), OR (x1 ∨ x2), and NOT (¬x) are defined as one might
expect: x1 ∧ x2 = 1 if and only if x1 = x2 = 1; x1 ∨ x2 = 1 if either x1, x2 or both are 1;
¬x = 1 − x. We will also use the operations XOR (addition modulo 2, or ⊕) and logical
implication (⇒); we summarise all of these below.

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1

x y x ∨ y
0 0 0

0 1 1

1 0 1

1 1 1

x y x⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

x y x⇒ y

0 0 1

0 1 1

1 0 0

1 1 1

• De Morgan’s laws state that

¬(x1 ∧ x2 ∧ · · · ∧ xk) = (¬x1) ∨ (¬x2) ∨ · · · ∨ (¬xk), and

¬(x1 ∨ x2 ∨ · · · ∨ xk) = (¬x1) ∧ (¬x2) ∧ · · · ∧ (¬xk).

21

• A literal is a boolean variable, possibly preceded by a NOT; for example, x1 and ¬x1 are
literals.

• A boolean formula is an expression containing boolean variables and AND, OR and NOT
operations, such as φ(x1, x2, x3) = x1 ∧ (¬(¬x2 ∨ x3) ∧ x3).

• A boolean formula is in Conjunctive Normal Form (CNF) if it is written as c1 ∧ c2 ∧ · · · ∧ cn,
where each ci is a clause which is the OR of one or more literals (e.g. the formula

φ(x1, x2, x3, x4) = (x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x1)

is in CNF). Similarly, a formula is in Disjunctive Normal Form (DNF) if it is the OR of
clauses, each of which is the AND of one or more literals.

• A boolean formula is satisfiable if there is an assignment to the variables that makes it evaluate
to true. For example, the previous formula is satisfiable (e.g. set x1 = 1, x2 = 0, x3 = 1, x4 =
0).

We have the following “universality” result for boolean formulae.

Theorem 5.1. Any boolean function f : {0, 1}n → {0, 1} can be expressed as a boolean formula φf
in CNF.

Proof. For any boolean function f , we can generate a boolean formula φf which represents f as
follows. For each input y ∈ {0, 1}n such that f(y) = 1, write down the clause cy = (`1 ∧ `2 ∧ . . . `n),
where `i = xi if yi = 1, and `i = ¬xi otherwise. Then set φf (x) =

∨
y,f(y)=1 cy(x). As cy(x)

evaluates to true if and only if x = y, it is clear that, for all x, φf (x) = f(x). This procedure
produces a formula in DNF. To obtain a CNF formula, take the negation of the DNF formula φ¬f
and use De Morgan’s law.

We are now equipped to define SAT, which is the following problem: Given a boolean formula
φ in CNF, is φ satisfiable?

To check that SAT ∈ NP, observe that if we are given an assignment to the variables of φ
which is claimed to make φ evaluate to true, we can just plug it in and check. However, it is not
clear how to (efficiently) find an assignment that makes φ true. One can iterate over all possible
assigments to the variables of φ; however, if φ depends on n variables, this takes time Ω(2n), which
is exponential in the input size (assuming that the number of clauses is O(n)).

5.2 Relationship between NP and other classes

We have the following straightforward containments.

Theorem 5.2. P ⊆ NP ⊆ EXP.

Proof. For the first inclusion, suppose that L ∈ P, so there exists a polynomial-time Turing machine
N which decides L. Then, given an empty certificate w, the verifier can simply use N to decide
L. For the second inclusion, if L ∈ NP, we can decide L in time 2O(p(n)) by trying all possible
certificates w ∈ {0, 1}p(n) as inputs to the verifier M in turn. As p(n) = O(nc) for some c > 1,
L ∈ EXP.

Perhaps surprisingly, for some problems in NP, no algorithm is known that runs significantly
faster than this näıve exponential-time algorithm.

22

5.3 NP-completeness

The concept of NP-completeness is a way of formalising the idea of what the “hardest” problems
in NP are, and is defined as follows.

• We say that a language A is NP-hard if, for all B ∈ NP, B ≤P A.

• We say that a language A is NP-complete if A ∈ NP, and A is NP-hard.

So, if A is NP-hard, deciding membership in A is, up to polynomial terms in the running time,
at least as hard as the hardest problem in NP. This can be interpreted as evidence that there is
no polynomial-time algorithm for A, because if this were true, there would be a polynomial-time
algorithm for every problem in NP, and we would have P = NP. The probability of this being the
case is debatable, but it is generally considered very unlikely. In the next section we will see some
substantial evidence that P 6= NP, at least if one is a pessimist; the evidence being that a number
of important problems turn out to be NP-complete.

However, it is perhaps not obvious that there should exist any NP-complete problems, let alone
any “natural” ones. The remarkable fact that such problems do exist is called the Cook-Levin
Theorem.

Theorem 5.3 (Cook-Levin Theorem). SAT is NP-complete.

In order to prove this theorem, we will need to understand another, equivalent, definition of the
class NP, as the class of languages recognised by a nondeterministic Turing machine. In fact, this
was the original way in which NP was defined, and NP stands for “nondeterministic polynomial
time” (not “non-polynomial time”).

5.4 Nondeterministic Turing machines

Nondeterministic Turing machines (NDTMs) are (nonphysical and unrealistic!) generalisations
of the Turing machine model. Instead of having one transition function δ, an NDTM may have
several functions δ1, . . . , δK . A computational path is a sequence of choices of transition functions
(i.e. integers between 1 and K). We think of an NDTM M as making all of these transitions in
parallel, leading to many different potential computational paths. See Figure 7 for an illustration
of this. NDTMs also have a special ACCEPT state.

We say that an NDTM M decides a language L ⊆ {0, 1}∗ if:

• All M ’s computational paths reach either the state HALT or the state ACCEPT;

• For all x ∈ L, on input x at least one path reaches the ACCEPT state;

• For all x /∈ L, on input x no path reaches the ACCEPT state.

We say that M runs in time T (n) if, for every input x ∈ {0, 1}∗ and every sequence of nondeter-
ministic choices, M reaches either the state HALT or the state ACCEPT in at most T (|x|) steps.
We can now define the class NTIME as follows, by analogy with DTIME:

Definition 5.2. A language L ⊆ {0, 1}∗ is said to be in NTIME(T (n)) if there is an NDTM that
runs in time c T (n) for some constant c > 0 and decides L.

23

. 1 0 � 1 � . . .

s

. 1 0 0 1 � . . .

t

. 1 0 � 1 � . . .

s

. 1 0 1 1 � . . .

u

Figure 7: An NDTM can take multiple paths “in parallel”.

Unlike standard Turing machines, we do not expect to be able to actually implement NDTMs.
However, they will nevertheless be a very useful conceptual tool.

We first observe that there is no loss of generality in assuming that K = 2, i.e. that M has only
two possible transition rules. Indeed, for any K ≥ 2 one can associate each transition rule δ with
a string of dlog2Ke bits and create new rules δ′0, δ′1 which, over dlog2Ke steps, select the bits of δ
(storing each bit in a different head state).

Theorem 5.4. NP =
⋃
c≥1 NTIME(nc).

Proof. First, suppose L ∈ NP. Then there exists a polynomial-time verifier V such that, for all
x ∈ L, there is a certificate w of size poly(|x|) such that V accepts on input (x,w); and for all x /∈ L,
no certificate w exists such that V accepts on input (x,w). To decide L, on input x our NDTM
M simply guesses w nondeterministically and runs V on (x,w). To make this idea of “guessing”
concrete, we imagine that M has two special transition functions δ0, δ1, which correspond to writing
a 0 or a 1 to the tape, allowing M to guess each bit of w in turn and write it to the tape.

Second, suppose M is a polynomial-time NDTM that decides L. Then, for each x ∈ L, there
is a computational path of length poly(|x|) leading to the ACCEPT state, but for all x /∈ L, there
is no such path. This serves as a certificate: the verifier takes as input (x, p), where p identifies a
computational path, and just simulates the path p on input x.

One can similarly define the nondeterministic analogue of EXP, NEXP =
⋃
c≥1 NTIME(2n

c
).

5.5 Proof of the Cook-Levin theorem

We already know that SAT ∈ NP. To show that SAT is in fact NP-complete, we need to show that
every language in NP reduces to SAT. To be precise, we will show that, for any language L ⊆ {0, 1}∗
such that L ∈ NP, given x ∈ {0, 1}n, we can construct (in time poly(n)) a CNF formula φ such
that φ is satisfiable if and only if x ∈ L. As L ∈ NP, there is a polynomial-time NDTM M that
decides L. Given a description of M , we will encode this as a formula φ, which will evaluate to
true if and only if M has an accepting path on x.

As M is a polynomial-time NDTM, there is a constant c such that M runs in time at most
T = nc on input x. We associate a (T + 1)× (T + 2) tableau with each computational path of M ,
where row t contains the configuration of M at step t of the path; see Figure 8 for an illustration.

24

. START x1 x2 . . . xn � . . . �

. 0 s x2 . . . xn � . . . �
...

. 0 1 ACCEPT . . . 1 0 . . . �

Figure 8: A tableau describing a particular computational path.

Each row thus consists of a triple (`, q, r), where q is a head state and ` and r are strings of tape
symbols. Then our CNF formula is made up of subformulae,

φ = φcell ∧ φstart ∧ φmove ∧ φaccept,

where

• φcell evaluates to true if all squares in the tableau are uniquely filled;

• φstart evaluates to true if the first row is the correct starting configuration;

• φmove evaluates to true if the tableau is a valid computational path of M (according to its
transition rules);

• φaccept evaluates to true if the tableau contains an accepting state.

It should be intuitively clear that there is a satisfying assignment to φ if and only if there is a valid
tableau (i.e. computational path that accepts x). Formally, introduce a set of boolean variables
ci,j,s, each of which evaluates to true if cell (i, j) contains symbol s. Then

φaccept =
∨
i,j

ci,j,ACCEPT;

φstart = c1,1,. ∧ c1,2,START ∧ c1,3,x1 ∧ c1,4,x2 ∧ · · · ∧ c1,n+2,xn ∧ c1,n+3,� ∧ · · · ∧ c1,T+2,�;

φcell =
∧
i,j

(∨
s

ci,j,s

)∧
t6=u

(¬ci,j,t ∨ ¬ci,j,u)

 .

The last of these encodes the constraint that every cell has a value, and no cell has two values, and
can easily be written in CNF. For the final constraint φmove, we need to encode the validity of a
computational path. The key insight is that this can be done using the locality of Turing machines.
Consider a 2×3 “window” (submatrix) in a tableau. If S is the number of possible symbols used to
write a configuration, there are only poly(S) possible windows – a fixed, finite number. However,
some of these are disallowed (“illegal”) because they correspond to transitions which cannot take
place. For example, the head cannot move two positions in one step, so if s is a head state the
window

s 0 0

0 0 s

is illegal. In general, whether a given window is legal or not will depend on the transition functions
of M . The constraint that a window w is legal can be written as

φw =
∨

legal windows v

[wij = vij for i ∈ {1, 2}, j ∈ {1, 2, 3}].

25

Note that this constraint is a boolean formula with a fixed, finite number of terms, which by
Theorem 5.1 can be written in CNF.

We claim that, if all windows in a tableau are legal, then each row in the tableau corresponds
to a configuration which legally follows the previous one, i.e. the tableau as a whole corresponds to
a valid computational path. Intuitively, this is because the head can only move one step at a time,
so every possible transition will occur within some window. The (somewhat more formal) proof is
by induction. For the base case, φstart ensures that the first row is valid. We now show that, if row
r is a valid configuration, then row r + 1 is also a valid configuration. Consider any window onto
rows r and r + 1. If the window does not contain a head symbol in its top row, in order for the
window to be legal the middle symbol in its bottom row must be equal to the middle symbol in its
top row, so all tape cells which are not adjacent to the head are preserved1. On the other hand, as
row r is a valid configuration, there must exist a window containing a head symbol in the middle of
its top row. This window will only be legal if its bottom row corresponds to a valid transition (and
in particular also contains a head symbol). And as the head can only move at most one position
per step, a window whose first row does not contain a head symbol cannot contain a head symbol
in the middle of its bottom row, so row r + 1 must contain exactly one head symbol. Thus row
r + 1 is a valid configuration.

We can therefore write
φmove =

∧
windows w

φw.

Thus, combining the four subformulae, φ being satisfiable is equivalent to M accepting x. Finally,
observe that φ is of size poly(T) = poly(n), and can be produced in time poly(n) from a description
of M . This completes the proof.

5.6 Historical notes and further reading

The Cook-Levin Theorem was proven by Stephen Cook in 1971, and independently by Leonid Levin
in 1973, on the other side of the Iron Curtain. Every good textbook on computational complexity
includes a proof of this fundamental theorem. The proof here is largely based on that in Sipser
(chapter 7).

A poll from about a decade ago gives a good snapshot of the complexity theory community’s
opinions on the P vs. NP question2. Scott Aaronson has a nice list of non-rigorous arguments to
believe that P 6= NP3.

1The alert reader may wonder about the special cases of the first and last columns of the tableau. These can be
dealt with either by having special constraints on whether windows involving these columns are legal, or introducing
special “border” symbols to identify the start and end of each row.

2http://www.cs.umd.edu/~gasarch/papers/poll.pdf
3http://www.scottaaronson.com/blog/?p=122

26

http://www.cs.umd.edu/~gasarch/papers/poll.pdf
http://www.scottaaronson.com/blog/?p=122

Figure 9: Examples of a Hamiltonian path in an undirected graph and a 3-colouring.

6 Some more NP-complete problems

It turns out that many, many interesting problems are known to be NP-complete. Garey and
Johnson alone list over 300! The Cook-Levin theorem allows us to prove a given problem to be
NP-complete in a much more straightforward manner than was the case for SAT. Indeed, if we can
show, for some language L ∈ NP, that SAT ≤P L, then L is NP-complete. Here are a few examples
of other problems which are known to be NP-complete.

• Clique: given an undirected graph G and an integer k, does G contain a clique on k vertices,
i.e. a k-subset of the vertices such that every pair of vertices in the subset are connected by
an edge?

• Hamiltonian Path: given a directed graph G, does it contain a path visiting each node
exactly once?

• Subset Sum: given a sequence S of n integers and a “target” t, is there a subsequence of S
that sums to t?

• Quadratic Diophantine Equation: given positive integers a, b and c, are there positive
integers x and y such that ax2 + by = c?

• Shortest Common Superstring: given a finite set of strings S ⊂ {0, 1}∗ and an integer
k, is there a string s ∈ {0, 1}∗ such that |s| ≤ k and each x ∈ S is a substring of s?

• 3-Colouring: given a graph G, can the vertices each be assigned one of three colours, such
that adjacent vertices receive different colours?

We will prove NP-completeness for the first three of these problems. However, the first NP-
completeness proof we will give is for a restricted variant of SAT, which turns out to be very
useful for other such proofs. We say that φ is a k-CNF formula if it is a boolean formula in CNF
with at most k variables per clause. Let k-SAT denote the special case of the SAT problem where
the input is restricted to k-CNF formulae. For example,

φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x5 ∨ x7) ∧ (x3)

is a valid 3-SAT instance.

Theorem 6.1. 3-SAT is NP-complete.

27

Proof. As 3-SAT is a restriction of SAT, it is clearly in NP. To show that it is NP-hard, we reduce
SAT to 3-SAT. Given as input a boolean formula φ in CNF, we will obtain a new formula φ′ by
replacing each clause which contains k ≥ 4 literals (`1, . . . , `k) with k − 2 clauses which contain 3
literals, while preserving satisfiability of φ. Consider the formula

φ`1,...,`k = (`1 ∨ `2 ∨ u1) ∧ (`3 ∨ ¬u1 ∨ u2) ∧ · · · ∧ (`k−2 ∨ ¬uk−4 ∨ uk−3) ∧ (`k−1 ∨ `k ∨ ¬uk−3),

where we have introduced k−3 new variables u1, . . . , uk−3. If any of the original literals `i evaluates
to true, then the whole formula is satisfiable (taking uj = 1 for uj up to the clause in which `i is
encountered, and uj = 0 thereafter). On the other hand, if none of the `i evaluate to true, φ`1,...,`k
is equivalent to

u1 ∧ (¬u1 ∨ u2) ∧ · · · ∧ (¬uk−4 ∨ uk−3) ∧ (¬uk−3),

and a moment’s thought shows that this is not satisfiable. Thus the resulting overall formula φ′

obtained by replacing all clauses containing more than 3 literals in this way is satisfiable if and
only if φ was satisfiable, so SAT ≤P 3-SAT.

Can we improve this result to show that 2-SAT is NP-complete? Perhaps surprisingly, we have
the following result suggesting that we cannot.

Theorem 6.2. 2-SAT ∈ P.

Proof. We will reduce 2-SAT to Path. Given an n-variable 2-SAT formula φ with exactly two
distinct variables per clause (clauses containing only one variable can be dealt with trivially), we
construct a directed graph G as follows.

• G has 2n nodes labelled by literals (i.e. variables and their negations) appearing in φ.

• For each clause (`1 ∨ `2), G has arcs ¬`1 → `2 and ¬`2 → `1.

These arcs are intended to symbolise logical implication. If we have a clause (x1∨¬x2), for example,
we can think of it as capturing the implication x2 ⇒ x1 (“if x2 = 1, then x1 = 1”) or equivalently
the contrapositive ¬x1 ⇒ ¬x2. φ is satisfiable if and only if all of these implications are consistent.

We now show that φ is unsatisfiable if and only if there is a variable xi such that there is a path
from xi to ¬xi and from ¬xi to xi.

• (⇐): Suppose for a contradiction that there is a path from xi to ¬xi and from ¬xi to xi,
and yet φ is satisfiable. Let T be a satisfying assignment to the variables. If T (xi) = 1, then
T (¬xi) = 0, so there must be an arc `1 → `2 on the path from xi to ¬xi such that T (`1) = 1,
T (`2) = 0. This means that (¬`1 ∨ `2) is a clause of φ, but is not satisfied by T . The case
T (xi) = 0 is similar.

• (⇒): We consider the following method for finding a satisfying assignment to φ by assigning
truth values to each node of G. Repeatedly, for each node ` which has not yet been assigned
a value, and such that there is no path from ` to ¬`, we assign 1 to ` and each node reachable
from `; we also assign 0 to ¬` and the negations of the nodes reachable from ` (i.e. the nodes
from which ¬` is reachable).

We first check that this process makes sense (i.e. assigns consistent values to the literals). If
there were a path from ` to two nodes m and ¬m, then by symmetry of G there would be
paths from both m and ¬m to ¬`, so there would be a path from ` to ¬`, contradicting the

28

hypothesis. So, in each step, truth values are assigned consistently. Further, if there is a path
from ` to a node m previously assigned 0 (say), as m is reachable from `, ` must have also
previously been assigned 0.

As we have assumed that for each variable xi, there is either no path from xi to ¬xi, or no
path from ¬xi to xi, all xi will be assigned a value. As the assignment is produced such that
whenever `→ m, either m is assigned 1 or ` is assigned 0, the assignment satisfies φ.

We can therefore apply the polynomial-time algorithm for Path given in Theorem 4.5 to each pair
(xi,¬xi) to solve 2-SAT in polynomial time.

The next problem we consider is a basic question from arithmetic, the Subset Sum problem1:
given a sequence S of n integers and a “target” t, is there a subsequence of S that sums to t?

Theorem 6.3. Subset Sum is NP-complete.

Proof. It is obvious that Subset Sum is in NP (the certificate is simply the subsequence of S that
sums to the target). To prove that it is NP-complete, we reduce SAT to Subset Sum. Imagine we
are given an n-variable formula φ in CNF with clauses C1, . . . , Cm where each clause uses at most
` variables. We create some (n+m)-digit numbers (in base `+ 1) that sum to a particular target t
if and only if φ is satisfiable. These numbers have one column corresponding to each variable, and
one to each clause.

• For each variable v, create two integers nvt and nvf which are both 1 in the column corre-
sponding to v. nvt also has a 1 digit in the columns corresponding to clauses that are satisfied
by v being true, and 0 digits elsewhere. nvf also has a 1 digit in the columns corresponding
to clauses that are satisfied by v being false, and 0 digits elsewhere.

• For each clause Ci containing `i variables, create `i − 1 numbers that are 1 in the column
corresponding to Ci, and 0 elsewhere.

• The target t has 1 digits in all the columns corresponding to variables, and a digit equal to
`i in the column corresponding to Ci.

Now, if there is a subsequence of integers summing to t, this must use exactly one of each of
the pairs {nvt, vvf} (corresponding to each variable being either true or false) to make the first n
columns correct. Also, each clause of φ must have been satisfied by at least one variable, or the
last m columns cannot be correct. Therefore, there is a satisfying assignment to φ if and only if
there is a subsequence of the numbers that sums to t.

We will finally give two examples of NP-hardness proofs for problems of a graph-theoretic nature.

Theorem 6.4. Clique is NP-complete.

Proof. Clique is clearly in NP, as given a claimed clique on m vertices, it can be verified in time
O(m2). To show that Clique is NP-complete, we reduce 3-SAT to Clique as follows. Given a
3-CNF formula with m clauses, we create an undirected graph G with at most 3m vertices. We
associate a set of at most three vertices with each clause C, labelled by C and the literals in C.
We then connect every pair of vertices in G, with the exception of vertices in the same clause and
vertices labelled with a variable and its negation (i.e. (xi,¬xi) for some i). See Figure 10 for an
illustration. We now show that G has an m-clique if and only if φ is satisfiable.

1The version of the problem we describe here would technically be better known as Subsequence Sum.

29

x1

¬x2

x3

¬x1 x4

x2

¬x3

¬x4

Figure 10: Reducing satisfiability of the formula (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x4)∧ (x2 ∨¬x3 ∨¬x4) to
finding a 3-clique (one such clique is highlighted).

• (Satisfiable⇒ m-clique): Let w be a satisfying assignment to φ. We form a set S of variables
by picking a variable xi from each clause C such that xi = wi and xi satisfies C (this is always
possible as w satisfies every clause of φ). Then there is an edge from every element of S to
every other element, because each xi is consistent with the fixed variable wi, so we never have
an edge (xi,¬xi).

• (m-clique ⇒ satisfiable): Any m-clique must include exactly one vertex from each clause, as
there are no edges between vertices in the same clause. Also, the labels for the vertices must
be consistent, as there are no edges between inconsistent labellings. Thus taking the labelling
of each vertex in the clique (and assigning any other variables arbitrarily) gives a satisfying
assignment for φ.

As G can clearly be constructed from φ in polynomial time, this completes the proof.

The strategy used in the above proof of associating a subgraph with each fragment of the
original formula, then connecting the subgraphs appropriately, is known as a gadget construction
and is frequently a useful idea.

Theorem 6.5. Hamiltonian Path is NP-complete.

Proof. Hamiltonian Path is in NP because a claimed path visiting every vertex once can be
checked in polynomial time. To show that the problem is NP-complete, we reduce SAT to Hamil-
tonian Path. Given a formula φ with n variables and m clauses, we will produce a (directed)
graph G in polynomial time such that G has a Hamiltonian path if and only if φ is satisfiable.

G will have m nodes vCi corresponding to the clauses C1, . . . , Cm of φ; n “chains” of 2m + 1
nodes each corresponding to the variables x1, . . . , xn; and finally two special nodes vin, vout. A
chain is a sequence of nodes vi such that each pair vi, vi+1 are connected by arcs in both directions.

We also have arcs from vin to the start and end of the first chain, and from the start and end
of the last chain to vout; and from the start and end of the j’th chain to the start and end of the
j + 1’th chain, for each j. Finally, we have arcs corresponding to the clauses of φ, as follows. If
clause C contains the (unnegated) variable xi, then we take two neighbouring nodes vj , vj+1 in the
i’th chain, and put an arc from vj to vC , and from vC to vj+1. If C contains the negation ¬xi, we
instead put an arc from vC to vj , and from vj+1 to vC . We never use the same node or arc for two
different clauses (as each chain contains 2m + 1 nodes, we can always achieve this). This whole
construction is illustrated in Figure 6.

30

vin

vout

x1

x2

x3

x4

x1

x2

x3

(x1 ∨ ¬x2 ∨ x3)

Figure 11: Parts of the reduction from determining satisfiability of (x1∨¬x2∨x3)∧(¬x1∨x2∨¬x4)
to finding a Hamiltonian path. The two pictures illustrate the chains without the clause nodes,
and one clause node.

We now need to show that G has a Hamiltonian path if and only if φ is satisfiable.

• (Satisfiable⇒ Hamiltonian path): Assume φ has satisfying assignment x. The path will start
at vin and traverse each chain in turn, finishing at vout. The path traverses the i’th chain
from left to right if xi = 1, and from right to left if xi = 0. This is not quite a Hamiltonian
path as it does not visit the “clause” vertices. But, as x is a satisfying assignment to φ, for
each clause C there must exist at least one chain such that the path can visit C en route from
the start to end of that chain (i.e. the path is going in the right direction along that chain).

• (Hamiltonian path ⇒ satisfiable): First observe that any Hamiltonian path P must begin in
vin and end in vout. We now claim that P needs to traverse each chain in order (each either
from left to right, or right to left). If there were no clause nodes, this would be obvious;
however, it might be the case that P goes from node vi on the j’th chain to a clause node
C, then goes from C to a different chain k. Nevertheless, this can never give a Hamiltonian
path: when P reaches the neighbouring node vi+1 (or vi−1) it will get stuck, as there are no
arcs leaving this neighbour to nodes which have not already been visited. Hence forming a
bit-string x by taking xi = 1 if the i’th chain is traversed from left to right, and xi = 0 if the
i’th chain is traversed from right to left, gives a satisfying assignment to φ.

It may be already apparent that, although NP-completeness proofs can usually be readily
checked, devising a suitable reduction to prove NP-completeness can require some ingenuity. This
is perhaps appropriate given the definition of NP.

6.1 Historical notes and further reading

The theory of NP-completeness took off in 1972 when Karp proved that the decision versions of
many practically important optimisation problems are NP-complete; literally thousands of other
problems have since been proven NP-complete, and this terminology has now entered the standard

31

scientific vocabulary. Garey and Johnson is the standard reference for NP-completeness results
(albeit now somewhat outdated).

Could it be the case that all problems in NP are either in P or NP-complete? Assuming that
P 6= NP, it has been shown that this cannot be true: there must exist problems in NP which are
neither in P nor NP-complete (“Ladner’s theorem”, see Papadimitriou chapter 14). However, very
few natural candidate problems are known which are thought to belong to NP\P. One example
is Integer Factorisation. Another is Graph Isomorphism: given the description of two
undirected graphs G and H, is there a permutation π of the vertices of G such that π(G) = H?

32

7 The P vs. NP problem and beyond

We know that P ⊆ NP. The million-dollar question1 is whether this inclusion is strict. This
question has vast practical significance (many problems which people want to solve in practice turn
out to be NP-complete, some of which are given in Section 6), but it also has significant theoretical
importance, as it essentially asks whether mathematics can be axiomatised in the following concrete
sense.

Recall from Section 3.8 that the problem of determining whether a statement about the natural
numbers can be proven from the axioms of Peano arithmetic is undecidable. In practice, we may be
satisfied with the following weaker notion of axiomatisation. Given a statement about the natural
numbers, does it have a proof (i.e. a derivation of the statement from the axioms) of a reasonable
length2 in Peano arithmetic? One can formalise this as the following decision problem, which we
call Theorem. Given a statement S of length n about the natural numbers, and an integer k, does
S have a proof from the axioms of Peano arithmetic of length at most nk?

Theorem 7.1. Theorem is NP-complete.

Proof. It is clear that Theorem is in NP: given a claimed proof of S in any “sensible” formal
system, we can check it in time polynomial in the length of the proof. To see that it is NP-hard, we
reduce 3-SAT to Theorem using a process known as arithmetisation. Given a 3-CNF formula φ,
each clause C containing variables (xi, xj , xk) is replaced by the product (1−zizjzk), where zi = xi
if xi appears negated in C, and zi = (1− xi) otherwise. We then form a polynomial Pφ by taking
the product of these polynomials over all clauses C. For example,

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x3) 7→ (1− (1− x1)x2(1− x3))(1− x1(1− x3)).

Now φ will have a satisfying assignment x if and only if there exist x1, . . . , xn ∈ {0, 1} such that
Pφ(x1, . . . , xn) = 1, which is a simple statement about the natural numbers.

Thus, if P = NP, we can determine whether statements have short proofs. More is true: if
P = NP, we can even find such short proofs.

Theorem 7.2. If P = NP, for every language L ∈ NP there exists a polynomial-time Turing
machine M that, on input x ∈ L, outputs a certificate for x with respect to L and M . That is,
there exists a polynomial-time Turing machine VL,M such that VL,M (M(x)) = 1 if and only if x ∈ L.

Proof. We first show that the above claim holds for SAT, by showing that given access to a
polynomial-time algorithm A for deciding whether some input formula φ is satisfiable, we can
find a satisfying assignment w (if one exists) in polynomial time. Our algorithm first runs A to
determine satisfiability of φ. If it is satisfiable, we consider each of the two formulae φ0, φ1 produced
by fixing x1 = 0, x1 = 1, and use A to test their satisfiability. At least one of these formulae will
be satisfiable; whichever one of them is, we fix x1 appropriately and continue with x2, etc. We
eventually fix all the variables and have determined a satisfying assignment to φ.

In order to see that the above strategy works for any L ∈ NP, observe that the proof of the
Cook-Levin theorem maps a certificate for L (i.e. a computational path of an NDTM) to a satisfying
assignment w of a boolean formula in such a way that the certificate can be retrieved from w.

1Literally: the P vs. NP problem is one of the Clay Mathematics Institute’s Millennium Prize problems, and
solving it carries a prize of $1m.

2After all, can a claim really be said to be “true” if the proof is too long to check?

33

Thus, if P = NP, there would exist a polynomial-time algorithm for finding short proofs of
theorems: informally speaking, mathematical creativity would be automated. It would seem some-
what surprising if this were possible, and hence most effort to date has concentrated on proving
the conjecture that P 6= NP. Unfortunately, there are several substantial barriers known to proving
this conjectured separation of complexity classes.

7.1 The relativisation barrier

We previously used the technique of diagonalisation to prove both the undecidability of the halting
problem and the time hierarchy theorem. It is natural to hope that this technique could also be
useful to prove P 6= NP. However, we will now see a significant problem with using this technique
to attack the P vs. NP question, which is based on the concept of oracles.

An oracle Turing machine is a standard Turing machine M which is given access to an oracle
which (via some magical process!) solves the decision problem for some language L, where L
may not be solvable by M without the oracle. Formally, an oracle Turing machine M has three
additional states {Query, Yes, No}, and an additional read/write oracle tape. The operation of
M depends on the input x and an additional language L which is called the oracle for M . If M
enters the Query state during the computation, in the next step M enters the state Yes if the
contents q of the oracle tape satisfy q ∈ L, and enters the state No if q /∈ L. Let ML(x) denote
the output of M on input x with an oracle for L. Note that M can be either a deterministic or
nondeterministic Turing machine.

We also define PL (resp. NPL) to be the set of languages which can be decided by a polynomial-
time deterministic (resp. nondeterministic) Turing machine with oracle access to L.

Some simple examples to illustrate the concept of oracles are:

• For any L ∈ P, PL = P. The inclusion P ⊆ PL holds because allowing oracle calls can only
increase the set of languages that can be decided, while the inclusion PL ⊆ P holds because a
polynomial-time Turing machine can replace each call to an oracle for L by simply deciding
L directly.

• Let EC be the language {(M,x, 1n) : M outputs 1 on x within 2n steps}. We show that
PEC = NPEC = EXP. On the one hand, calling the oracle for EC once on an input of size
nk allows an arbitrary exponential-time computation to be performed, so EXP ⊆ PEC. On
the other, given exponential time, a deterministic Turing machine can simulate each of the
possible calls made to the EC oracle by an NDTM running in polynomial time (there can be
exponentially many possible calls, each of which can be simulated in exponential time), so
NPEC ⊆ EXP. Hence EXP ⊆ PEC ⊆ NPEC ⊆ EXP. We say that “relative to EC, P = NP”.

We now show that, relative to oracles, the P vs. NP question has two contradictory resolutions.

Theorem 7.3 (Baker, Gill and Solovay). There exist languages A, B such that PA = NPA, but
PB 6= NPB.

Proof. We have already proven the first part by taking A to be the previously discussed language
EC. The second part is more technical. For any language B ⊆ {0, 1}∗, let UB be the language

UB = {1n : B contains a string of length n}.

34

For every B, UB is clearly in NPB, as the NP machine can guess a string x ∈ B of length n, which
can be checked using the oracle for B. We now show that there exists a language B such that
UB /∈ PB, so PB 6= NPB.

We construct B via a choosing process using infinitely many stages; each stage will determine
whether a finite-sized set of strings is in B. Initially, B is empty. For each stage i, let Mi be
the oracle deterministic Turing machine represented by (the binary expansion of) i. For technical
reasons, we will need to assume that each Turing machine M is represented by infinitely many
such strings i; this can easily be achieved by, for example, allowing representations to be padded
by arbitrarily many trailing zeroes.

For each i, choose n to be larger than the length of any string in B. We will ensure that MBi does
not decide UB in time at most 2n/10. To do so, we run Mi on input 1n for 2n/10 steps. Whenever
Mi makes oracle queries corresponding to a string which the choosing process has determined to
be in B (or not), the oracle answers consistent with this. When Mi queries a string q for which it
has not yet been chosen whether q ∈ B, the oracle answers that q /∈ B, and fixes q /∈ B. After Mi

has finished its computation, it must either accept or reject 1n; we will ensure that in either case
its answer is incorrect. If Mi accepts 1n, we declare that all remaining strings of length n are not
in B, so 1n /∈ UB. On the other hand, if Mi rejects 1n, we find a string x of length n not queried
by Mi (which can be done because Mi only queried at most 2n/10 strings) and declare x ∈ B, so
1n ∈ UB. As this holds for all i, UB is not decided by any deterministic oracle Turing machine
running in time 2n/10. As every polynomial is smaller than 2n/10 for large enough n, and every
Turing machine M is represented by infinitely many i, if M runs in polynomial time it cannot
decide UB. Thus UB /∈ PB.

The significance of Theorem 7.3 is that it implies that proof techniques which are “blind” to
the existence of oracles will not be able to resolve the P vs. NP problem. Indeed, the proofs of the
undecidability of the Halting Problem and the Time Hierarchy Theorem which we saw previously
rely only on the following two properties:

• The countability of Turing machines (i.e. the existence of an effective representation of these
machines by binary strings);

• The ability of one Turing machine to simulate another efficiently (i.e. without significant time
overhead).

Oracle Turing machines also satisfy these properties, but we have seen that the P vs. NP question
cannot be resolved for such machines. Any resolution of the problem must therefore use some
additional property of standard Turing machines.

Later on, following the introduction of concepts concerned with randomness and circuit com-
plexity, we discuss a different roadblock to proving P 6= NP, called the natural proofs barrier.

7.2 Complementation of languages and co-NP

For any language L ⊆ Σ∗ we can define the complement of L, L = {x ∈ Σ∗, x /∈ L}. In the case of
a decision problem, we define the notion of complementation as follows: given a decision problem
D, the complement of D is the problem whose answer is “yes” whenever D’s answer is “no”, and
vice versa. For example, the complement of the 3-SAT problem is: given a 3-CNF formula φ, is it
not satisfiable – i.e. is it the case that there is no x such that φ(x) = 1? Note that the language
corresponding to the complement of 3-SAT is not quite the same as the complement of the language

35

corresponding to 3-SAT. The former is the set of unsatisfiable 3-CNF formulae, while the latter is
the set of bit-strings which do not encode satisfiable 3-CNF formulae. Usually this distinction will
not be important.

For any complexity class C, we can thus define the complexity class co-C as the set {L : L ∈ C}.
It is usually not the case that co-C is the complement of C. Indeed, it is immediate that, for example,
co-P = P: a polynomial-time algorithm A for deciding L can be modified to give a polynomial-time
algorithm A for deciding L by inverting the output of A. However, in the case of nondeterministic
classes the question is not so easy: in particular, it is not known whether co-NP = NP. Intuition
behind this can be gained from the 3-SAT problem discussed above. Given a satisfiable formula
φ, a satisfying assignment x gives a certificate that it is indeed satisfiable, which can be checked
efficiently. On the other hand, if φ is not satisfiable by any assignment x, it is not clear how to
exhibit a certificate of this which can be checked efficiently.

There is an alternative “operational” definition of co-NP which corresponds more closely (and
perhaps intuitively) to our original definition of NP.

Definition 7.1. For every L ⊆ {0, 1}∗, we say that L ∈ co-NP if there exists a polynomial p : N→ N
and a polynomial-time Turing machine M such that, for all x ∈ {0, 1}∗, x ∈ L if and only if for all
u ∈ {0, 1}p(|x|), M(x, u) = 1.

Note the change from “there exists” to “for all”. We now check that these two definitions are
indeed equivalent. If L satisfies Definition 7.1, then x ∈ L if and only if there exists a u such that
M(x, u) = 0; hence L ∈ NP (the NP verifier simply runs M and inverts the result). But if L ∈ NP,
there exists M ′ such that x ∈ L ⇔ M ′(x, u) = 0 for all u, hence L ∈ co-NP by running M ′ and
inverting the result.

Just as with NP, co-NP has complete problems, i.e. languages L ∈ co-NP such that for all
L′ ∈ co-NP, L′ ≤P L. A natural example is the problem Tautology: given a boolean formula φ,
expressed in DNF, is φ satisfied by every assignment to its variables? Clearly, φ is a tautology if
and only if ¬φ is not satisfiable.

Lemma 7.4. Tautology is co-NP-complete.

Proof. We need to show that, for L ∈ co-NP, L ≤P Tautology. If L ∈ co-NP, there is a
polynomial-time reduction R from L to SAT, so for all x ∈ {0, 1}∗, x ∈ L if and only if R(x)
is satisfiable. Hence x ∈ L if and only if ¬R(x) is satisfied by every assignment to its variables.
Observe that, using De Morgan’s law, ¬R(x) can be written in DNF as required1 by our definition
of Tautology.

We have the following characterisation of all co-NP-complete problems.

Theorem 7.5. L is co-NP-complete if and only if L is NP-complete.

Proof. We will show that, if L is NP-complete, L is co-NP-complete (the other direction is similar).
If L ∈ NP, L ∈ co-NP by definition. We also need to show that if L is NP-hard, then L is co-NP-
hard. Consider an arbitrary language A ∈ co-NP. As L is NP-hard, and A ∈ NP, there exists a
polynomial-time computable function R : {0, 1}∗ → {0, 1}∗ such that x ∈ A ⇔ R(x) ∈ L. Thus
x ∈ A ⇔ R(x) ∈ L, so L is co-NP-hard.

1The alert reader may have spotted that, just as SAT remains NP-complete if we relax the restriction that the
input formula is in CNF, Tautology remains co-NP-complete if we allow input formulae which are not in DNF.

36

Could it be possible that NP = co-NP? At the moment, we cannot rule this out, though such a
result would seem almost as remarkable as P = NP: it would (informally) imply that any problem
which has a short certificate of having a positive solution must also have a short certificate of having
a negative solution. It is also unknown whether or not P = NP ∩ co-NP; while this would also be
surprising, there are very few examples of problems known to be in NP ∩ co-NP but not known to
be in P.

7.3 The polynomial hierarchy

We have seen that the classes NP and co-NP have natural definitions in terms of “there exists” and
“for all” quantifiers, respectively:

• L ∈ NP: x ∈ L if and only if ∃w ∈ {0, 1}poly(|x|),M(x,w) = 1.

• L ∈ co-NP: x ∈ L if and only if ∀w ∈ {0, 1}poly(|x|),M(x,w) = 1.

If we combine these two types of quantifier, we get a potentially more general set of complexity
classes known as the polynomial hierarchy1.

Definition 7.2. For every L ⊆ {0, 1}∗, and for integer i ≥ 1, we say that L ∈ Σi if there exists a
polynomial p : N→ N and a polynomial-time Turing machine M such that, for all x ∈ {0, 1}∗,

x ∈ L ⇔ ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|) . . . Qiui ∈ {0, 1}p(|x|),M(x, u1, . . . , ui) = 1,

where the quantifier Qi is ∃ (if i is odd) or ∀ (if i is even). The polynomial hierarchy is the set
PH =

⋃
i≥1 Σi.

To help digest this definition, consider the following problem, called Largest Clique. Given
a graph G and an integer k, is the largest clique within G of size exactly k? This problem is in the
class Σ2. To see this, observe that a graph has a largest clique of size k if and only if: there exists
a set S of vertices such that S is of size k, and S is a clique; and for all sets S′ of size k + 1, S′ is
not a clique.

Recall that we showed that the problem Clique (given a graph G and an integer k, does G
contain a clique on k vertices?) was NP-complete. However, if Largest Clique were contained
within NP, there would exist an efficiently checkable certificate that there are no cliques in G of
size at least k+ 1, and it is not clear what such a certificate would look like. Thus, similarly to the
intuition that NP 6= co-NP, it is believed that Σi 6= Σi+1 for all i.

Just as with NP and co-NP, each level of the polynomial hierarchy has a natural complete
problem, a “quantified” variant of SAT. Let φ be a boolean formula on n variables x1, . . . , xn
partitioned into sets X1, . . . , Xi. Then a QSATi instance is an expression

∃X1 ∀X2 ∃X3 . . . QiXi φ,

where Qi is ∃ (if i is odd) or ∀ (if i is even). For example, the following expression is a QSAT3

instance:
∃x1, x2 ∀x3 ∃x4, x5 (x1 ∨ ¬x2) ∧ (¬x3 ∨ x5) ∧ (¬x1 ∨ x4).

The QSATi problem is then simply to determine whether such an expression evaluates to true.
Observe that QSAT1 is just the SAT problem. More generally, we have the following theorem,
which we will not prove but should not be too surprising given the definitions of QSATi and Σi.

1Short for “polynomial-time hierarchy”.

37

Theorem 7.6. QSATi is Σi-complete.

This allows us to give the following alternative and concise definition of the polynomial hierarchy
in terms of oracle machines.

Theorem 7.7. Σ1 = NP, and for i ≥ 2, Σi = NPQSATi−1.

Proof idea. To see the essential ideas, we will prove the special case that Σ2 = NPSAT.

• (Σ2 ⊆ NPSAT.) Let L ∈ Σ2. Then there exists a polynomial p : N→ N and a polynomial-time
Turing machine M such that, for all x ∈ {0, 1}∗,

x ∈ L ⇔ ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|),M(x, u1, u2) = 1.

Our nondeterministic algorithm with access to an oracle for SAT will proceed as follows. On
input x, the algorithm guesses a string u1, and would like to determine whether there exists
u2 ∈ {0, 1}p(|x|) such that M(x, u1, u2) = 0. By the Cook-Levin theorem, this can be written
as a SAT instance. The algorithm therefore uses its oracle for SAT, which outputs Yes if
there exists u2 ∈ {0, 1}p(|x|) such that M(x, u1, u2) = 0, and accepts if and only if the answer
is No. Thus it accepts if and only if ∃u1 ∈ {0, 1}p(|x|) ∀u2 ∈ {0, 1}p(|x|),M(x, u1, u2) = 1.

• (NPSAT ⊆ Σ2.) Let L ∈ NPSAT, and let M be an NDTM which decides L with access to an
oracle for SAT. We first show that there is a machine N which also decides L, makes one
query to the oracle, and accepts if and only if the answer to the oracle query is No. On input
x, N guesses all of the nondeterministic choices of M , all of the oracle questions, and all of the
answers. For each question that was answered with Yes, N guesses a satisfying assignment
to check that the guess was correct. At the end, N still has a set of oracle questions (i.e.
formulae) φ1, . . . , φk to which the oracle would have replied with No. N then asks the oracle
whether the formula φ1 ∨ · · · ∨ φk is satisfiable, and accepts if and only if the answer is No.

We now observe that N accepts (i.e. x ∈ L) if and only if there exist a set of nondeterministic
choices, oracle questions and answers, such that there is no satisfying assignment to φ1∨· · ·∨
φk. Thus L ∈ Σ2 as required.

7.4 Historical notes and further reading

Perhaps the first to recognise the connection between the P vs. NP problem and the foundations
of mathematics was Gödel1 in 1956. Baker, Gill and Solovay proved their result in 1975; a proof
is given in Arora-Barak chapter 3, including a brief discussion of the conceptual connection to
independence results in mathematical logic. Papadimitriou chapter 17 has an extensive discussion
of the polynomial hierarchy, which was defined by Meyer and Stockmeyer in 1972; there are also
some good lecture notes by Luca Trevisan2.

1http://rjlipton.wordpress.com/the-gdel-letter/
2http://www.cs.berkeley.edu/~luca/cs278-08/lecture04.pdf

38

http://rjlipton.wordpress.com/the-gdel-letter/
http://www.cs.berkeley.edu/~luca/cs278-08/lecture04.pdf

8 Space complexity

So far we have studied computations which are restricted with respect to the time that they use.
Another important resource to consider is space. In the Turing machine model, this corresponds
to the number of cells used on the tape.

In particular, we would like to study computations which use less space than the size of the
input. In order for this to make sense, we modify the Turing machine model as follows.

Definition 8.1. A space-bounded (deterministic/nondeterministic) Turing machine M is a multi-
tape Turing machine with a special read-only input tape, on which the input x is placed prior to
the start of the computation. All other tapes are known as work tapes. The output M(x) is placed
on one of these work tapes, which is known as the output tape.

Let s : N → N and L ⊆ {0, 1}∗. We say that L ∈ SPACE(s(n)) if there is a constant c > 0
and a deterministic Turing machine M which decides L, such that at most c s(n) locations on
M ’s work tapes are ever scanned by M ’s head during the computation, on any input of size n.
Similarly, L ∈ NSPACE(s(n)) if there is an NDTM M which decides L, under the same constraints
for any of M ’s nondeterministic choices. We usually restrict to space-constructible functions s(n),
i.e. functions s(n) for which there exists a Turing machine that computes s(|x|) in space O(s(|x|))
on input x. As with time-constructible functions, this is a very minor restriction as all “sensible”
functions (e.g. dlog ne, n, 2n) are space-constructible.

By analogy with their time-complexity equivalents, we define PSPACE =
⋃
c>0 SPACE(nc),

NPSPACE =
⋃
c>0 NSPACE(nc). Two classes which do not have a sensible time-complexity analogue

are
L = SPACE(log n), NL = NSPACE(log n).

Observe that in these cases the space used is significantly less than the size of the input; the
corresponding time complexity classes would correspond to algorithms which do not have time to
read the whole input, which are usually uninteresting1. We can thus imagine an L computation as
one where the size of the data on which the computer is operating is much larger than the size of
the computer itself. An intuitive example of this phenomenon from daily experience is the use of
the Internet: the Internet is too large to be stored within our computers, but we can access it and
retrieve data, on which we can perform computations.

As with the case of NP, the class NL has an alternative definition in terms of certificates, which
we formalise as follows.

Definition 8.2. NL is the class of languages L ⊆ {0, 1}∗ such that there exists a polynomial
p : N→ N and a space-bounded Turing machine M such that:

• M has an additional certificate tape which contains a witness w. The certificate tape is
read-only and scanned once, left to right;

• for all x ∈ {0, 1}∗, x ∈ L if and only if there exists w ∈ {0, 1}p(|x|) such that M(x,w) = 1;

• M uses at most O(log |x|) space on its work tapes for all x.

It should be clear that this alternative definition is equivalent, as making a sequence of non-
deterministic choices can be viewed as reading the bits of a certificate one by one, in order. The

1However, at the end of the course we will see a model in which this idea does make sense.

39

“read-once” restriction is necessary: if it is removed, the class of languages decided by such machines
becomes equal to NP.

We observe that for any f : N → N, DTIME(f(n)) ⊆ SPACE(f(n)), as no machine using T
computational steps can visit more than T tape cells. However, we can say somewhat more.

Theorem 8.1. For any function f : N→ N such that f(n) ≥ log2 n,

DTIME(f(n)) ⊆ NTIME(f(n)) ⊆ SPACE(f(n)) ⊆ NSPACE(f(n)) ⊆ DTIME(2O(f(n))).

Proof. The first and third inclusions are obvious. The second is based on the exponential-time
simulation of NDTMs by DTMs given in Theorem 5.2. Given an NDTM with two transition
functions that runs in time T , we simulate it by a DTM which tries each of the possible 2T

sequences of choices of transition functions in turn. To iterate through each of these transition
functions requires only O(T) space (to store a counter).

To prove the final inclusion, we use the concept of a configuration graph. For every space s(n)
deterministic or nondeterministic Turing machine M and input x ∈ {0, 1}∗ such that |x| = n,
the configuration graph GM,x of M on input x is the directed graph whose nodes are all possible
configurations c of M such that the input is x and the work tapes have at most s(n) non-blank cells
in total. GM,x has an arc c→ c′ if M ’s transition function can go from c to c′. If M is deterministic,
GM,x has out-degree 1 (i.e. is a path), and if M is nondeterministic, GM,x has out-degree at most 2.
Let the starting configuration be cS , and assume that there is a unique configuration cA on which
M accepts (this is without loss of generality as we can modify M to erase the contents of all its
work tapes before accepting). Then M accepts x if and only if there is a path from cS to cA.

Observe that, for some constant c (depending on M) GM,x has at most n2c s(n) nodes, as a
configuration is completely defined by M ’s state, the head positions1 and the contents of the work
tapes. Therefore, by enumerating all possible configurations, the graph GM,x can be constructed
in time 2O(s(n)). We can then test whether there is a path from cS to cA using the algorithm for
Path, which runs in time poly(2O(s(n))) = 2O(s(n)).

We also have the following analogue of the Time Hierachy Theorem for space complexity.

Theorem 8.2 (Space Hierarchy Theorem). If f and g are space-constructible functions such that
f(n) = o(g(n)), then SPACE(f(n)) ⊂ SPACE(g(n)).

The proof is the same as for the Time Hierarchy Theorem, but note that the result is somewhat
tighter. The reason is that it is possible to design a universal Turing machine with only a constant
factor space overhead.

8.1 Polynomial space

Intuitively, space appears to be a more powerful resource than time, as space can be reused whereas
time cannot. Remarkably, it is nevertheless an open question whether P = PSPACE. However, as
(by Theorem 8.1), we know that NP ⊆ PSPACE, it seems unlikely that this equality holds. In fact,
it turns out that we can solve problems even more general than SAT in PSPACE.

A quantified boolean formula is a formula of the form

Q1x1Q2x2 . . . Qnxn φ(x1, . . . , xn),

1The “n” comes from the input tape head position. As s(n) ≥ log2 n, this can be absorbed into 2O(s(n)).

40

where each Qi ∈ {∀,∃}, and φ is a standard boolean formula. The TQBF problem (“true/totally
quantified boolean formula”) is defined as follows: given a quantified boolean formula ψ, determine
whether ψ is true. Observe that this is a generalisation of the QSATi problem which we previously
encountered: rather than the number of quantifiers being at most i, for some fixed i, now there
can be up to n quantifiers. The above formula has all its quantifiers at the start (so-called “prenex
normal form”). One could conceive of more general quantified boolean formulae with quantifiers
appearing throughout the formula, e.g.

∃x1 (x1 ∨ ∀x2, x3(¬x2 ∧ x3)).

In fact, this is not a generalisation as all such formulae can be converted into prenex normal form
in polynomial time. The quantifiers Q1, . . . , Qn may be assumed to alternate between ∀ and ∃ by
introducing dummy variables. That is,

∃x1 ∃x2 φ(x1, x2) = ∃x1 ∀y1 ∃x2 φ(x1, x2),

etc. Observe that SAT is the special case of TQBF where each quantifier Qi = ∃. That is, a
boolean formula φ is satisfiable if and only if

∃x1 ∃x2 . . . ∃xn φ(x1, . . . , xn).

Theorem 8.3. TQBF is PSPACE-complete.

In the statement of this theorem, PSPACE-completeness is used exactly in the sense that NP-
completeness was before. Explicitly, we say that a language A is PSPACE-complete if A ∈ PSPACE,
and for all B ∈ PSPACE, B ≤P A.

Proof. We first show that TQBF is in PSPACE. Let ψ = Q1x1Q2x2 . . . Qnxn φ(x1, . . . , xn) be a
quantified boolean formula, and let the size of φ be m. We give a recursive algorithm A which can
decide whether ψ is true in space poly(n,m).

For b ∈ {0, 1}, let ψx1=b denote the quantified boolean formula obtained by removing the first
quantifier Q1 and replacing x1 with b throughout the formula φ. A will do the following.

• If Q1 = ∃, then output 1 if and only if at least one of A(ψx1=0) and A(ψx1=1) output 1.

• If Q1 = ∀, then output 1 if and only if both of A(ψx1=0) and A(ψx1=1) output 1.

It is clear that A works correctly; we now show that A can be implemented to use only polynomial
space. Let sn,m be the space used by A on formulae with n variables and total size m. After
computing A(ψx1=0), the algorithm can reuse the same space to compute A(ψx1=1), needing only
to retain one bit to store the value of A(ψx1=0). At each step the algorithm also needs to use only
O(m) space to store a description of ψx1=0 and ψx1=1, to be passed to the next recursive call of A.
Thus sn,m = sn−1,m +O(m), so sn,m = O(nm).

We now show that, for any L ∈ PSPACE, L ≤P TQBF. The proof will be based on the idea
of configuration graphs which we saw previously. We are given a Turing machine M that decides
L in space s(n). For each x ∈ {0, 1}n, we aim to construct, in polynomial time, a quantified
boolean formula ψ of size O(s(n)2) which is true if and only if M accepts x. We will achieve this
by producing a sequence of quantified formulae ψi such that ψi(a, b) is true if and only if there is
a path of length at most 2i in GM,x from a to b. We can then output ψO(s(n))(cS , cA), where cS ,

41

cA are the start and accepting configurations of M . As the configuration graph of M has at most
2O(s(n)) nodes, this suffices to determine whether M accepts L.

We first make the following claim: there is an O(s(n))-size CNF formula φ such that, for any
two configurations c, c′, φ(c, c′) = 1 if and only if there is an arc c → c′ in GM,x. To see this,
note that each configuration can be encoded as an O(s(n))-bit string and so, as in the proof of
the Cook-Levin theorem, whether one configuration can follow from another can be encoded as
the AND of at most O(s(n)) constant-sized checks. This implies that we can construct ψ0(a, b) by
taking the OR of the formula φ and the formula which checks whether a and b are equal.

We now want to use this idea to construct ψi+1, given ψi. The intuitive way of doing this would
be to write down the quantified formula

∃c ψi(a, c) ∧ ψi(c, b),

which encodes the claim that (in words) “there is a path from a to b of length at most 2i+1 if and
only if there exists some c such that there is a path from a to c of length at most 2i, and a path
from c to b of length at most 2i”. However, this approach would result in obtaining a formula of
exponential size, as at each step ψi could double in size. We therefore instead define ψi+1(a, b) as

∃c∀x, y : ((x = a ∧ y = c) ∨ (x = c ∧ y = b))⇒ ψi(x, y),

which encodes the same claim (as one can verify). Then we have that the size of ψi+1 is at most
the size of ψi, plus O(s(n)). Therefore, ψs(n) is of size O(s(n)2). It finally remains to convert the
formula ψO(s(n)) to normal form, which can be done in polynomial time.

TQBF remains PSPACE-complete even if we restrict the boolean formula φ to be in CNF. To
see this, observe that for any x, y, “x ⇒ y” can be written as ¬x ∨ y, implying that for each
i, ψi can be written in DNF without significantly increasing in size. Taking the negation of the
final formula ψs(n) gives a CNF formula for the complement of the PSPACE language L; but co-
PSPACE = PSPACE, so the claim follows. The very observant reader may have noticed that the
above proof that for any L ∈ PSPACE, L ≤P TQBF also works without change for nondeterministic
Turing machines. This implies that (as TQBF ∈ PSPACE) in fact PSPACE = NPSPACE! This is in
stark contrast to our intuition that P 6= NP.

8.2 Log space

The PSPACE vs. NPSPACE question has a log-space analogue: does L = NL? Unlike PSPACE vs.
NPSPACE, this question is open, although some interesting partial results towards resolving it are
known. We begin by giving a natural complete problem for NL.

Given that NL ⊆ P by Theorem 8.1, we cannot use the same notion of polynomial-time reduc-
tions that we used before to sensibly define what it means for a problem to be NL-complete (which
you will show as an exercise). The notion we will use instead is that of log-space reductions, the
definition of which requires a little care.

We say that f : {0, 1}∗ → {0, 1}∗ is implicitly log-space computable if f is polynomially bounded
(i.e. there exist b, c such that |f(x)| ≤ b|x|c for all x ∈ {0, 1}∗), and the languages Lf = {(x, i) :
f(x)i = 1} and L′f = {(x, i) : |f(x)| ≥ i} are in L. That is, given x, we can determine any individual
bit of f(x), and the length of f(x), using a log-space Turing machine.

We then say that A is log-space reducible to B, and write A ≤L B, if there is an implicitly
log-space computable function f : {0, 1}∗ → {0, 1}∗ such that x ∈ A if and only if f(x) ∈ B. We
finally say that a language A is NL-complete if A ∈ NL, and for all B ∈ NL, B ≤L A.

42

Theorem 8.4. Path is NL-complete.

Proof. We first show that Path is in NL. If there is a path from node s to node t, a nondeterministic
machine can find it by repeatedly guessing the neighbour of the current node which is on the path.
This only requires the number of steps taken on the path to be known, and the identity of the
current node. As the length of the path can be taken to be at most n, we only need O(log n) space
to store this information.

Let L ∈ NL; we now show that L ≤L Path. Let M be a log-space NDTM which decides L,
and for any input x of size n, consider the configuration graph GM,x (assuming as before that
M has starting configuration cS , and a single accepting configuration cA). Our reduction will
take the pair (M,x) as input and produce the adjacency matrix of GM,x. As there is a path
in this graph from cS to cA if and only if M accepts x, an algorithm for Path can be used to
determine from this adjacency matrix whether M accepts x. It remains to show that this reduction
is implicitly log-space computable. This follows because, given a pair of configurations (c, c′), in
space O(|c|+ |c′|) = O(log n) a Turing machine can examine each of them and determine whether
c′ is one of the two configurations which can follow c, based on M ’s transition rules.

By Theorem 8.4, resolving the L
?
= NL question is equivalent to determining whether there is

a log-space algorithm for Path. While it is not known whether such an algorithm exists, it has
recently been shown that Path restricted to undirected graphs is indeed in L. We also have the
following result.

Theorem 8.5. Path ∈ SPACE(log2 n).

Proof. The basic idea is very similar to the second part of the proof of Theorem 8.3. Let G be a
directed graph with n nodes, and let Pathi(a, b) be the following problem: given G (as an adjacency
matrix) and nodes a and b in G, is there a path from a to b of length at most 2i? Observe that if
we can solve Pathdlog2 ne, we can solve Path, as no path need be of length longer than n. We solve
Pathi by a recursive technique. If i = 0, we can solve Path0(a, b) simply by checking whether
a = b, or there is an arc from a to b. If i ≥ 1, we compute Pathi(a, b) as follows: output true if
and only if there exists a node c such that Pathi−1(a, c) is true and Pathi−1(c, b) is true. To see
that this is correct, observe that (as in the proof of Theorem 8.3) there is a path of length 2i from
a to b if and only if there is a path of length at most 2i−1 from a to some “midpoint” c, and a path
of length at most 2i−1 from c to b.

It remains to implement this computation space-efficiently. But this can be done using exactly
the same idea as in the first part of the proof of Theorem 8.3; we obtain that the space used is
O(log2 n).

Theorem 8.5 has the following corollary, a generalisation of the result that PSPACE = NPSPACE.

Theorem 8.6 (Savitch’s Theorem). For any function s : N → N such that s(n) ≥ log2 n,
NSPACE(s(n)) ⊆ SPACE(s(n)2).

Proof. For any L ∈ NSPACE(s(n)), given an NDTM M which decides L in space s(n), we simply
run the algorithm of Theorem 8.5 on the configuration graph of M , which as discussed before has
at most 2O(s(n)) nodes.

Another question about space complexity which has been resolved and stands in contrast to the
corresponding time complexity conjecture is the NL vs. co-NL question.

43

Theorem 8.7 (Immerman-Szelepcsényi Theorem). NL = co-NL.

The technique used to prove Theorem 8.7 is a direct attack: giving a nondeterministic log-space
algorithm for the complement of the Path problem. It is worth pausing to note that it is somewhat
surprising that this works; while it is easy to certify that there is a path between two nodes s and
t (just give the path), it is less clear how to certify that there is no path from s to t.

Proof of Theorem 8.7. The complement of the Path problem, Path, may be defined as follows.
Given a graph G with n nodes, and specified nodes s, t, output 1 if there is no path from s to t, and
0 otherwise. We prove that Path is in NL by showing the existence of a certificate, which can be
checked with read-once access in logarithmic space, that there is no path from s to t. The certificate
will be built from a sequence of subsidiary certificates. Let Ci denote the set of nodes which can
be reached from s in at most i steps, and write ci = |Ci|; we want to certify that t /∈ Cn. We know
(see the proof of Theorem 8.4) that, for each i and any v, there exists a certificate Pathi(s, v) which
is read-once checkable in logarithmic space and certifies that there is a path of length at most i
from s to v, i.e. proves that v ∈ Ci. We now use an inductive procedure to design two additional
certificates.

1. A certificate that v /∈ Ci, assuming that the verifier knows |Ci|.

2. A certificate that |Ci| = c for some c, assuming that the verifier knows |Ci−1|.

As the verifier already knows that C0 = {s} at the beginning, using these two types of certificate
for i = 1, . . . , n enables the verifier to determine that t /∈ Cn. We now show how to construct them.

1. The certificate is simply the list of all nodes in Ci, together with their certificates that they
are in Ci:

v1,Pathi(s, v1), . . . , vci ,Pathi(s, vci)

for v1, . . . , vci ∈ Ci in ascending order. The verifier checks that (1) the number of nodes is
equal to ci; (2) the nodes are listed in ascending order; (3) none of the nodes is equal to v; (4)
each certificate is valid. It is easy to see that all of these checks can be done with read-once
access to the whole certificate. If v /∈ Ci, such a certificate exists; however, if v ∈ Ci no such
list of nodes can convince the verifier.

In fact, a similar idea can be used to certify that v /∈ Ci, given |Ci−1|. The only difference is
that in step (3) the verifier checks that neither v, nor any neighbour of v, appears in the list
of nodes in Ci−1. This procedure works because v ∈ Ci if and only if there exists u ∈ Ci−1

such that either u = v or u→ v.

2. We have described certificates for each node v to prove that either v ∈ Ci or v /∈ Ci. The
certificate that |Ci| = c is just the list of these certificates for each node v in ascending order.
The verifier simply checks all these certificates and accepts if and only if the number of nodes
certified to be in Ci is equal to c.

8.3 Historical notes and further reading

Arora-Barak has a general discussion of space complexity in chapter 4. The Immerman-Szelepcsényi
Theorem was proven independently by Immerman and Szelepcsényi in the late 80’s. The fact that
the Path problem restricted to undirected graphs is in L was shown by Reingold in 2005; Arora-
Barak chapter 21 includes a proof.

44

9 Randomised algorithms

The goal of the Turing machine model introduced in Section 3 is to encompass the notion of
computation in the physical world. However, there is an aspect of the physical world which this
model does not seem to capture: randomness. While it is a philosophical question whether true
randomness “really” exists in the universe, for practical purposes it does appear that there exist
devices (e.g. coins) which can be used to generate apparently random numbers, which could be
used in computation. It is less clear whether such randomness is actually useful, so we begin by
discussing two examples of non-trivial randomised algorithms.

First we will give some inequalities which will be very useful in the analysis of such algorithms,
beginning by recalling two basic facts which will be used throughout: linearity of expectation
(E[X + Y] = E[X] + E[Y]) and the union bound Pr[A ∪B] ≤ Pr[A] + Pr[B].

Theorem 9.1 (Markov’s inequality). Let X be a random variable. Then, for any c > 0,

Pr[|X| ≥ c] ≤ E[|X|]
c

.

Proof. Let px = Pr[|X| = x]. Then, for any c > 0,

Pr[|X| ≥ c] =
∑
x≥c

px ≤
1

c

∑
x≥c

xpx ≤
1

c

∑
x

xpx =
E[|X|]
c

.

A Bernoulli random variable is a random variable which takes the value 1 with probability p,
for some 0 ≤ p ≤ 1, otherwise taking the value 0. The sum of n independent Bernoulli random
variables is tightly concentrated around its mean. This idea can be made precise using Chernoff
bounds (also known as Chernoff-Hoeffding bounds or Hoeffding bounds), which are a fundamental
tool in the analysis of randomised algorithms.

Theorem 9.2 (Chernoff bound). Let X =
∑

iXi, where each Xi is an independent Bernoulli
random variable taking the value 1 with probability pi. Write µ = E[X] =

∑
i pi. Then, for all

δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
, and

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
.

Proof. The basic idea is to apply Markov’s inequality to the random variable etX , for some t, and
then to optimise over t. For the first part, we have the following chain of equalities and inequalities.

45

Pr

[∑
i

Xi ≥ (1 + δ)µ

]
= Pr

[
et

∑
iXi ≥ et(1+δ)µ

]
[for any t > 0]

≤
E
[
et

∑
iXi
]

et(1+δ)µ
[Markov’s inequality]

=

∏
i E[etXi]

et(1+δ)µ
[by independence of Xi’s]

=

∏
i(1 + pi(e

t − 1))

et(1+δ)µ
[by definition of Xi’s]

≤ e(et−1)
∑
i pi

et(1+δ)µ
[using the inequality 1 + x ≤ ex]

= eµ((et−1)−t(1+δ)).

We now minimise this expression over t. The minimum is obtained at t = ln(1 + δ), which gives

Pr

[∑
i

Xi ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ
as claimed. For the second part, we follow exactly the same procedure but start with

Pr

[∑
i

Xi ≤ (1− δ)µ

]
= Pr

[
−
∑
i

Xi ≥ −(1− δ)µ

]
.

One can simplify these bounds to obtain the following corollary.

Corollary 9.3. Let X =
∑

iXi, where each Xi is an independent Bernoulli random variable taking
the value 1 with probability pi. Write µ = E[X] =

∑
i pi. Then, for all 0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−µδ
2/3, and

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2.

Proof. For the first part, we examine the Taylor expansion of ln(1 + δ) to obtain

(1 + δ) ln(1 + δ) = δ +
δ2

2
− δ3

6
+
δ4

12
− · · · ≥ δ +

δ2

2
− δ3

6
≥ δ +

δ2

3
,

valid for 0 ≤ δ ≤ 1, which implies (1 + δ)1+δ ≥ eδ+δ2/3. For the second part, we bound (1− δ)1−δ ≥
e−δ+δ

2/2, which similarly follows from the Taylor expansion of ln(1− δ).

Finally, an additive form of these bounds will often be useful, which we state as the following
immediate corollary (with suboptimal constants).

Corollary 9.4. Let X = 1
n

∑n
i=1Xi, where each Xi is an independent Bernoulli random variable

taking the value 1 with probability pi. Write µ = E[X] = 1
n

∑n
i=1 pi. Then, for all 0 ≤ δ ≤ 1,

Pr[X ≥ µ+ δ] ≤ e−nδ
2/3, and

Pr[X ≤ µ− δ] ≤ e−nδ
2/2.

46

Proof. Immediate from Corollary 9.3, observing that 0 ≤ µ ≤ 1.

Observe that the phrasing of Corollary 9.4 highlights the fact that, as n increases, X becomes
rapidly more concentrated around µ.

9.1 Primality testing

Imagine that we are given an n-digit integer N , and would like to determine whether N is prime.
The input size is n, so we would like an algorithm that runs in time poly(n), i.e. poly(logN).
In particular, note that the näıve algorithm which tests all potential divisors of N (from 2 up to
b
√
Nc) does not run in time poly(n). We now give a polynomial-time randomised test for primality,

which is known as the Miller-Rabin test.

1. Assume that N is odd, and write N − 1 as 2js for some odd s and integer j.

2. Pick a random integer r ∈ {1, . . . , N − 1}.

3. Compute the sequence S = rs, r2s, r4s, . . . , r2js modulo N by repeated squaring.

4. Output “composite” if either:

(a) r2js 6≡ 1, or

(b) for some i, the sequence goes from r2is /∈ {1, N − 1} to r2i+1s ≡ 1.

5. Otherwise, output “prime”.

Theorem 9.5. If N is prime, the Miller-Rabin test always returns “prime”. If N is composite,
the Miller-Rabin test returns “composite” with probability at least 1/2.

For any n, let Zn denote the additive group of integers modulo n, and let Z×n denote the
multiplicative group of integers modulo n, i.e. the group consisting of integers a such that 0 < a < n
and a is coprime to n, under multiplication. Recall that a is coprime to n if and only if there exists
an integer b such that ab ≡ 1 (mod n). In order to prove Theorem 9.5, we will need the following
two facts from basic number theory, which we state without proof.

• Fermat’s little theorem: For any prime p, and any positive integer a < p, ap−1 ≡ 1 (mod p).

• The Chinese remainder theorem: For a positive integer N with prime factorisation N =
pr11 . . . prkk , Z×N ∼= Z×

p
r1
1

× · · · × Z×
p
rk
k

.

Proof of Theorem 9.5. First, if N is prime, then by Fermat’s little theorem r2js ≡ 1 (mod N), so
the last element of S is 1. Therefore, the sequence is either all 1’s, or becomes 1 following a squaring
operation. But in the field ZN the only roots of the equation x2 = 1 are x = ±1, so the test always
outputs “prime” when N is prime. We now use some group theory to prove that the test works
with probability at least 1/2 when N is composite.

First assume that there exists an a ∈ Z×N such that a2js 6≡ 1 (i.e. via Fermat’s little theorem, a

is a “witness” that N is composite). The a’s such that a2js ≡ 1 (mod N) form a subgroup of Z×N .
As this subgroup is proper, it contains at most half of the elements of Z×N . So, when r is picked at

random, it is either coprime to N (in which case with probability at least 1/2, r2js 6≡ 1), or it is
not coprime to N (in which case r2js 6≡ 1 always).

47

What if this does not work – i.e. for all a ∈ Z×N , a2js ≡ 1? Such N exist and are called
Carmichael numbers (the smallest is 561). In this case, we show that the algorithm still works.
Consider the map r 7→ rs which we perform first. This is a homomorphism from the group Z×N
to some subgroup H1 (i.e. (ab)s = asbs for all a, b ∈ Z×N), so rs is uniformly distributed in H1.
We then repeatedly apply the map a 7→ a2, giving a sequence of subgroups H2, . . . ,Hj+1, where
Hj+1 = {1} because N is a Carmichael number. This implies that the order of every element of
each subgroup Hi is a power of 2, so |Hi| is a power of 2.

Now consider the subgroup I which is the last subgroup before we get to {1}. The numbers
r that pass the Miller-Rabin test must have been mapped to either 1 or −1 at this stage. I may
or may not contain the element −1. If it does not contain −1, as |I| ≥ 2, r fails the Miller-Rabin
test with probability at least 1/2. If it contains −1 and at least one more element (other than 1),
|I| ≥ 4 (as |I| is a power of 2), so the same conclusion follows.

We now show that if −1 ∈ I, so is another element (other than 1). If N is not a power of
a prime, by the Chinese remainder theorem Z×N is isomorphic to a product J × K of nontrivial
groups. So the element −1 ∈ Z×N can be represented as a pair (−1J ,−1K). Consider the elements

(−1J , 1K) and (1J ,−1K). If −1 ∈ I, this is because the map r 7→ r2is, for some i, can be applied to
some element (x, y) ∈ Z×N to obtain (−1J ,−1K). But then the same map can be applied to (x, 1)
and (1, y) to obtain (−1J , 1K), (1J ,−1K), so these two elements are also in I.

We finally claim that, if N is a power of a prime, it is not a Carmichael number, so the test
also works in this case. Assume N = pk and take a = p+ 1. We show that aN 6≡ a (mod p2), which
implies that aN 6≡ a (mod pk), so aN−1 6≡ 1 (mod N) and hence N is not a Carmichael number.
By taking (p+ 1)p =

∑p
`=0

(
p
`

)
p` ≡ 1 (mod p2), we have aN ≡ 1 (mod p2), implying aN 6≡ a.

It has been shown quite recently that in fact primality testing is in P. However, the best
deterministic algorithm currently known still has a fairly large runtime (O(n6 polylog(n))), so in
practice randomised algorithms are still used for primality testing.

9.2 A randomised algorithm for k-SAT

We now return once more to the much-studied k-SAT problem (recall: given a boolean formula
φ(x1, . . . , xn) in CNF with at most k variables per clause, does there exist an assignment to the
variables xi such that φ evaluates to true?). Consider the following algorithm A.

1. Initially assign xi randomly for all i.

2. Repeat the following t times, for some t to be determined:

(a) If φ is satisfied by x, return that φ is satisfiable.

(b) Otherwise, pick an arbitrary clause C in φ which is not satisfied by x. Pick one of the
variables xi in C at random and update x by mapping xi 7→ ¬xi.

3. Return that φ is not satisfiable.

We will prove the following claims:

Theorem 9.6. If k = 2 and we take t = 2n2, A succeeds with probability at least 1/2.

Theorem 9.7. If k > 2 and we take t = 3n, A succeeds with probability at least
(

k
2(k−1)

)n
/ poly(n).

48

0 1 2 . . . n

1/k

1− 1/k

1/k

1− 1/k

1/k

1− 1/k

1

Figure 12: The random walk performed by algorithm A for k-SAT.

Observe that, for any integer K > 0, Theorem 9.6 implies an algorithm for 2-SAT which fails
with probability at most 2−K and uses time O(Kn2): simply repeat A K times, return “satisfiable”
if any of these uses of A returned a satisfying assignment, and return “unsatisfiable” otherwise. The
probability that A fails every time is at most 2−K . Similarly, Theorem 9.7 implies an algorithm

for k-SAT which succeeds with probability at least 0.99 (say) in time O
((

2(k−1)
k

)n
poly(n)

)
. For

small k, this can be much better than the trivial algorithm of just trying all possible assignments
to x; e.g. for k = 3 we get O((4/3)n poly(n)), as compared with the Ω(2n) time taken by the trivial
algorithm. This illustrates that even NP-complete problems can have non-trivial algorithms.

The proofs of Theorems 9.6 and 9.7 will both be based on the same idea, of reducing the
algorithm’s behaviour to a random walk. If φ is satisfiable, there exists a satisfying assignment x∗.
For any x ∈ {0, 1}n, let d(x, x∗) be the Hamming distance between x and x∗, i.e. the number of
positions at which x and x∗ differ. At each step of the algorithm, as a single bit of x is flipped,
d(x, x∗) either increases by 1 or decreases by 1. If d(x, x∗) ever becomes 0, the algorithm has found
a satisfying assignment to φ (i.e. x∗). Importantly, the probability that d(x, x∗) decreases by 1 is
at least 1/k, which we see as follows. Let C be the clause picked by the algorithm, and assume it
contains variables xi1 , . . . , xik . As x∗ satisfies φ (and hence C) but x does not satisfy C, x and x∗

must differ in at least one position i ∈ {i1, . . . , ik}. Hence the probability that i is picked by the
algorithm is at least 1/k. Therefore, the behaviour of the algorithm can be mapped to a random
walk on the line indexed by integers 0, . . . , n, which moves left with probability at least 1/k at each
step; see Figure 12 for an illustration. We simplify this to a random walk which moves left with
probability exactly 1/k at each step; calculating the expected number of steps until this walk hits
0 then gives an upper bound on the expected number of steps until A finds x∗. We have assumed
that each clause C contains exactly k variables, but if C contains fewer than k variables this can
only increase the probability of moving left.

We are now ready to prove Theorems 9.6 and 9.7.

Proof of Theorem 9.6. The claim will follow from Markov’s inequality by showing that the expected
time to hit 0 is at most n2. This is a well-known result from probability theory, but we give a simple
direct argument.

For 0 ≤ i ≤ n, let T (i) denote the expected number of steps until the random walk hits 0, given
that it started at position i. It should be clear that:

• T (0) = 0;

• T (n) = 1 + T (n− 1) [the walk cannot move further right than n];

• T (i) = 1 + 1
2 (T (i+ 1) + T (i− 1)) for 1 ≤ i ≤ n− 1.

This recurrence can readily be solved to yield T (i) = i(2n− i). Thus the expected time to hit 0 is
at most n2 for any initial assignment x.

49

Proof of Theorem 9.7. The proof of this theorem is along the same lines as Theorem 9.6, but
somewhat more complicated.

Imagine the walker starts at position j and walks for T steps. Let Pj be the probability to reach
0 at some time between 1 and T . For any integer `, the probability to go left j + ` times during
the walk is lower bounded by (

T

j + `

)
k−(j+`)(1− 1/k)T−(j+`).

Now take T = (1 + 2α)j, ` = αj, for some α. The probability to go left (1 + α)j times (and hence
right αj times) lower bounds the probability to end up at 0 after at most T steps, giving the bound
that

Pj ≥
(

(1 + 2α)j

αj

)
k−(1+α)j(1− 1/k)(1−α)j .

We now choose α = 1/(k − 2). Observe that this implies that T ≤ (1 + 2/(k − 2))n ≤ 3n. Up to
poly(j) terms, we have (

(1 + 2α)j

αj

)
=

((
1 + 2α

α

)α(1 + 2α

1 + α

)1+α
)j

,

which follows from Stirling’s approximation

√
2πn

(n
e

)n
e1/(12n+1) ≤ n! ≤

√
2πn

(n
e

)n
e1/(12n),

so up to poly(j) terms,

Pj ≥

((
1 + 2α

α

)α(1 + 2α

1 + α

)1+α
)j

k−(1+α)j(1− 1/k)(1−α)j =

(
1

k − 1

)j
.

The start position j is given by the Hamming weight (i.e. the number of 1s) of a random n-bit
string x. Thus, using the binomial theorem, up to polynomial terms the probability to reach 0 in
T ≤ 3n steps is equal to

P =
1

2n

n∑
j=0

(
n

j

)
Pj ≥

1

2n

n∑
j=0

(
n

j

)(
1

k − 1

)j
=

(
k

2(k − 1)

)n
as claimed.

9.3 Adding randomness to Turing machines

We have seen that randomness can apparently be a useful resource. We now formalise the ability
to use randomness in algorithms via the model of the probabilistic Turing machine (PTM).

A PTM is a Turing machine M with two transition functions δ0, δ1. At each step of its execution,
with probability 1/2 M applies δ0, and with probability 1/2 it applies δ1. The machine only has
two possible outputs: 1 (accept) or 0 (reject). For some function T : N→ N, we say that M halts
in T (n) time if, for any input x, M halts within T (|x|) steps (whatever random choices it makes).
Let M(x) be the random variable denoting the output of M on input x.

We can now define the complexity class BPP, which encapsulates our idea of efficient probabilis-
tic computation. For L ⊆ {0, 1}∗, we say that M decides L in time T (n) if, for every x ∈ {0, 1}∗,
M halts in T (|x|) steps (regardless of its random choices), and:

50

• For all x ∈ L, Pr[M(x) = 1] ≥ 2/3;

• For all x /∈ L, Pr[M(x) = 1] ≤ 1/3.

Let BPTIME(T (n)) be the class of languages decided by some PTM in time O(T (n)) and write

BPP =
⋃
c>0

BPTIME(nc).

Observe that an equivalent alternative definition of PTMs would be to take a standard deterministic
Turing machine M , and give M an additional “randomness” tape containing random bits.

The constants 2/3, 1/3 appearing in this definition may appear somewhat arbitrary. We now
show that, in fact, they can be replaced with any pair of numbers either side of 1/2 separated by
at least an inverse polynomial gap.

Lemma 9.8. Assume there exists a PTM M that decides L ⊆ {0, 1}∗ with success probability
1/2 + γ using time T (n), i.e.:

• for all x ∈ L, Pr[M(x) = 1] ≥ 1/2 + γ, and

• for all x /∈ L, Pr[M(x) = 1] ≤ 1/2− γ.

Then L ∈ BPTIME(T (n)/γ2).

Proof. We will boost the success probability of M using majority voting. Our algorithm is simply
to run M K times (for some K to be determined), obtaining outcomes y1, . . . , yK . If |{i : yi =
1}| ≥ K/2, we output 1, otherwise we output 0.

Assume x /∈ L (the case x ∈ L is similar). Then each yi ∈ {0, 1} is an independent random
variable with E[yi] ≤ 1/2 − γ. Our algorithm will fail if Y := 1

K

∑K
i=1 yi ≥ 1/2. We have E[Y] ≤

1/2− γ. By the Chernoff bound (Corollary 9.4),

Pr[Y ≥ 1/2] ≤ e−γ2K/3,

so taking K = O(1/γ2) suffices to upper bound the probability of failure by 1/3. Observe that, if
we increase K further than this, the success probability goes to 1 exponentially fast!

As we see from this proof, given a BPP algorithm for deciding some language L, we can write
down another BPP algorithm which decides L with exponentially small worst-case failure proba-
bility. One may wonder whether it is possible to relax the constraints on the probabilities further
without changing the definition of BPP. Let PP be the class of languages L decided by a polynomial-
time PTM such that

• For all x ∈ L, Pr[M(x) = 1] > 1/2;

• For all x /∈ L, Pr[M(x) = 1] ≤ 1/2;

Then we have the following result.

Theorem 9.9. NP ⊆ PP.

51

Proof. Suppose that L ∈ NP and let M be a polynomial-time NDTM with two transition functions
(i.e. at each computational step, two possibilities for what to do next). We can therefore treat
M as a PTM by flipping a coin at each step to decide which transition function to use. Consider
a machine M ′ which has an additional step at the beginning: with probability 1/2, run M ; and
with probability 1/2, accept. If the input x ∈ L, then M has at least one accepting path on x, so
Pr[M ′(x) = 1] > 1/2. If x /∈ L, then M has no accepting paths, so Pr[M ′(x) = 1] = 1/2. Thus
L ∈ PP.

It therefore seems unlikely that BPP = PP. Indeed, many conjecture that in fact BPP = P.
This would accord with our intuition that, in order to simulate “truly random” numbers, it suffices
to produce suitably good “pseudorandom” numbers deterministically. However, it is currently not
even known whether BPP ⊆ NP (although it is known that BPP ⊆ Σ2!). You will prove the weaker
statement that BPP ⊆ PSPACE (indeed, even PP ⊆ PSPACE) as an exercise.

9.4 Historical notes and further reading

There are many good sets of lecture notes online about randomised algorithms (the discussion
here of primality testing is partly based on one such lecture1). Papadimitriou chapter 11 gives an
extensive analysis of an alternative test for primality by Solovay and Strassen. The deterministic
primality test was invented by Agrawal, Kayal and Saxena (two of whom were undergraduates at
the time) in 2002.

The randomised algorithm for k-SAT given here was invented by Schöning in 1999; the case of
2-SAT was already known (Papadimitriou chapter 11 has a discussion). There are several other non-
trivial (but still exponential-time!) algorithms known for k-SAT, some of which are deterministic.

The question of whether BPP = P, and “derandomisation” questions more generally, are dis-
cussed at length in Arora-Barak chapters 20 and 21.

1http://www.cse.buffalo.edu/~regan/cse681/notes/lectureB12.pdf

52

http://www.cse.buffalo.edu/~regan/cse681/notes/lectureB12.pdf

10 Counting complexity and the class #P

Some of the complexity classes we have seen so far have nice definitions in terms of computational
paths of NDTMs. In particular, we can write down the following characterisations.

• A language L ∈ P if there exists a polynomial-time NDTM M such that, on input x:

1. For all x ∈ L, all of M ’s computational paths accept;

2. For all x /∈ L, none of M ’s computational paths accept.

• A language L ∈ NP if there exists a polynomial-time NDTM M such that, on input x:

1. For all x ∈ L, at least one of M ’s computational paths accepts;

2. For all x /∈ L, none of M ’s computational paths accept.

• A language L ∈ co-NP if there exists a polynomial-time NDTM M such that, on input x:

1. For all x ∈ L, all of M ’s computational paths accept;

2. For all x /∈ L, at least one of M ’s computational paths does not accept.

• A language L ∈ BPP if there exists a polynomial-time NDTM M such that, on input x:

1. For all x ∈ L, at least 2/3 of M ’s computational paths accept;

2. For all x /∈ L, at most 1/3 of M ’s computational paths accept.

• A language L ∈ PP if there exists a polynomial-time NDTM M such that, on input x:

1. For all x ∈ L, > 1/2 of M ’s computational paths accept;

2. For all x /∈ L, ≤ 1/2 of M ’s computational paths accept.

A problem at least as difficult as all of the above complexity classes is calculating the number of
accepting paths of an NDTM M on input x. This motivates the introduction of the complexity
class #P (pronounced “sharp P”), which is defined as the class of all functions f such that f(x)
is equal to the number of accepting paths of some NDTM M on input x. Note that this is a class
of functional problems, rather than decision problems. Once again, we can equivalently define this
class in terms of certificates, as follows:

Definition 10.1. A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N→ N and
a polynomial-time Turing machine M such that, for all x ∈ {0, 1}∗,

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1}

∣∣∣ .
Informally speaking, #P is the class of problems which involve determining the size of a set

(which is possibly exponentially large), such that membership in the set can be checked efficiently.
It is perhaps easiest to understand this class by considering some simple examples of problems in
#P.

• #SAT: given a boolean formula φ, calculate the number of satisfying assignments of φ. This
is clearly at least as hard as SAT and Tautology.

53

• #Path: given a graph G and two vertices s and t, count the number of simple paths from s
to t (a path is called simple if it does not visit any vertex twice).

As with NP, #P has a notion of complete problems, which are the “hardest” problems in #P.
Recalling that FP is the class of polynomial-time computable functions, we define FPf (for some
function f : {0, 1}∗ → {0, 1}∗) to be the class of functions which are computable in polynomial
time, given access to an oracle for f . Generalising the definition of oracles for decision problems,
we say that a Turing machine M has an oracle for f if it has an oracle for the language Lf =
{(x, i) : f(x)i = 1}. In other words, M can extract arbitrary bits of f(x) “for free”.

Definition 10.2. f is #P-complete if f ∈ #P and every function g ∈ #P is in FPf . Thus, if f is
#P-complete and f ∈ FP, FP = #P.

Perhaps unsurprisingly, we have the following result.

Theorem 10.1. #SAT is #P-complete.

Proof. Imagine that, given the description of some NDTM M , we could output a boolean formula
φ such that the number of satisfying assignments of φ is equal to the number of accepting paths
of M . If this were the case, the theorem would be proven, as given an oracle for #SAT we could
compute the number of accepting paths of M , for any NDTM M . Inspecting the proof of the
Cook-Levin Theorem (Section 5.5) shows that this almost gives us such a reduction. All that is
required is to constrain M to accept only after a fixed number of steps, and in a fixed configuration;
both of these modifications are straightforward.

For languages A,B ∈ NP, we say that a reduction from language A to B is parsimonious if it
preserves the number of accepting paths, i.e. the number of solutions. The above theorem gives a
parsimonious reduction from any language in NP to SAT. In fact, there also exists a parsimonious
reduction from any language in NP to 3-SAT. We have technically not proven this yet, as the
reduction from SAT to 3-SAT we previously gave is not parsimonious; we defer the proof of this
claim until later, when we will give an alternative proof of the Cook-Levin theorem.

In order to prove that some counting problem in #P with underlying language L ∈ NP is #P-
complete, it therefore suffices to give a parsimonious reduction from 3-SAT to L. More generally,
it suffices to give a reduction which is parsimonious up to some easily computable additive or
multiplicative constant; we also call reductions of this form parsimonious.

Although it is arguably unexciting that the counting variant of an NP-complete problem such as
3-SAT should be hard, it is more surprising that there exist #P-complete counting problems whose
decision variants are in P. A simple such example is the problem of counting satisfying assignments
to a monotone boolean formula, which is a boolean formula with no negations. For example,

φ = (x1 ∧ (x2 ∨ x3 ∨ x4)) ∨ (x1 ∨ x3)

is a monotone boolean formula. Such formulae always have a satisfying assignment where all
variables are set to true, so determining whether a monotone boolean formula has a satisfying
assignment is clearly in P. However, we have the following result.

Theorem 10.2. The problem #MON of counting the number of satisfying assignments to a mono-
tone formula is #P-complete.

54

Proof. #MON is clearly in #P. To prove #P-hardness, we give a reduction from #SAT to #MON.
Given a boolean formula φ(x1, . . . , xn), we produce a new formula ψ(x1, . . . , xn, y1, . . . , yn) where
ψ is the same as φ, but with each occurrence of ¬xi replaced with yi, for all i. Write #φ for the
number of satisfying assignments of φ, for any boolean formula φ. Then

#φ = #

(
ψ ∧

(
n∧
i=1

(xi ∨ yi)

)
∧

(
n∧
i=1

¬(xi ∧ yi)

))
;

the number of satisfying assignments of φ is the same as the number of satisfying assignments of ψ
where xi 6= yi for all i. Now write

ψA = ψ ∧

(
n∧
i=1

(xi ∨ yi)

)
, ψB =

(
n∨
i=1

(xi ∧ yi)

)
.

Then (using De Morgan’s law) #φ = #(ψA∧¬ψB), where ψA and ψB are both monotone formulae.
But

#(ψA ∧ ¬ψB) = #ψA −#(ψA ∧ ψB),

simply by counting the number of assignments that satisfy ψA but not ψB. Hence #φ can be
computed as the difference between the numbers of satisfying assignments of two monotone formu-
lae.

Many important combinatorial problems also turn out to be #P-complete. An example, which
we state without proof, is a problem from statistical physics. The Ising model was originally
introduced as a model for studying ferromagnetism. An instance of the model is a set of n sites,
each pair of which has an interaction energy Vij . A configuration is an assignment σ ∈ {±1}n,
where σi is the spin assigned to the i’th site. The energy of a configuration is given by

H(σ) = −
n∑

i<j=1

Vijσiσj −B
n∑
k=1

σk,

where B is some fixed magnetic field intensity. The central problem associated with the Ising model
is to compute the partition function

Z =
∑

σ∈{±1}n
e−βH(σ)

for some β. Observe that Z is a sum over exponentially many terms, each of which can easily be
computed. It turns out that computing Z is in fact #P-hard.

10.1 The permanent is #P-complete

We now give a natural mathematical problem which is also #P-complete. Let M be an n × n
matrix of integers. We say that M is a 0-1 matrix if it only contains 0’s and 1’s. The determinant
of M can be defined as

det(M) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Mi,σ(i),

where the sum is over all permutations σ of {1, . . . , n}, and sgn(σ) is the sign of σ, i.e. sgn(σ) = 1
if σ can be written as a product of an even number of transpositions, and sgn(σ) = −1 otherwise.

55

1 0 0 1
0 0 2 1
0 −3 1 0
1 0 −2 0

2

-3

-2

1

2

3

4

2

-3

-2

Figure 13: A matrix and its correspondence to weighted bipartite and directed graphs. A perfect
matching and its corresponding cycle cover are marked in thick red lines.

Of course, det(M) can be computed in polynomial time (by Gaussian elimination, for example).
But consider the superficially similar quantity

perm(M) =
∑
σ∈Sn

n∏
i=1

Mi,σ(i),

which is called the permanent of M . Then we have the following result.

Theorem 10.3 (Valiant). Computing perm(M) for 0-1 matrices M is #P-complete.

Thus simply removing the apparent complicating factor of sgn(σ) results in a dramatic increase
in complexity! When M is a 0-1 matrix, perm(M) has the following combinatorial interpretation.
Consider a bipartite graph G with n vertices on each side of the bipartite split, where there is an
edge between the i’th vertex on the left-hand side and the j’th vertex on the right-hand side if and
only if Mij = 1. Then each term

∏n
i=1Mi,σ(i) is equal to 1 if and only if σ corresponds to a perfect

matching in G – i.e. a set of n edges such that each vertex is included in exactly one edge. Hence
computing the permanent of a 0-1 matrix is equivalent to counting perfect matchings in a bipartite
graph, which implies that the problem is in #P. As we saw near the start of the course, the decision
variant of this problem (i.e. the problem of determining whether a bipartite graph G has a perfect
matching) is in P, so generalising from decision to counting makes the problem considerably more
difficult. More generally, we can associate any matrix M with a bipartite undirected graph G,
by putting (possibly negative) weights on each edge of G; perm(M) is then a sum over perfect
matchings in G, where each matching is weighted by the product of its edge weights.

Another interpretation of the permanent, which will be important later, is in terms of cycle
covers. A cycle cover of G is a set of cycles in G such that each vertex is contained in exactly one
cycle. It is easy to convince oneself that, if G is a directed graph with adjacency matrix A, perm(A)
is precisely the number of cycle covers of G. Similarly to the bipartite graph interpretation, for any
square matrix M , perm(M) is equal to a sum over weighted cycle covers of a graph corresponding
to M . Figure 13 illustrates these ideas.

In order to prove Theorem 10.3, we first prove that computing the permanent of general integer
matrices M is #P-hard, and then reduce to the case where M is a 0-1 matrix.

Theorem 10.4. Computing perm(M) for integer matrices M is #P-hard.

Proof. We will reduce #3-SAT to computing the permanent. Given a 3-CNF boolean formula φ
containing m literals, we will produce a matrix M such that perm(M) = 4m#φ, where #φ is the

56

true

false

Figure 14: Variable and clause gadgets. Undirected edges (i.e. without arrows) correspond to an
arc in each direction. In each cycle cover, exactly one of the two rightwards-moving arcs of each
variable gadget must be included, corresponding to true or false. Also, at least one of the external
edges of each clause gadget must be excluded, corresponding to a variable satisfying that clause.

x1 x2 x3

(x1 ∨ ¬x2 ∨ x3)

(¬x1 ∨ x2 ∨ x3)

⊕

⊕

⊕

⊕

⊕

⊕

Figure 15: Constructing a graph whose cycle covers correspond to satisfying assignments to the
formula (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3).

u

u′

v

v′
⊕

u

v′

v

u′

s t

a

b

−1

−1 2

3

−1
0 1 −1 −1
1 −1 1 1
0 1 1 2
0 1 3 0

Figure 16: Constructing an XOR gate. The graph GXOR is intended to ensure that there is either
an edge from u to v, or from u′ to v′, but not both. Here we describe GXOR by its graph and its
adjacency matrix, where vertices are ordered (s, a, b, t).

57

number of satisfying assignments of φ. In other words, we will construct a weighted graph G such
that the sum over weighted cycle covers of G is equal to 4m#φ.

The construction will use three kinds of gadget: variable, clause and XOR gadgets. Each gadget
corresponds to a subgraph as illustrated in Figures 14 and 16. First consider the graph formed by
taking one variable gadget Gi per variable xi, and one clause gadget GC per clause C. We would
like to make each cycle cover of this graph correspond to a satisfying assignment of φ. Label each
of the three external arcs of a clause gadget with a literal used in that clause. An external arc being
included in a particular cycle cover of GC is intended to correspond to that literal not satisfying C.
If a clause contains fewer than three variables, the remaining arcs are left unlabelled. Observe that
any cycle cover of GC must include at most two of the external arcs1. Further, it is easy to convince
oneself that every choice of a proper subset of the external arcs of GC (including the empty set)
corresponds to exactly one cycle cover of GC .

Imagine we had a (magical!) “XOR gadget” which we could apply to any pair of arcs, and which
would enforce the constraint that exactly one of the two arcs is included in any cycle cover. Given
such a gadget, we could calculate #φ as follows. Whenever a variable xi appears in a clause C,
apply the XOR gadget between the external arc of GC corresponding to xi, and either the “false”
arc in Gi (if xi appears negated in C), or the “true” arc in Gi (if xi appears un-negated in C). Then
each assignment to variables x1, . . . , xn would correspond to exactly one cycle cover (if x satisfies
φ), or no cycle covers (if x does not satisfy φ), so the permanent of the whole graph would equal
#φ. Figure 15 illustrates this construction.

We will simulate such an XOR gadget using the construction GXOR illustrated in Figure 16,
and analyse the permanent of the resulting graph. The permanent is is a sum over weighted cycle
covers, and can hence be split up in terms of sums over cycle covers that use different subsets of
the four arcs u→ s, s→ v′, t→ v, u′ → t.

First, the sum over cycle covers that use none of these four arcs is equal to 0. This is because
the permanent of GXOR’s weighted adjacency matrix is equal to 0 (as can be checked), and the
permanent of a graph made of two disjoint subgraphs is equal to the product of their respective
permanents. Similarly, the sum over cycle covers that use either of the pairs of arcs (u→ s, s→ v′)
and (u′ → t, t → v), or both of these pairs, is also equal to 0. Thus the only cycle covers which
contribute to the permanent of the whole graph are those which either contain an arc u → s and
an arc t → v, or contain an arc u′ → t and an arc s → v′, but not both of these pairs. One
can calculate that in either of these cases, the weighted sum of cycle covers gets a multiplicative
contribution of 4 from GXOR.

This essentially completes the proof: each cycle cover which does not satisfy all of the XOR
constraints gives a contribution of 0 to the overall sum, and each cycle cover which does satisfy all
the constraints gives a contribution of 4m (there are m XOR gadgets in total, each contributing a
factor of 4). Therefore, the permanent of the adjacency matrix of G is equal to 4m#φ.

The above proof appeared to crucially rely on some clever cancellations between positive and
negative entries in M . Perhaps surprisingly, we now show that the permanent remains hard even
when restricted to 0-1 matrices.

Proof of Theorem 10.3. First, we observe that any positive integer weights in the graph G cor-
responding to M can be replaced with 1’s using the construction illustrated in Figure 17; even

1One may be uneasy that GC and Gi contain multiple arcs between certain nodes. These extra arcs will disappear
shortly; in any case, they can be subsumed into one weighted arc.

58

. . .

Figure 17: Simulating positive weights 2, 3 and 2n respectively.

exponentially large weights can be dealt with by attaching subgraphs in series. However, there are
also some weights equal to −1. To deal with these, we change the problem under consideration:
rather than computing the permanent, we instead consider computing the permanent modulo N ,
for some integer N . This problem is clearly no easier than computing the permanent, so if we can
show that #3-SAT reduces to computing the permanent modulo N , we have shown that computing
the permanent itself is #P-hard. When working modulo N , −1 ≡ N − 1. Take N to be a large
integer, N = 2n + 1, where we pick n such that the permanent of M does not exceed N (n = 8m
works, for example). Now the −1’s in M can be replaced with 2n’s, which can be simulated as
before. The number of satisfying assignments of the original formula is then precisely equal to the
permanent of the resulting matrix, modulo N .

10.2 Historical notes and further reading

The complexity class #P was introduced by Leslie Valiant in 1979, in the same paper in which he
proved that computing the permanent is #P-complete. He received the 2010 Turing Award, the
highest award in computer science, partly for this work (but also for much more!). Arora-Barak
(chapter 17) and Papadimitriou (chapter 18) have nice discussions on #P-hardness and counting
problems. In particular, the proof given here that the permanent is #P-complete is based on
Papadimitriou’s.

Valiant’s result shows that counting perfect matchings in bipartite graphs is #P-hard. Remark-
ably, it turns out to be possible to count perfect matchings in arbitrary graphs in polynomial time
– as long as the graph is planar (i.e. can be drawn in the plane with no edges crossing). The result
that this is possible is known as the FKT algorithm1 and has significant applications in statistical
physics.

1See http://www.damtp.cam.ac.uk/user/am994/presentations/matchings.pdf, for example, for a discussion
of this beautiful algorithm.

59

http://www.damtp.cam.ac.uk/user/am994/presentations/matchings.pdf

PSPACENPco-NP PNLL

BPP

Figure 18: Some important complexity classes.

11 Complexity classes: the summary

Figure 18 summarises known relationships between many of the complexity classes we have met so
far. All of these inclusions (with the possible exception of P ⊆ BPP) are believed to be strict, but
there is no proof that this is the case. Observe that we have the chain of inclusions

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

By the Space Hierarchy Theorem, we know that L 6= PSPACE. Therefore, at least one of these
inclusions must be strict – but we do not know which one.

60

x1 x2 x3 1

∨ ∧
¬

∨

∧

Figure 19: A circuit C computing a boolean function of 3 variables. One can verify that in fact
C(x) = (x1 ∨ x2) ∧ x3.

12 Circuit complexity

Turing machines are an (arguably!) nice model for reasoning about computation in a very general
sense. However, modern computers do not usually look much like Turing machines, but instead are
built from circuits of electronic components. In order to model this more directly, we consider the
circuit model of computation.

For n ∈ N, an n-input, single-output boolean circuit C is a directed acyclic graph which has
one sink (node with out-degree 0). Sources (i.e. nodes with in-degree 0) are labelled with variables
x1, . . . , xn ∈ {0, 1}, or with one of the constants 0 or 1, and are called input nodes; the sink is
called the output node. Non-sources are called gates and labelled with one of ∧, ∨ or ¬ (i.e. AND,
OR and NOT). Nodes labelled with ∧ or ∨ have in-degree (also called fan-in) 2, and nodes labelled
with ¬ have fan-in 1. Similarly, the out-degree of a node is called its fan-out. The size of C is the
number of nodes in C, and is written |C|.

C computes a boolean function C : {0, 1}n → {0, 1} in the natural way. Each node has a value,
defined recursively as follows: the value of an input node is (depending on its label) the value of
its corresponding variable xi, or the constant 0 or 1, and the value of other nodes is determined by
applying the logical operation labelling that node to the values of the nodes connected to it. C(x)
is then defined to be the value of the output node on input x. See Figure 19 for an example of a
circuit.

Observe that every boolean formula can be written as a boolean circuit. The universality
of boolean formulae (Theorem 5.1) thus implies that boolean circuits can compute any boolean
function f : {0, 1}n → {0, 1}. However, the construction of Theorem 5.1 may use as many as
Ω(n2n) gates (there can be Ω(2n) clauses, and each clause uses n gates). This may appear somewhat
inefficient; ideally, we would like circuits of size polynomial in n. However, this is not possible for
every function f .

Theorem 12.1. For every integer n > 1, there exists a boolean function f : {0, 1}n → {0, 1} which
cannot be computed by any circuit of size at most 2n/(2n).

Proof. The proof is a counting argument. There are 22n boolean functions on n bits. We will upper
bound the number Cn,m of circuits on n bits with m gates. Each such circuit is defined by choosing
which type of gate each node computes, and which gates feed into each node. For each gate we
have at most (n + 5)m2 possibilities for these, so we have at most ((n + 5)m2)m different circuits
in total. This is a rough over-estimate as many of these possibilities will not lead to valid circuits.

61

We now simply observe that, for m ≤ 2n/(2n),

log2Cn,m ≤
2n

2n
log2

((
n+ 5

4n

)
22n

)
< 2n = log2 22n ,

valid for n ≥ 2.

Observe that the same proof technique even shows that all but an exponentially small fraction
of functions f : {0, 1}n → {0, 1} require exponential-size circuits. Nevertheless, no explicit example
of a family of such functions is known!

12.1 Polynomial-size circuits

We now connect the circuit model with our previously studied notion of complexity classes.

Let T : N→ N be a function. A T (n)-size circuit family C is a sequence C0, C1, . . . of boolean
circuits, where Cn has n inputs and one output, and |Cn| ≤ T (n) for all n. Let L ⊆ {0, 1}∗
be a language. We say that a circuit family C decides L if, for every n and every x ∈ {0, 1}n,
x ∈ L ⇔ Cn(x) = 1. We further say that L ∈ SIZE(T (n)) if there exists a T (n)-size circuit family
C such that C decides L.

Observe that, by contrast with the Turing machine model, we do not demand that a single
circuit works for arbitrary input sizes n. Here, we are allowed to have a completely different circuit
for each n. By analogy with the Turing machine model, we will be interested in “small” classes of
circuits. Let P/poly be the class of languages decided by polynomial-sized circuit families, i.e.

P/poly =
⋃
c>0

SIZE(nc).

We first show that polynomial-sized circuits are at least as powerful as polynomial-time Turing
machines.

Theorem 12.2. P ⊆ P/poly.

Proof. Consider a language L ∈ P and let x ∈ {0, 1}n. We will show that there is a circuit C of
size poly(n) which computes the function C(x) = 1 ⇔ x ∈ L. The proof is similar to the proof of
the Cook-Levin theorem.

Let M be a Turing machine that decides L in time nk, for some constant k, and let T be the
tableau (defined as in the Cook-Levin theorem) describing the computational steps M takes on
input x. The first row and the first and last columns of T are known in advance (being determined
only by x, equal to a column of .’s, and equal to a column of �’s, respectively). Because of the
locality of Turing machines, each other cell Tij depends only on three cells (Ti−1,j−1, Ti−1,j and
Ti+1,j−1) in the row above. Thus the contents of each cell Tij is a function of three other cells. Let
S be the set of symbols used in the tableau. Each symbol can be encoded as a fixed-length binary
string (of length m, say), so the tableau can be thought of as an nk × nk ×m array Tij`. By the
above observation, each entry Tij` depends only on 3m other entries. This means that we can write

Tij` = f`(Ti−1,j−1,1, . . . , Ti−1,j−1,m, Ti,j−1,1, . . . , Ti+1,j−1,m),

where f` : {0, 1}3m → {0, 1}. Each f` can thus be described by a circuit C`, which is of constant
size and depends only on M . The overall circuit C consists of the repeated application of these

62

individual circuits C`, with one application for each cell (i, j). For each entry Tij , the input gates
of C` are attached to the output gates of Ti−1,j−1, Ti−1,j and Ti+1,j−1. Finally, the output of C
is determined by making C output 1 if and only if the last row of the tableau corresponds to M
outputting 1.

It is clear that the resulting circuit is of size poly(n). Further note that (as will be important
later) the above reduction can be performed in space O(log n). Each circuit C` is fixed (i.e. depends
only on M). Describing C thus requires writing down the input gates (which depend only on |x|),
generating many copies of C` and identifying correct inputs and outputs of these circuits, and
writing down the output gate of C. Because of the regular structure of C, this can be done in
logarithmic space.

The above inclusion is in fact proper in a very strong sense: there even exist languages in P/poly
which are undecidable! Let UHALT be the following language.

UHALT = {1n : the binary expansion of n encodes a pair (M,x) such that M halts on input x}.

It is clear that UHALT is undecidable. On the other hand, we have the following result.

Theorem 12.3. UHALT is in P/poly.

Proof. The theorem will follow from showing that every unary language is in P/poly, where a unary
language L ⊂ {0, 1}∗ is a language of the form L ⊆ {1n : n ∈ N}. We describe a circuit family C
for deciding L, where each member Cn of the family behaves as follows. If 1n ∈ L, then the circuit
computes the AND of the n input bits (which can be done with a linear size circuit). Otherwise,
the circuit always outputs 0.

In order to conclude that UHALT ∈ P/poly, it was sufficient to show that there exists a circuit to
solve any given instance of UHALT, without needing to actually construct such a circuit. We would
like to avoid such pathological cases in our model of circuit complexity. To do so, we introduce the
notion of uniformly generated circuits.

A circuit family C = C0, C1, . . . is said to be L-uniform if there is a logarithmic-space Turing
machine which, on input 1n, outputs a description of the circuit Cn (i.e. if there exists an implicitly
logspace-computable function which maps 1n to Cn). This type of circuit turns out to be precisely
equivalent to P.

Theorem 12.4. A language L ⊆ {0, 1}∗ can be decided by an L-uniform circuit family if and only
if L ∈ P.

Proof. (⇒): If L ⊆ {0, 1}∗ is decided by an L-uniform circuit family C, then for any x ∈ {0, 1}∗,
we can determine whether x ∈ L using a polynomial-time Turing machine by first constructing the
required circuit C|x|, then evaluating it.

(⇐): Follows from the proof of Theorem 12.2, which gives a logarithmic-space construction of
a circuit C|x| which outputs 1 if and only if x ∈ L.

The same idea allows us to give a natural complete problem for P. As with the class NL (Section
8.2), to formulate a sensible notion of complete problems for P it is necessary to use a weaker notion
of reductions than for NP (which motivates the above introduction of the idea of L-uniformity).
As with NL, the notion of reductions we use is implicit logarithmic space reductions. We say that

63

a language A is P-complete if A ∈ P, and for all B ∈ P, B ≤L A. P-complete problems are the
“hardest” problems in P; indeed, if L is P-complete and L ∈ L, then P = L.

The Circuit Value problem is defined as follows. The input is a pair (C, x), where C is the
description of an n-input circuit and x ∈ {0, 1}n. The problem is to decide whether C(x) = 1.

Theorem 12.5. Circuit Value is P-complete.

Proof. Evaluating C(x) can clearly be done in polynomial time; for the other direction, Theorem
12.2 gives an implicitly logspace-computable reduction from any problem in P to Circuit Value.

Similarly, we can give a characterisation of the class NP in terms of circuits. The Circuit SAT
problem is defined as follows: the input is a description of an n-input circuit C, and the problem
is to decide whether there exists x ∈ {0, 1}n such that C(x) = 1. As boolean formulae are special
cases of circuits, Circuit SAT is at least as hard as 3-SAT. We now give an alternative proof of
this fact which follows directly from the definition of NP.

Theorem 12.6. Circuit SAT is NP-complete.

Proof. Circuit SAT is clearly in NP, as given x ∈ {0, 1}n, we can evaluate C(x) in polynomial
time. For the other direction, if L ∈ NP then there is a polynomial-time Turing machine M and
a polynomial p such that x ∈ L if and only if M(x,w) = 1 for some w ∈ {0, 1}p(n). The proof
of Theorem 12.2 shows that, given the pair (M,x), we can write down a circuit Cx in polynomial
time such that Cx(w) = M(x,w) for all w ∈ {0, 1}p(n). Thus solving Circuit SAT for Cx allows
us to determine whether x ∈ L.

This now allows us to go full circle and prove NP-hardness of 3-SAT using Circuit SAT – i.e.
to give an alternative proof of the Cook-Levin theorem.

Theorem 12.7. Circuit SAT ≤P 3-SAT.

Proof sketch. Given a circuit C containing AND, OR and NOT gates, we produce a 3-CNF formula
φ as follows. Each node vi has a corresponding variable zi in φ. We then add clauses to φ such that
the input and output constraints of each gate are satisfied. For example, if vi = vj ∧ vk is an AND
gate, we want to add the condition (zi = zj ∧ zk), which can easily be written as a CNF formula;
the same applies for OR and NOT. Finally, if the output node is vo, we add a clause (zo) to specify
that the output should be 1. It is easy to see that φ is satisfiable if and only if C is satisfiable.

As the reductions occuring in these two theorems are parsimonious, this finally proves the claim
made in Section 10 that the counting problem #3-SAT is #P-complete.

12.2 Restricted depth circuits

We have seen that size in the model of uniformly generated circuits is roughly equivalent to time
in the world of Turing machines. However, the circuit model allows us to consider other measures
of complexity which do not necessarily correspond to natural parameters in the Turing machine
model. A particularly interesting such measure is circuit depth, where the depth of a circuit C is
the maximal number of nodes on a path from an input node to the output node. We now define
two classes of depth-limited computations.

64

x1 x2 x3 x4

⊕ ⊕
⊕

x1 x2

⊕
=

x1 x2

∨¬ ¬

∨

∧

Figure 20: Recursive construction for computing Parity, and this construction mapped onto the
standard circuit model.

• For every d, a language L ⊆ {0, 1}∗ is in the class NCd if L can be decided by an L-uniform
family of circuits {Cn} such that each Cn has size poly(n) and depth O(logd n). We write
NC =

⋃
d≥0 NCd.

• For every d, the class ACd is defined similarly, but with the extension that we allow gates in
each circuit Cn to have unbounded fan-in. That is, each OR and AND gate can be applied
to arbitrarily many input bits. We write AC =

⋃
d≥0 ACd.

Thus, for each d, the class ACd is at least as powerful as NCd. Indeed, we have

NCd ⊆ ACd ⊆ NCd+1

(you will show the second inclusion in an exercise). The class NC0 is very limited as the output of
any circuit in this class can depend only on a constant number of input bits; AC0 does not have
this restriction and is arguably the simplest interesting class of circuits which one could consider.

There are two main motivations for studying such classes. One motativation is their connection
to reality; the class NC in particular corresponds quite well to a model of massively parallel com-
puting where we have access to a large number of processors with efficient communication between
them (such a model was not realistic for some time after NC was first studied, but nowadays is not
too far from the truth). Another motivation is the fact that it seems difficult to prove a super-
polynomial lower bound on circuit size for an explicit family of functions. Restricting ourselves to
considering circuits in NC or AC might allow better lower bounds to be proven.

In particular, we will consider the problem Parity, which is defined as follows: given x ∈
{0, 1}n, does x contain an odd number of 1’s? Observe that this problem is in NC1: given an n-bit
string x, solving Parity is the same as computing x1 ⊕ x2 ⊕ · · · ⊕ xn, which can be done in depth
O(log n) by a recursive construction illustrated in Figure 20.

However, we have the following result.

Theorem 12.8. Parity /∈ AC0. Hence AC0 6= NC1.

The class AC0 appears very weak, so it is not clear that this is an interesting result. However,
it is almost the strongest lower bound known on circuit size!

The basic idea behind Theorem 12.8 is as follows. We will show that any function f : {0, 1}n →
{0, 1} computed by a constant-depth, polynomial-size circuit has the property that we can force
it to become constant by fixing strictly less than n of its input variables. As Parity does not

65

have this property, Parity /∈ AC0. To gain some intuition, consider the special case where f is
computed by a k-CNF formula for k < n (recall that a k-CNF (resp. k-DNF) formula is a boolean
formula which is an AND of ORs (resp. OR of ANDs) where each OR (resp. AND) involves at
most k variables). We can make such a formula constant by forcing one clause to evaluate to 0 or
1, respectively, which requires fixing at most k of the variables. Thus Parity cannot be computed
by such a formula.

The proof of Theorem 12.8 will be based on extending this idea to general circuits, using the
following “switching lemma”, which we state without proof. The lemma uses the concept of random
restrictions of a boolean formula. If f is a boolean function and ρ is a partial assignment (known
as a restriction) to the variables of f , let f |ρ denote the function obtained by fixing the variables
of ρ.

Lemma 12.9 (H̊astad’s Switching Lemma). Let f : {0, 1}n → {0, 1} be expressible as a k-DNF,
and let f |ρ be a random restriction that assigns random values to t randomly selected input bits.
Then, for every s ≥ 2,

Pr
ρ

[f |ρ is not expressible as s-CNF] ≤
(
(1− t/n)k10

)s/2
.

By symmetry (i.e. applying Lemma 12.9 to ¬f), we get the same result with the terms DNF
and CNF interchanged.

Proof of Theorem 12.8 (sketch). We assume that we are given an AC0 circuit C of depth d in the
following form (any circuit can be converted into such a form).

• The circuit is a tree (i.e. all gates have fan-out 1);

• All ¬ gates are at the input of the circuit;

• At each level of the tree, all gates are either ∨ or ∧;

• The first level after the input consists of ∨ gates of fan-in 1.

Let nc be an upper bound on the number of gates in C. We randomly restrict more and more
variables; the idea is that each restriction reduces the depth by 1 while retaining constant fan-in
at the first level of the circuit. Let ni be the number of unrestricted variables after step i. At step
i+ 1 we randomly restrict dni −

√
nie variables. As n0 = n, ni ≈ n2−i . Set ki = 10c2i. We aim to

show by induction that, with high probability, after restriction i we have a circuit of depth at most
(d− i) and with fan-in at most ki at the first level.

Suppose the first level contains ∨ gates, so the second level contains ∧ gates. Assuming that
the function computed by each ∧ gate is a ki-CNF, by Lemma 12.9, after the (i+ 1)’th step it will
be expressible as a ki+1-DNF with probability at least

1−
(
k10
i n
−2−i−1

)ki+1/2
,

which is at least 1− (10nc)−1 for large enough n (observing that ki is constant with respect to n!).
As the bottom gate of a DNF formula is ∨, we can merge the gates at the second level with the
level below, decreasing the circuit’s depth by 1. On the other hand, if the first level contained ∧
gates, we can transform the ki-DNF of the next level into a ki+1-CNF using the same idea.

66

We repeat this process d− 2 times. With constant probability we end up with a depth 2 circuit
with fan-in at most kd−2 at the top level. To see this, note that we apply Lemma 12.9 once per
gate, so using a union bound the probability that all of the applications were successful is at least
1−nc(10nc)−1 = 9/10. A depth 2 circuit is just a kd−2-CNF or kd−2-DNF formula. But if we fix at
most kd−2 = O(1) of the variables in such a formula, we can make the formula constant (by fixing
one clause to 0 or 1, respectively). The Parity function is not constant under any restriction of
fewer than n variables, so Parity /∈ AC0.

12.3 Circuits and randomised algorithms

Recall that it is not known whether BPP = P. However, in the circuit model one can indeed prove
a result of this nature.

Theorem 12.10. BPP ⊂ P/poly.

Proof. Let L ∈ BPP. From the proof of Lemma 9.8, this implies that there exists a polynomial-
time Turing machine M which, on inputs of size n, uses some random bits r ∈ {0, 1}m, for some
m ≥ 0, and for all x ∈ {0, 1}n, Prr[M(x, r) 6= fL(x)] ≤ 2−n−1. (Recall that fL(x) = 1 if x ∈ L,
and fL(x) = 0 if x /∈ L.) Call a string r ∈ {0, 1}m bad for x if M(x, r) 6= fL(x), and otherwise
call r good for x. For each x, at most 2m−n−1 strings r are bad for x. Thus, summing over all x,
there are at most 2m−1 strings which are bad for some x. In particular, for each n there is a string
g ∈ {0, 1}m which is good for every x ∈ {0, 1}n. We can fix this string g as input to M and hence
obtain a circuit Cn whose size is polynomial in the time used by M , and such that C(x) = fL(x)
for all x ∈ {0, 1}n.

Of course, it cannot be the case that in fact BPP = P/poly, as P/poly contains undecidable
problems. Theorem 12.10 can be seen as evidence that BPP = P. Additional evidence is provided
by the following result, which we state informally: if there exists a language L ∈ DTIME(2O(n))
such that deciding L requires exponentially large circuits, then BPP = P. See Arora-Barak chapter
20 for a discussion and proof of this claim.

12.4 Natural proofs and P vs. NP

As P ⊆ P/poly, one plausible way to prove P 6= NP is to prove NP 6⊂ P/poly (again, we cannot have
P/poly = NP because P/poly contains undecidable problems). This could be a hopeful strategy
because circuits may seem easier (or more “concrete”) to reason about than Turing machines. The
most direct way to prove this separation would be to show that some problem believed not to be in
P (such as the Integer Factorisation problem, or any NP-complete problem) requires circuits
of super-polynomial size. Indeed, the result that Parity /∈ AC0 seems to represent progress in this
direction.

Ideally, we could imagine that we would develop a test which we could apply to the truth table
of any boolean function f : {0, 1}n → {0, 1}, which would, in time polynomial in the size of the
truth table, output either “easy” (f has a circuit of size at most nk, for some k) or “hard” (f does
not have such a circuit). If we could then find a family of functions f known to be in NP, but for
which this test output “hard”, we would have shown NP 6⊂ P/poly. As well as helping to resolve
complexity-theoretic issues, such a test would be very useful in practice.

Unfortunately, it has been shown that (modulo some reasonable assumptions) such a test cannot
exist, significantly restricting the potential for this approach to prove P 6= NP. The proof of this

67

result is of some conceptual interest in itself as it links two apparently (?) disparate areas: hardness
and pseudorandomness.

In order to state the result more formally, we will need some definitions. Let Fn be the set of
boolean functions f : {0, 1}n → {0, 1}. A property Pn is a function Pn : Fn → {0, 1}. We say that
Pn is natural if it satisfies the following two properties.

• (Constructivity) For any f : {0, 1}n → {0, 1}, computing Pn(f) can be done in time
polynomial in the size of the truth table of f , i.e. in time 2O(n).

• (Largeness) At least a 2−O(n) fraction of functions f ∈ Fn satisfy Pn(f) = 1.

A good example of a natural property is the property “f does not become constant after fixing
all but nε variables of the input, for some constant ε”, which was used in the proof that Parity
/∈ AC0. It can be verified that this property is satisfied by random functions with high probability,
and can be checked in time 2O(n).

We say that Pn is useful against P/poly if the circuit size of any sequence of functions f1, f2, . . . ,
where fn ∈ Pn, is super-polynomial in n; i.e. for any constant k, for sufficiently large n, the circuit
size of fn is larger than nk. If a natural property Pn exists which is useful against P/poly, we
therefore have an algorithm which we can apply to boolean functions to certify that they do not
have small circuits. Equivalent definitions can be formulated for proofs useful against other circuit
complexity classes, but we will only consider P/poly here.

We will also need the concept of one-way functions, which are functions which are easy to
compute but hard to invert. The field of cryptography is essentially based around the idea of
one-way functions (although we do not know if any such functions exist!).

A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ is said to be a subexponentially
strong one-way function if there is an ε > 0 such that, for every probabilistic algorithm A running
in time 2n

ε
, there is a function δ : N→ [0, 1] such that, for every n,

Pr
x∈{0,1}n

[A(f(x)) = y for some y such that f(y) = f(x)] < δ(n),

and δ(n) < n−c for every constant c and sufficiently large n. In other words, any probabilistic
algorithm running in time 2n

ε
has super-polynomially small probability of finding some y such that

f(y) = f(x). We think of f as encoding its input x in such a way that it is hard for any adversary
to decode it. It is not obvious that one-way functions should exist; indeed, if they do exist, then
P 6= NP. However, a number of natural functions are conjectured to be one-way. A simple example
is integer multiplication: inverting the function f which treats its input as two n-bit numbers and
outputs their product is essentially the Integer Factorisation problem. (Recall that the best

known algorithm for this problem uses time 2O(n1/3(logn)2/3).)

We are finally ready to state the main result about natural proofs.

Theorem 12.11. If there exists a natural property Pn which is useful against P/poly, subexponen-
tially strong one-way functions cannot exist.

We prove this theorem by appealing to a result connecting pseudo-random function generators
and one-way functions, which we will state without proof.

A pseudo-random function generator is a polynomial-time computable function f : {0, 1}nc →
Fn, for some constant c > 1. f takes as input an nc-bit “key” s, and outputs a function f(s) ∈ Fn

68

which is indistinguishable from a random function to any probabilistic algorithm A that runs in
time polynomial in the truth table of f(s), i.e. in time 2O(n). Formally,∣∣∣∣ Pr

g∈Fn
[A(g) = 1]− Pr

s∈{0,1}nc
[A(f(s)) = 1]

∣∣∣∣ ≤ 2−O(n).

In particular, observe that A cannot just attempt to guess the key s, as this would require time
2Θ(nc). The following lemma, which we will not prove here, states that pseudo-random function
generators can be constructed from one-way functions.

Lemma 12.12. Given that a family of subexponentially strong one-way functions exists, then a
family of pseudo-random function generators exists.

Based on this lemma, we can show that the existence of useful natural proofs implies the
nonexistence of pseudo-random function generators, thus proving Theorem 12.11.

Lemma 12.13. If there exists a natural property Pn which is useful against P/poly, pseudo-random
function generators cannot exist.

Proof. Assume that such a property Pn does exist. Then we can distinguish the output of such
pseudo-random function generators from true randomness, i.e.:∣∣∣∣ Pr

g∈Fn
[Pn(g) = 1]− Pr

s∈{0,1}nc
[Pn(f(s)) = 1]

∣∣∣∣ ≥ 2−O(n).

To see this, note that f(s) is polynomial-time computable, and thus cannot satisfy the property Pn.
However, by the largeness property, at least a 2−O(n) fraction of functions will be in Pn, and hence
we are able to distinguish the two cases. Note that we have used all the attributes of a natural
property useful against P/poly: constructivity, largeness and usefulness.

12.5 Historical notes and further reading

The proof that most boolean functions require exponential size goes back to Shannon in 1949.

NC stands for “Nick’s Class” in honour of Nick Pippenger, who first defined the class, while
the A in AC stands for “alternations”. The discussion of the circuit model given here is largely
based on Arora-Barak (chapter 6) and Papadimitriou (chapters 11 and 15). Arora-Barak chapter
6 includes a proof of H̊astad’s Switching Lemma.

The notion of “natural proof” was invented by Razborov and Rudich in 1994, and has turned
out to be a remarkably wide-ranging conceptual roadblock to proving P 6= NP. See Arora-Barak
chapter 23 for a discussion. There is a vast literature concerning pseudorandomness and one-way
functions. For details of the results sketched out here, a good source is the two-volume work
“Foundations of Cryptography” by Oded Goldreich1.

1http://www.wisdom.weizmann.ac.il/~oded/foc-drafts.html

69

http://www.wisdom.weizmann.ac.il/~oded/foc-drafts.html

x2

x1 x3

x5 x11 0

0 1 1 0

Figure 21: A decision tree of depth 3.

13 Decision trees

We have seen that there are many conjectured separations between complexity classes which are not
known to hold. We now change tack and consider a much simpler model than the Turing machine,
where it is much easier to find provable lower bounds on the complexity of problems. Nevertheless,
even in this simple model there are still many open questions.

Imagine we want to compute some (known) boolean function f : {0, 1}n → {0, 1} of some
(unknown) input x ∈ {0, 1}n. Although x is unknown, we are given access to individual bits of
x via an oracle Ox which, on input of an index i ∈ {1, . . . , n}, replies with the bit xi. Our goal
is to compute f(x) using the minimal number of queries to Ox in the worst case, i.e. to minimise
the maximum (over x) possible number of queries used. It is clear that any function f(x) can be
computed using n queries, as this is enough to learn x completely. However, certain functions can
be computed with far fewer queries.

For example, consider the function ADDR : {0, 1}m+2m → {0, 1} where we divide the input of
size n = m+2m into blocks of m bits and 2m bits (an “address register” and a “data register”), and
define ADDR(i, x) = xi. That is, ADDR returns the bit of the data register given by the address
register. It is easy to see that, if we query every bit of the address register, this suffices to compute
ADDR on every possible input and uses only O(log n) queries.

In general, the operation of a deterministic algorithm in the query model is given by a decision
tree (see Figure 21 for a simple example). At each step of the algorithm, we query a bit xi, where
the choice of i depends on the responses to all previous queries we have made. At the end of the
algorithm, we either output 0 or 1. Thus we can express the operation of the algorithm by a binary
tree whose vertices are labelled with variables xi, 1 ≤ i ≤ n, and whose leaves are labelled with
0 or 1. The worst-case number of queries made by the algorithm is the depth of the tree, i.e. the
maximal number of vertices labelled by variables encountered on any path from the root to a leaf.
The minimal depth over all decision trees computing f is called the decision tree complexity of f
and denoted D(f). More concisely,

D(f) = min
T,T computes f

max
x∈{0,1}n

[number of variables queried by T on input x].

A function f : {0, 1}n → {0, 1} is called evasive if D(f) = n.

We have the following observations about decision tree complexity.

Lemma 13.1. For any f : {0, 1}n → {0, 1} that depends on all n variables, D(f) = Ω(log n).

Proof. Any decision tree T with depth at most d contains at most 2d+1− 1 internal vertices, so the
function computed by T can depend on at most 2d+1 − 1 variables.

70

Recall that the Hamming weight of a bit-string y ∈ {0, 1}n, which we write wt(y), is the number
of 1’s in y, i.e. wt(y) = |{i : yi = 1}|.

Lemma 13.2. If |{x : f(x) = 1}| is odd, then f is evasive. Further, if f is not evasive, then
exactly half the bit-strings x such that f(x) = 1 have even Hamming weight.

Proof. For the first part, we prove the contrapositive. For any leaf ` at depth d in a decision tree T
computing a function f : {0, 1}n → {0, 1}, exactly 2n−d possible input strings x lead to `. If d < n,
an even number of inputs x lead to `. As each string leads to exactly one leaf, if the depth of T is
less than n, |{x : f(x) = 1}| is even. For the second part, note that for each such leaf `, exactly
half of the strings that lead to ` have even Hamming weight.

One method of lower bounding decision tree complexity is the adversary approach. Here we
imagine that the input x is chosen bit by bit, by an adversary, in order to frustrate any pos-
sible decision tree making a small number of queries. For example, consider the ORn function
ORn(x1, . . . , xn) = x1 ∨ x2 · · · ∨ xn; we will show that D(ORn) = n. Let T be a decision tree
computing ORn, and assume (without loss of generality) that T never queries the same variable
twice. Whichever variable is queried by T , the adversary will always respond with 0. Even after
n− 1 queries, the algorithm therefore does not know if the answer should be 0 or 1.

The following technique, which is known as the method of polynomials, provides a powerful
alternative tool to lower bound decision tree complexity. Any function f : {0, 1}n → R can be
written as a multilinear polynomial p : Rn → R in n variables x1, . . . , xn ∈ R, and this polynomial
is unique (you will prove these claims in an exercise). Let deg(f) be the degree of this polynomial
(i.e. the largest total number of variables in any term of p). For example:

• The function computed by the decision tree illustrated in Figure 21 has polynomial represen-
tation 1− x1 − x2 + x1x2 + x2x3 + x2x5 − x1x2x3 − x2x3x5 and hence degree 3.

• The function ANDn defined by ANDn(x1, . . . , xn) = x1∧· · ·∧xn has polynomial representation
x1x2 . . . xn and hence deg(ANDn) = n.

Theorem 13.3. For any boolean function f , D(f) ≥ deg(f).

Proof. We show by induction that any decision tree T of depth d that computes a boolean function
f gives rise to a degree d polynomial that represents f . This is clearly true for decision trees of
depth 0 (which are just constant functions). So assume without loss of generality that x1 is the
first variable queried by T . Then f(x) can be written as f(x) = (1− x1)f0(x) + x1f1(x) for some
functions f0, f1 computed by decision trees of depth at most d − 1. As the degree of f0 and f1 is
at most d− 1, the degree of f is at most d.

13.1 Nondeterministic decision tree complexity

Just as in the model of time complexity, there is a nondeterministic analogue of the deterministic
decision tree model. It is most natural to express the idea of nondeterminism using the concept of
certificates, which are defined as follows.

Let f : {0, 1}n → {0, 1} be a boolean function, and let C : S → {0, 1} be an assignment to
some subset S ⊆ [n] of the input variables. We say that C is a 0-certificate (resp. 1-certificate) if
f(x) = 0 (resp. f(x) = 1) whenever the variables in S are assigned according to C. We further say
that C is a 0-certificate for f on x, for some x ∈ {0, 1}n such that f(x) = 0, if C is a 0-certificate

71

and C is consistent with x (i.e. C(i) = 0 ⇔ xi = 0). 1-certificates for f on x are defined similarly
for x such that f(x) = 1.

Let Cx(f) be the size of a smallest f(x)-certificate for f on x. Then the 0-certificate complexity
of f is C(0)(f) = maxx,f(x)=0Cx(f), and similarly the 1-certificate complexity of f is C(1)(f) =

maxx,f(x)=1Cx(f). The certificate complexity of f is C(f) = max{C(0)(f), C(1)(f)}.
The idea behind certificates is that if the algorithm knows the bits xi, i ∈ S, it can be sure

that f(x) = 0 or f(x) = 1, respectively. For example, consider the OR function on n bits. For
any x such that OR(x) = 1, knowing that any bit xi = 1 suffices to certify that OR(x) = 1, so
C(1)(OR) = 1. However, if x = 0n, in order to certify that f(x) = 0 the algorithm needs to know
all n bits of the input. Hence C(0)(OR) = n, so C(OR) = n.

Roughly speaking, the class of functions f such that D(f) = polylog(n) is the decision tree
analogue of the time complexity class P; similarly, functions f with C(1)(f) = polylog(n), C(0)(f) =
polylog(n) correspond to NP and co-NP respectively. Recall that, in the world of time complexity,
it is unknown whether P = NP∩ co-NP. In the simplified world of decision tree complexity, we can
actually prove a result analogous to P = NP ∩ co-NP.

Theorem 13.4. For any f : {0, 1}n → {0, 1}, D(f) ≤ C(0)(f)C(1)(f) ≤ C(f)2.

In order to prove Theorem 13.4, we will need the following lemma.

Lemma 13.5. Let C0 : S → {0, 1}, C1 : T → {0, 1} be, respectively, a 0-certificate and a 1-
certificate for a boolean function f : {0, 1}n → {0, 1}. Then there exists i ∈ S ∩ T such that
C0(i) 6= C1(i).

Proof. Assume the contrary: for all i ∈ S ∩ T , C0(i) = C1(i). Then consider the bit-string x which
assigns xi = C0(i) for all i ∈ S, xi = C1(i) for all i ∈ T , and xi = 0 for i /∈ S ∪ T . This x is
consistent with both C0 and C1, contradicting the definition of certificates.

Proof of Theorem 13.4. Let c = C(0)(f)C(1)(f). The proof is by induction on c. For c = 1, by
Lemma 13.5 f depends only on one input bit xi, so we must have f(x) = xi or f(x) = ¬xi. In either
case D(f) = 1. So assume that C(0)(f) = r ≥ 2 and let C : S → {0, 1} be a minimal 0-certificate,
for some S of size r. Our decision tree for f on input x will begin by querying all the variables in
S. If the answers were consistent with C, then f(x) = 0, so we can stop. Otherwise, we recursively
compute the function g(x′) formed by fixing the bits of x consistent with the responses to the
queries. By Lemma 13.5, S intersects every T such that C ′ : T → {0, 1} is a 1-certificate of g. This
implies that we can save one query when querying any 1-certificate C ′ of g (as we already know
one bit of C ′). Hence, as C(0)(g) ≤ C(0)(f) and C(1)(g) ≤ C(1)(f), by the inductive hypothesis

D(f) ≤ r + C(0)(g)(C(1)(g)− 1) ≤ r + r(C(1)(f)− 1) ≤ C(0)(f)C(1)(f),

which is the theorem.

13.2 Randomised decision tree complexity

Also by analogy with the model of time complexity, we can generalise the decision tree model by
adding the ability to use randomness. A probabilistic decision tree can be defined as follows. At
each step, rather than choosing a variable to query deterministically based on previous queries,
the algorithm can choose a variable to query based on a string of random bits, as well as the
answers to previous queries. An alternative way of arriving at the same definition is to define a

72

probabilistic decision tree as a probability distribution over deterministic decision trees. The depth
of a probabilistic tree T is defined as the worst-case expected number of variables queried. That
is, the maximum over all x of the expected number of variables queried by T on input x.

For f : {0, 1}n → {0, 1}, we then let R(f) denote the randomised decision tree complexity of
f – i.e. the minimal depth of T , over all randomised decision trees T that compute f . As with
deterministic decision trees, we insist that T computes f with certainty. This restriction may
appear to imply that no saving in queries can be made over deterministic trees, as (unlike the
complexity class BPP, for instance) probabilistic trees must still always be correct on every input.
However, this is not the case: we now give an example for which probabilistic trees significantly
outperform deterministic trees.

Let NANDn : {0, 1}2n → {0, 1} denote the n-level NAND tree function, which is the function
defined recursively by NAND1(x1, x2) = ¬(x1 ∧ x2), and

NANDn(x1, . . . , x2n) = ¬(NANDn−1(x1, . . . , x2n−1) ∧NANDn−1(x2n−1+1, . . . , x2n)).

Theorem 13.6. D(NANDn) = 2n, but R(NANDn) = O
((

1+
√

33
4

)n)
.

Hence R(NANDn) = O(D(NANDn)0.753...).

Proof. The claim that D(NANDn) = 2n follows from deg(NANDn) = 2n, which can be proven
by induction. For the second claim, consider the following randomised recursive algorithm An for
computing NANDn. Beginning at the root, choose one of the two children at random and evaluate
its subtree using An−1. If it evaluates to 0, then return 1. Otherwise, evaluate the other subtree
using An−1.

We now analyse the expected number of queries made by this algorithm. Let α0(n) (resp. α1(n))
denote the maximum expected number of queries over all inputs that evaluate to 0 (resp. 1). It is
obvious that

α0(n) ≤ 2α1(n− 1)

(for inputs which evaluate to 0, both the subtrees must evaluate to 1). On the other hand, for any
x, if NANDn(x) = 1, then with probability at least 1/2 we evaluate only one of the subtrees. So

α1(n) ≤ α0(n− 1) +
1

2
α1(n− 1).

So α1(n) ≤ 2α1(n− 2) + 1
2α1(n− 1). Solving this recurrence gives α1(n) ≤

(
1+
√

33
4

)n
; α0(n) then

obeys the same bound, up to a constant factor.

The NAND tree example may appear somewhat contrived. However, it is essentially equivalent
to a natural model for the analysis of two-player games. Consider a game like chess where the
players take it in turns to make a move. Some sequences of moves lead to victory for player 1, and
others to victory for player 2. For simplicity, restrict to the special case where each player only has
a choice of two moves (labelled 0 or 1) at each step. In a game with only one round, player 1 wins
if either of these moves is a winning move. In a game with two rounds, player 1 wins if, for each
move of player 2, there exists a move player 1 can make such that the sequence of two moves leads
to victory for player 1. Continuing this process, we find that in a game with n rounds (where n is
even), whether player 1 wins can be determined by evaluating an AND-OR tree with n levels (an
AND-OR tree is a tree whose root is labelled with AND, and vertices at each level are alternately
labelled with OR and AND; see Figure 22). The leaves of the tree each correspond to a sequence

73

∧

∨ ∨

0 1 1 0

Figure 22: An AND-OR tree corresponding to a game with a winning strategy for player 1.

of moves, and are labelled with bits which specify whether each strategy is a winning strategy for
player 1. Finally, observe that AND-OR trees with 2n levels are the same as NAND trees with n
levels (up to negating the input and output bits). We therefore see that the randomised algorithm
of Theorem 13.6 gives a more efficient way of evaluating game trees.

It is not known how large the separation between randomised and deterministic decision tree
complexity can be. However, it is known that the gap can be no bigger than quadratic.

Theorem 13.7. For any function f : {0, 1}n → {0, 1}, D(f) = O(R(f)2).

Proof. Follows from Theorem 13.4 by observing that R(f) ≥ C(f): if a randomised algorithm is
required to succeed with certainty, the bits it queries must form a certificate for f .

It is also possible to define a variant of randomised decision tree complexity which is perhaps
closer in spirit to BPP, where the algorithm is allowed to fail with probability at most ε in the
worst case, for some ε < 1/2; then the model of randomised decision tree complexity discussed
above corresponds to ε = 0. It is known that, for constant ε, there can be at most a cubic
separation between this model of randomised decision tree complexity and deterministic decision
tree complexity.

13.3 Decision trees and symmetry

We now study the question of putting lower bounds on decision tree complexity in the case where
f satisfies some symmetry properties. Let π ∈ Sn be a permutation of the integers {1, . . . , n} and
for x ∈ {0, 1}n write π(x) = (xπ(1), . . . , xπ(n)). We say that f : {0, 1}n → {0, 1} is invariant under
π if f(x) = f(π(x)) for all x. The set of permutations under which f is invariant of course forms a
subgroup of Sn. We say that a group of permutations Γ is transitive if, for any pair i, j ∈ [n], there
exists π ∈ Γ such that π(i) = j.

Intuitively, functions which are invariant under a transitive permutation group “look the same”
in every direction, so they should require many queries to compute. This is formalised as the
following conjecture, which has been open for several decades.

Conjecture 13.8. Every non-constant monotone function f : {0, 1}n → {0, 1} such that f is
invariant under a transitive permutation group is evasive.

A boolean function f is said to be monotone if flipping the value of an input bit from 0 to
1 cannot change the output of the function from 1 to 0. The restriction to monotone functions
in Conjecture 13.8 is necessary (below we give an example of a non-monotone function which is
invariant under a transitive permutation group, but is not evasive).

74

Conjecture 13.8 (in fact, a stronger result than this conjecture) is known to be true given certain
restrictions on the input size.

Theorem 13.9. Let n be a prime power. If f : {0, 1}n → {0, 1} is invariant under a transitive
permutation group Γ and f(0n) 6= f(1n), f is evasive.

Note that, if f is monotone and non-constant, f(0n) 6= f(1n).

Proof. Let n = pr for some prime p. Write orbit(x) for the orbit of x under Γ, i.e. {y : y = π(x), π ∈
Γ}. We first show that, for all x /∈ {0n, 1n}, |orbit(x)| is an integer multiple of p.

We have ∑
y∈orbit(x)

wt(y) =
∑

y∈orbit(x)

n∑
i=1

yi =
n∑
i=1

∑
y∈orbit(x)

yi = n
∑

y∈orbit(x)

y1,

where the last equality holds because Γ is transitive, so there must exist π ∈ Γ such that π(i) = 1.
On the other hand, all bit-strings y ∈ orbit(x) have the same Hamming weight, so∑

y∈orbit(x)

wt(y) = |orbit(x)|wt(x).

Thus |orbit(x)|wt(x) is a multiple of n = pr. As wt(x) is not a multiple of n for x /∈ {0n, 1n},
|orbit(x)| is a multiple of p.

By Lemma 13.2, f is evasive if ∑
x,f(x)=1

(−1)wt(x) 6= 0.

For each x such that f(x) = 1, consider the contribution of orbit(x) to this sum. All bit-strings
y ∈ orbit(x) have f(y) = 1, wt(y) = wt(x), so∑

y∈orbit(x)

(−1)wt(x) = |orbit(x)|(−1)wt(x).

For x /∈ {0n, 1n}, this quantity is a multiple of p. Since either f(0n) = 1 or f(1n) = 1, but not
both, the sum over all x is a multiple of p, plus or minus 1. In particular, the sum is nonzero, so f
is evasive.

A particularly interesting set of boolean functions to consider in the decision tree model are

graph properties. A graph property is a function f : {0, 1}(
n
2) → {0, 1}, where the input bits

represent the edges in an undirected graph, such that f is unchanged under permutations of the
vertices of the graph. Natural graph properties include connectivity (is every vertex connected to
every other vertex by an edge?) and whether a graph has a Hamiltonian path. Most such properties
which have been studied are known to be evasive. However, it is known that non-evasive graph
properties do exist.

A scorpion graph on n vertices contains a vertex b (the body) with n− 2 neighbours, a vertex s
(the sting) with 1 neighbour, and a vertex t (the tail) connected to both b and s (and only them).
The remaining vertices form a set S (the feet) which are all connected to b. Each pair of vertices
within S may or may not have an edge between them. See Figure 23 for an illustration.

Theorem 13.10. There is a deterministic algorithm which determines whether a graph G is a
scorpion graph using O(n) queries.

75

Figure 23: A scorpion graph.

Proof. Exercise.

We therefore consider only monotone graph properties and would like to show that any monotone
graph property is evasive (i.e. the special case of Conjecture 13.8 where f is a graph property).
Theorem 13.9 does not appear to immediately apply to graph properties, as

(
n
2

)
is never a power

of a prime for n > 3. However, we can use the theorem to prove the following result.

Theorem 13.11. Assume n = 2k for some integer k. Then every non-trivial monotone graph

property f : {0, 1}(
n
2) → {0, 1} satisfies D(f) ≥ n2/4.

Proof. For any integer j, let Gj be the graph made up of n/2j disjoint copies of a clique on 2j

vertices. Thus G0 is the empty graph and Gk is the complete graph on n vertices. As f is monotone
and non-trivial, f(G0) = 0 and f(Gk) = 1; further, there is a unique i such that f(Gi) = 0 but
f(Gi+1) = 1.

Imagine we are given the promise that the input graph G has the following property: the
induced subgraph on vertices 1, . . . , n/2 consists of n/2i+1 disjoint cliques, as does the induced
subgraph on vertices n/2 + 1, . . . , n. This implies that the only input bits (i.e. edges) on which f
depends are the n2/4 potential edges between the first n/2 vertices and the second n/2 vertices. Let
g : {0, 1}n2/4 → {0, 1} denote the restriction of f to these edges. Observe that g is still monotone.
Since n is a power of 2, n2/4 is a power of a prime. g(0n

2/4) 6= g(1n
2/4) since g(0n

2/4) = f(Gi) = 0
and g(1n

2/4) = 1 (as this corresponds to Gi+1 with some additional edges). Also, g is invariant
under the transitive permutation group generated by swapping any two vertices either side of the
bipartite cut. Thus g is evasive by Theorem 13.9, so D(f) ≥ D(g) = n2/4.

Using similar but more technical ideas, the following result can be proven.

Theorem 13.12. Let f : {0, 1}(
n
2) → {0, 1} be a non-trivial monotone graph property. Then

D(f) = Ω(n2).

However, even for monotone graph properties, Conjecture 13.8 remains open.

13.4 Notes and further reading

An excellent survey on decision tree complexity and many other measures of complexity for boolean
functions is “Complexity measures and decision tree complexity” by Buhrman and de Wolf, which
can easily be found online. The results discussed here concerning game trees and graph properties
are due to Saks and Wigderson and Rivest and Vuillemin, respectively; the exposition here is largely
based on lecture notes for the course “Concrete Models of Computation” by Jeff Erickson1.

1http://compgeom.cs.uiuc.edu/~jeffe/teaching/497/05-evasive.pdf

76

http://compgeom.cs.uiuc.edu/~jeffe/teaching/497/05-evasive.pdf

Alice: x ∈ X Bob: y ∈ Y
m1

m2

...

mr

f(x, y)

Figure 24: A r-message communication protocol for computing f(x, y).

14 Communication complexity

The theory of communication complexity studies the amount of communication required for two (or
more) spatially separated parties to accomplish some task. While a simple model, it turns out to
have numerous applications in theoretical computer science. As Arora and Barak note, “it strikes
the elusive balance of being simple enough so that we can actually prove strong lower bounds, but
general enough so that we can obtain important applications of these lower bounds”.

In the simplest variant of the model, we imagine we have two players (conventionally known as
Alice and Bob). Each has an input picked from some set (Alice has x ∈ X, Bob has y ∈ Y). They
wish to compute some known function f(x, y), where f : X × Y → Z. Unfortunately, Alice does
not know Bob’s input y, and Bob does not know Alice’s input x, so they have to communicate in
order to compute f(x, y). Their goal is for Bob to output f(x, y), perhaps with some probability
of failure, using the smallest possible amount of communication. They have previously agreed on
a protocol to compute f(x, y), which proceeds as follows. Alice sends a message to Bob, based
on her own input x. Based on Alice’s message and his own input y, Bob chooses a message to
send to Alice. Alice then replies to Bob, and this protocol continues until one of the parties (we
assume Bob) outputs f(x, y). See Figure 24 for an illustration. Note that, as with the decision tree
model, we assume that computation is free: Alice and Bob are both computationally unbounded.
This is a reasonable model for distributed computational tasks where communication is much more
expensive than local computation.

For a function f : X × Y → Z, we define the deterministic communication complexity of f ,
Dcc(f), as the minimum amount of total communication, measured in bits, required to compute
f(x, y) with certainty for any possible pair of inputs x, y. We make the following initial simple
observations.

• Dcc(f) ≤ dlog2 |X|e: to compute any function f , Alice can just send her input to Bob.

• If we require each message between the parties to be one bit long, it only changes the com-
munication complexity of f by a constant factor. We henceforth assume this restriction.

• A protocol P which communicates at most k bits can thus be viewed as a binary tree with
at most 2k leaves.

• If we change the model so both Alice and Bob need to know the answer f(x, y), it only
changes Dcc(f) by an additive O(log |Z|) term.

77

0 0 1 1
1 1 1 1
0 0 0 1
0 0 0 1

Figure 25: A completed protocol partitions a communication matrix into monochromatic rectangles.

As with the decision tree model, it is hopefully clear that some functions can be computed using
much less communication than the trivial protocol where Alice sends all her input to Bob (or
vice versa). For example, consider the function XOR2 : {0, 1}n × {0, 1}n → {0, 1} defined by
XOR2(x, y) =

⊕n
i=1(xi ⊕ yi). In other words, XOR2 is defined by taking the XOR of Alice’s input

with Bob’s input, and then the XOR of the resulting n-bit string. Using linearity of ⊕, we have

n⊕
i=1

(xi ⊕ yi) =

(
n⊕
i=1

xi

)
⊕

 n⊕
j=1

yj

 .

Thus Alice and Bob can compute XOR2 using only one bit of communication: Alice just computes
the bit a =

⊕n
i=1 xi and sends it to Bob, who has previously computed b =

⊕n
j=1 yj . Bob then

outputs a⊕ b.

14.1 The rank lower bound

We would like to analyse communication protocols mathematically. Define the communication
matrix of f : X × Y → Z as the |X| × |Y | matrix Mf where Mf

xy = f(x, y). The rows of Mf are
indexed by Alice’s inputs x ∈ X, and the columns by Bob’s inputs y ∈ Y . We will analyse an
arbitrary communication protocol P for f in terms of Mf .

A (combinatorial) rectangle in Mf is a submatrix of Mf corresponding to entries in A × B,
where A ⊆ X, B ⊆ Y . Note that the rows and columns of Mf are not required to be consecutive,
i.e. there may be gaps. We say that A × B is monochromatic if, for all x ∈ A, y ∈ B, Mf

xy is
constant. We now observe that any protocol P partitions Mf into combinatorial rectangles, which
follows by induction. Assume that after some number of steps of the protocol, Alice and Bob know
that the input is contained in some rectangle R (this is clearly true at the start because X × Y is
a rectangle). At the next step in the protocol, one player sends a bit to the other. The choice of
this bit, which depends on that player’s own input, partitions R into two rectangles R0, R1. When
the other player receives the bit, both players know that their joint inputs are contained in either
R0 or R1.

At every stage of the protocol P, each rectangle in the corresponding partition gives a subset of
inputs for which the communication pattern between Alice and Bob has so far been identical. Thus,
if P is to compute f(x, y) successfully for all x and y, it must be the case that each rectangle in the
final partition corresponding to P is monochromatic. Hence, if P computes f and communicates
k bits in total, this gives a partition of Mf into at most 2k monochromatic rectangles, as shown
in Figure 25. We will use this simple idea to prove the following lower bound on communication
complexity in terms of matrix rank (over the reals).

Theorem 14.1. For any function f : X × Y → {0, 1}, Dcc(f) ≥ dlog2 rank(Mf)e.

78

Proof. Let P be a protocol for f that communicates k bits. Let L1 be the set of leaves of P (viewed
as a tree) such that the output is 1. For each ` ∈ L1, let R` be the rectangle given by the subset
of the inputs that reach the leaf `, and define the matrix M ` by

M `
xy =

{
1 if (x, y) ∈ R`
0 if (x, y) /∈ R`.

As the rectangles R` partition X × Y , we have Mf =
∑

`∈L1
M `. By subadditivity of the rank,

this implies that

rank(Mf) ≤
∑
`∈L1

rank(M `).

But for each `, rank(M `) = 1, so rank(Mf) ≤ |L1| ≤ 2k.

It is a long-standing but unproven conjecture that Theorem 14.1 is close to tight.

Conjecture 14.2 (Log-Rank Conjecture). For any function f : X × Y → {0, 1}, Dcc(f) ≤
poly(log rank(Mf)).

We now give a couple of examples demonstrating the power of this bound.

Theorem 14.3. For any set X, let EQ : X ×X → {0, 1} be the equality function,

EQ(x, y) =

{
1 if x = y

0 otherwise.

Then Dcc(EQ) = dlog2 |X|e.

Proof. The communication matrix MEQ is simply the |X| × |X| identity matrix, which has rank
|X|. For the upper bound, Alice can just send all her input to Bob.

Theorem 14.4. Let IP : {0, 1}n×{0, 1}n → {0, 1} be the inner product function over F2: IP(x, y) =
x · y =

⊕n
i=1 xiyi. Then Dcc(IP) = n.

In order to prove this result, it will be convenient to introduce an important set of functions:
the characters of the group Zn2 . These are the 2n functions χS : {0, 1}n → {±1}, S ⊆ [n], defined
by

χS(x) = (−1)
∑
i∈S xi .

For example, χ∅(x) = 1 for all x, and χ[n](x) = (−1)wt(x). These functions satisfy the following
important orthogonality relations.

Lemma 14.5. For any S, T ⊆ [n],

∑
x∈{0,1}n

χS(x)χT (x) =

{
2n if S = T

0 otherwise.

Proof. We have∑
x∈{0,1}n

χS(x)χT (x) =
∑

x∈{0,1}n
(−1)

∑
i∈S xi+

∑
j∈T xj =

∑
x∈{0,1}n

(−1)
∑
i∈S∆T xi ,

79

recalling that S∆T denotes the symmetric difference between the sets S and T , i.e. the set of
integers i in either S or T , but not both. The lemma follows from the claim that, for any S 6= ∅,

|{x :
⊕
i∈S

xi = 0}| = |{x :
⊕
i∈S

xi = 1}|.

But this claim holds because there is a bijection between these two sets: for each x such that⊕
i∈S xi = 0, flipping bit j of x, for arbitrary j ∈ S, gives x′ such that

⊕
i∈S x

′
i = 1.

Proof of Theorem 14.4. Consider the matrix N defined by Nxy = 1− 2M IP
xy . As the all 1’s matrix

has rank 1, rank(M IP) ≥ rank(N)− 1. We have

Nxy = (−1)
⊕n
i=1 xiyi .

Thus, if we identify bit-strings y ∈ {0, 1}n with subsets Y ⊆ [n] in the obvious way (yi = 1⇔ i ∈ Y),
we see that the rows of N are given by characters of Zn2 . By Lemma 14.5, the rows of N are all
orthogonal, so N has rank 2n. Thus Dcc(IP) ≥ dlog2(2n − 1)e, which equals n for n ≥ 2. The
special case n = 1 can be verified directly.

14.2 Randomised communication complexity

As with the decision tree model, we can define a randomised variant of communication complexity.
The basic idea is that Alice and Bob’s protocol P can depend on a string r of uniformly random
bits: at each step of the protocol, each player decides what to reply based on r, as well as their
inputs and the communication so far. However, there is an additional complication as compared
with decision trees: do Alice and Bob each see the other’s random coin flips (i.e. the randomness r
is public), or do they each not know what the other’s random coin flips are (i.e. r is split into two
strings rA, rB)? These two models could potentially give rise to different measures of complexity.
The second model is called “private” to contrast with “public”, but note that there is no implication
that Alice’s random string should be kept secret from Bob, or vice versa.

For any function f : X × Y → Z, we define Rcc(f) as the minimum amount of total commu-
nication required to compute f(x, y) with success probability at least 2/3 on any pair of inputs

(x, y), where Alice and Bob are each given a private random bit-string; we define Rpubcc (f) similarly,
but give Alice and Bob a public random bit-string. As with amplification of BPP algorithms, the
model is not significantly changed in either setting if the success criterion is changed from 2/3 to an
arbitrary constant strictly greater than 1/2. Observe that the length of the random string does not
feature in the calculation of complexity; that is, it can be arbitrarily long. The following example
illustrates the power of (public) randomness.

Theorem 14.6. Let EQ : {0, 1}n × {0, 1}n → {0, 1} be the equality function on two n-bit strings.

Then Rpubcc (EQ) ≤ 2.

Proof. Consider the following protocol P. Alice and Bob jointly choose a uniformly random string
r ∈ {0, 1}n. Alice sends Bob the single bit x · r =

⊕n
i=1 xiri. Bob computes y · r and outputs 1

if x · r = y · r, and 0 otherwise. If x = y, then Bob will always output 1. On the other hand, if
x 6= y, by Lemma 14.5 Prr[x · r 6= y · r] = 1/2, so Bob will output 0 with probability 1/2. If the
players carry out P twice (using independently chosen r), and Bob outputs 1 if and only if both
runs output 1, the probability of failure is at most 1/4, which is strictly less than 1/3.

80

We thus see that Rpubcc (f) can be almost arbitrarily small compared with Dcc(f). It is clear

that for any f , Rpubcc (f) ≤ Rcc(f): given a public random string r, the players can simply choose to
divide it into substrings rA, rB such that Alice only looks at rA, and Bob only looks at rB. On the
other hand, we now show that Rpubcc (f) cannot be too much smaller than Rcc(f).

Theorem 14.7 (Newman’s Theorem). For any function f : {0, 1}n × {0, 1}n → {0, 1}, Rcc(f) =

O(Rpubcc (f) + log n).

Proof. It suffices to show that any public coin protocol P can be transformed into another public
coin protocol P ′ which has the same communication complexity, and such that P ′ uses only O(log n)
random bits. Then, to make P ′ into a private coin protocol, Alice can just generate these random
bits herself and send them to Bob before the protocol starts.

Let Z(x, y, r) be the random variable which is equal to 1 if P is wrong on input (x, y) and random
string r (i.e. P outputs 0 when it should output 1, or vice versa), and is equal to 0 otherwise. As
P computes f with failure probability at most 1/3, Er[Z(x, y, r)] ≤ 1/3 for all (x, y). We now,
iteratively, define a protocol which uses fewer random bits.

For some integer t > 0, let r1, . . . , rt be arbitrary bit-strings, and define the protocol Pr1,...,rt as
follows: Alice and Bob choose 1 ≤ i ≤ t uniformly at random, and then carry out protocol P with
ri as their public random string. We claim that, for any δ > 0, if we take t = O(n/δ2) there exist
strings r1, . . . , rt such that Ei[Z(x, y, ri)] ≤ 1/3+δ, for all (x, y). This claim will imply the theorem:
Alice and Bob use the protocol Pr1,...,rt to compute f , which uses O(log n+log(1/δ)) public random
bits and achieves success probability at least 2/3− δ. Taking δ to be a small constant, we have the
theorem.

It remains to prove that, for t = O(n/δ2), there exist strings r1, . . . , rt such that Ei[Z(x, y, ri)] ≤
1/3 + δ, for all (x, y). To show such a set of strings exist, we use the probabilistic method and pick
the strings at random. For a particular input pair (x, y), the probability (over strings r1, . . . , rt)
that the failure probability is greater than 1/3 + δ is

Pr
r1,...,rt

[Ei[Z(x, y, ri)] > 1/3 + δ] = Pr
r1,...,rt

[(
1

t

t∑
i=1

Z(x, y, ri)

)
− 1/3 > δ

]
.

For each i, EriZ(x, y, ri) ≤ 1/3. Thus, applying the Chernoff bound (Corollary 9.4), we get

Pr
r1,...,rt

[Ei[Z(x, y, ri)] > 1/3 + δ] ≤ e−δ2t/3.

Choosing t = O(n/δ2), this is smaller than 2−2n. Thus, taking a union bound over all pairs (x, y),
the probability over r1, . . . , rt that there exists some (x, y) that Ei[Z(x, y, ri)] > 1/3 + δ is strictly
less than 1, so there must exist some choices r1, . . . , rt such that Ei[Z(x, y, ri)] ≤ 1/3 + δ. This
proves the claim.

Combining Theorems 14.6 and 14.7 implies that there exists a private coin protocol for the
equality function EQ : {0, 1}n × {0, 1}n → {0, 1} which uses only O(log n) bits of communication,
but does not give an explicit description of such a protocol. We now describe an explicit private-coin
protocol which still uses only O(log n) bits of communication.

Let p be a prime number such that n2 < p < 2n2 (it follows from number-theoretic arguments
which we omit that one can always find such a p). If Alice’s input is a ∈ {0, 1}n and Bob’s input
is b ∈ {0, 1}n, we think of these as polynomials A,B ∈ Fp[x]:

A(x) = a1 + a2x+ · · ·+ anx
n−1, B(x) = b1 + b2x+ · · ·+ bnx

n−1.

81

The protocol proceeds as follows: Alice picks r ∈ Fp uniformly at random and sends Bob r and
A(r); Bob then outputs 1 if A(r) = B(r), and 0 otherwise. The number of bits sent is thus
2dlog2 pe = O(log n). If a = b, then A(x) = B(x) for all x ∈ Fp, so Bob always outputs 1. If a 6= b
then A and B are distinct polynomials of degree n − 1. This means that they can be equal on
at most n − 1 elements of Fp (to see this, note that A − B is a degree n − 1 polynomial, which
can have at most n − 1 roots). Thus the probability that Bob incorrectly outputs 1 is at most
(n− 1)/p ≤ 1/n.

14.3 Lower bounds on randomised communication complexity

It is also possible to prove lower bounds on randomised communication protocols. To do so,
we introduce the model of distributional communication complexity, in which the communication
protocol is deterministic, but the inputs are picked according to some probability distribution.

Consider f : X × Y → Z and let µ be a probability distribution on X × Y . The (µ, ε)-
distributional communication complexity of f , written Dµ

cc,ε(f), is the number of bits communicated
by the best deterministic protocol that outputs f(x, y) on at least a 1− ε fraction (with respect to
µ) of inputs (x, y) ∈ X × Y .

For certain distributions µ, distributional communication complexity can be much lower than
randomised communication complexity; this is unsurprising as the first is an average-case model,
whereas the second is a worst-case model. However, it turns out that the worst case distributional
complexity over all distributions µ completely characterises public-coin randomised communication
complexity.

Theorem 14.8. Rpubcc (f) = maxµD
µ
cc,1/3(f).

Proof. We will show that, for any distribution µ, Rpubcc (f) ≥ Dµ
cc,1/3(f). Consider any randomised

protocol P for f . As for every pair of inputs (x, y) P outputs the right answer with probability at
least 2/3, averaging over any distribution µ on the inputs P is still correct with probability at least
2/3, where the probability is taken both over the players’ randomness and the input. Thus there
must exist some choice of random coin flips such that the protocol, fixing that choice of coin flips,
succeeds with probability at least 2/3 with respect to µ.

We will not show the other direction here that Rpubcc (f) ≤ maxµD
µ
cc,1/3(f), which can be proven

using von Neumann’s minimax theorem from the theory of zero-sum games.

Theorem 14.8 gives a way of proving lower bounds on randomised protocols; one picks a suitable
“hard” distribution µ and shows that no deterministic protocol using a small amount of communi-
cation can succeed on a large fraction of the inputs, with respect to µ. One technique for showing
such a lower bound on deterministic protocols is the so-called discrepancy method.

Definition 14.1. Let f : X × Y → {0, 1} be a function, let R be a rectangle, and let µ be a
probability distribution on X × Y . Define

Discµ(R, f) =

∣∣∣∣Pr
µ

[f(x, y) = 0 and (x, y) ∈ R]− Pr
µ

[f(x, y) = 1 and (x, y) ∈ R]

∣∣∣∣ .
The discrepancy of f according to µ is

Discµ(f) = max
R

Discµ(R, f),

where the maximum is taken over all rectangles R.

82

Thus, if f has low discrepancy, any rectangle in the communication matrix Mf has roughly
the same number of zeros as ones (weighted by µ). Intuitively, this should mean it is hard for
communication protocols to determine whether they should output 0 or 1. We will now see that
this intuition is indeed correct.

Theorem 14.9. Let f : X × Y → {0, 1} be a function, and let µ be a probability distribution on
X × Y , and fix 0 < ε < 1/2. Then Dµ

cc,1/2−ε(f) ≥ log2(2ε/Discµ(f)).

Proof. Let P be a deterministic protocol which communicates c bits and computes f with success
probability at least 1/2 + ε, with respect to µ. Then

2ε ≤ Pr
µ

[P(x, y) = f(x, y)]− Pr
µ

[P(x, y) 6= f(x, y)]

=
∑
`

(
Pr
µ

[P(x, y) = f(x, y) and (x, y) ∈ R`]− Pr
µ

[P(x, y) 6= f(x, y) and (x, y) ∈ R`]
)
,

where we split the sum up in terms of the leaves ` of the communication protocol, and R` is the
rectangle corresponding to leaf `. As, for each `, P(x, y) is constant for all (x, y) ∈ R`, this is upper
bounded by∑
`

∣∣∣∣Pr
µ

[f(x, y) = 0 and (x, y) ∈ R`]− Pr
µ

[f(x, y) = 1 and (x, y) ∈ R`]
∣∣∣∣ =

∑
`

Discµ(R`, f) ≤ 2cDiscµ(f).

So 2cDiscµ(f) ≥ 2ε, which is the theorem.

As an example application of this method, we now prove a lower bound on the randomised
communication complexity of the inner product function.

Theorem 14.10. Let IP : {0, 1}n × {0, 1}n → {0, 1} be the inner product function over F2:

IP(x, y) = x · y =
⊕n

i=1 xiyi. Then Rpubcc (IP) ≥ n/2−O(1).

Proof. We will use Theorem 14.9, taking µ to be the uniform distribution. Once again, we let N
be the matrix defined by Nxy = 1− 2M IP

xy . Observe that, for any rectangle R = A×B,

Discµ(R, IP) =

∑
x∈A

∑
y∈B Nxy

22n
=
aTNb

22n
,

where we write a for the characteristic vector of A, i.e. ax = 1⇔ x ∈ A, and b for the characteristic
vector of B. We showed in Lemma 14.5 that N is an orthogonal matrix (up to a normalisation
factor of 2n/2). Thus

aTNb ≤ |aT ||Nb| = 2n/2|a||b| = 2n/2|A||B| ≤ 23n/2,

where |v| =
(∑

i v
2
i

)1/2
is the Euclidean norm of a vector v. Thus Discµ(IP) ≤ 2−n/2. The claim

then follows from Theorem 14.9.

14.4 Application: Time-space tradeoffs

We now give an application of communication complexity lower bounds to the apparently uncon-
nected topic of time-space tradeoffs for multiple-tape Turing machines. Proving lower bounds on
the time complexity of explicit functions is in general a challenging task. In the case of time-space

83

tradeoffs, we lower our sights to attempting to show that if the space used to compute some function
is low, then the time used must be high.

The rough idea behind the connection to communication complexity is as follows. We split the
input tape into two parts, corresponding to two distributed inputs. As the input tape is read-only,
information can only be stored on the other tapes. Thus an algorithm which uses a small amount
of time and space corresponds to an efficient protocol for computing a function of these distributed
inputs. This idea can be formalised as the following theorem.

Theorem 14.11. Let f : {0, 1}n×{0, 1}n → {0, 1} be a function. Let M be a multiple-tape Turing
machine which runs in time T (n) and space S(n) on inputs of size 3n, accepts all inputs in the set

{x 0n y : x, y ∈ {0, 1}n, f(x, y) = 1}

and rejects all inputs in the set

{x 0n y : x, y ∈ {0, 1}n, f(x, y) = 0}.

Then Dcc(f) = O(T (n)S(n)/n).

Proof. Given input (x, y), in order to compute f(x, y) Alice and Bob simulate the operation of the
Turing machine M on input x 0n y, and output 1 or 0 depending on whether M accepts or rejects
this input. Divide the input tape into “x”, “0” and “y” regions of n bits each. At any point in
time, M ’s head on the input tape is either in the x region (in which case Alice simulates the head’s
movement), in the y region (in which case Bob simulates its movement), or in the 0 region. In
this case, the last player whose region the head was in continues to simulate its movement until it
reaches the other player’s region.

Whichever player is simulating the machine at any time knows the contents of the input tape
under M ’s head. In order for the simulation to work, this player must also know everything else
about M ’s current configuration. This consists of M ’s current state (a constant number of bits)
and the contents of each of the used cells on the other tapes, together with M ’s head positions
(in total, O(S(n)) bits). Whenever the simulation switches from Alice to Bob (or vice versa), this
information must be communicated. As the head on the read-only tape moves at most 1 position
per time step, there are at least n steps between each pair of times when the simulation switches,
so there are at most T (n)/n switches in total. The total amount of communication required is
therefore O(T (n)S(n)/n).

Theorem 14.11 may seem somewhat esoteric, but it can be applied to some fairly natural
problems. For example, consider the language PAL ⊂ {0, 1}∗ of palindromes, defined as follows:

PAL = {wwR : w ∈ {0, 1}∗},

where wR is the string w in reverse order. Let M be any Turing machine that decides PAL.
Defining f(x, y) = 1 if x = yR, and 0 otherwise, M accepts all inputs in

{x 0n y : x, y ∈ {0, 1}n, f(x, y) = 1}

and rejects all inputs in the set

{x 0n y : x, y ∈ {0, 1}n, f(x, y) = 0}.

84

Observe that, for inputs of size n, by the log-rank lower bound Dcc(f) = n. Thus, by Theorem
14.11, if M operates in time T (n) and space S(n) on inputs of size m = 3n, T (n)S(n) = Ω(n2).
That is, any multiple-tape Turing machine recognising palindromes in time T (n) and S(n) satisfies
T (n)S(n) = Ω(n2).

The language PAL can be decided in linear time and linear space (by copying the first half of
the input to a work tape and checking if the reversal of the second half matches the first half), or
alternatively in quadratic time and logarithmic space (by checking for whether the i’th character
of the input matches the (m − i + 1)’th character, for each i in turn). Thus the above bound is
essentially tight. This bound may seem rather weak – but in fact no unconditional super-linear
time lower bounds are known for computing any explicitly given “natural” family of functions in
the multiple-tape Turing machine model! (Note that the languages occurring in the Time Hierarchy
Theorem are not considered to be “natural”.)

14.5 Further reading

The model of communication complexity was first introduced by Yao in 1979, and has developed into
a rich and extensive field of study. Arora-Barak (chapter 13) has a brief discussion of communication
complexity, but the bible of the subject is the book “Communication Complexity” by Kushilevitz
and Nisan, from which the above discussion of time-space tradeoffs in particular is taken, and which
contains many other applications of these ideas.

85

Arthur: x ∈ {0, 1}n, r ∈ {0, 1}∗ Merlin: x ∈ {0, 1}n

m1

m2

...

mk

x ∈ L?

Figure 26: A k-message interactive proof for deciding L.

15 Interactive proofs

We now link up the two concepts of communication protocols and computational complexity by
studying interpretations of complexity classes in terms of interactive protocols. An alternative way
to view the complexity class NP is in terms of an interaction between two players in a game: a
computationally unbounded prover (conventionally called Merlin) and a verifier (called Arthur)
with access to polynomial-time computation.

We imagine that Arthur is given an input x ∈ {0, 1}n, and would like to determine whether x ∈
L, for some language L not necessarily in P, but is only able to perform deterministic polynomial-
time computation. However, he also has access to a wizard (Merlin), who is computationally
unbounded and can hence easily determine whether x ∈ L. The interaction between Merlin and
Arthur consists only of a single message from Merlin to Arthur. Furthermore, and unlike the
previously discussed setting of communication complexity, Merlin cannot be trusted. Thus, in
order for Arthur to be convinced that x ∈ L, Merlin must send him a proof of this, which Arthur
can check for himself. It is easy to see that NP is precisely the class of languages which Arthur can
decide using a protocol of this form.

We now generalise this idea by allowing protocols with multiple rounds, and for Arthur to have
some probability of failure. An interactive proof system with k messages is defined as follows. The
input string x ∈ {0, 1}n is known to both the prover and the verifier before the protocol starts.
The verifier also has access to a string r of random bits which the prover cannot see. During the
protocol, the verifier V and prover P alternately generate messages m1, . . . ,mk to their counterpart
based on any of the previous messages in the protocol, and (in the case of the verifier) the random
string r. Thus the messages produced are of the form

m1 = V (x, r), m2 = P (x,m1), m3 = V (x, r,m1,m2), m4 = P (x,m1,m2,m3), . . .

We assume that the last message is always from the prover to the verifier, following which the
verifier either accepts or rejects x. If k is even, a k-message protocol is also called a k/2-round
protocol, where a round is a pair of messages (one from the verifier to the prover, and one in the
opposite direction). We further assume that k, r and the size of each message are all polynomial
in n. Figure 26 illustrates such a protocol.

We are now ready to define the complexity class IP.

Definition 15.1. For an integer k ≥ 1, we say that a language L is in IP[k] if there is an interactive
proof system as above, with k messages between a probabilistic polynomial-time Turing machine
V and a computationally unbounded prover P , such that

86

Figure 27: Two isomorphic graphs.

• (Completeness) If x ∈ L then there exists a prover P such that the probability that V
accepts x is at least 2/3,

• (Soundness) If x /∈ L then, for all provers P , the probability that V accepts x is at most
1/3,

where probabilities are taken over the choice of r. We also write IP =
⋃
k≥0 IP[k].

Observe that it is immediate from the definition that BPP = IP[0] and NP ⊆ IP[1]. Just as
with the class BPP, we first show that this definition essentially does not depend on the choice of
constants 2/3, 1/3, as these can be made exponentially close to 1 and 0.

Theorem 15.1. The class IP is unchanged if we replace the completeness parameter 2/3 by 1−2−n
s
,

and the soundness parameter 1/3 by 2−n
s
, for any constant s > 0.

Proof. The verifier simply repeats the protocol m times, and accepts if at least m/2 of the runs
would accept. Consider the prover which just independently repeats the strategy which each of the
m sub-verifiers accepts with probability at least 2/3. If x ∈ L, then the verifier will accept x with
probability at least 1− 2−Ω(m) (by a Chernoff bound, Corollary 9.4).

On the other hand, if x /∈ L, we need to show that every prover strategy will fail with high
probability to convince the verifier that x ∈ L. Note that this includes more complicated strategies
than this independent strategy previously discussed; in particular, the prover’s strategy at each
stage of the protocol may depend on all the previous stages. However, at each stage the probability
of the verifier accepting is still upper bounded by 1/3, because the definition of soundness above
holds for all provers. By a similar Chernoff bound argument, this implies that the verifier will
accept x with probability at most 2−Ω(m).

Although IP is at least as powerful as NP, it is not clear that IP should be any more powerful
than this (e.g. compare the conjecture that BPP = P). To build intuition, we give an example of an
interactive proof for a problem which is not known to be in NP: Graph Non-Isomorphism. This
problem is the complement of the Graph Isomorphism problem mentioned in Section 6.1. Given
the description of two undirected graphs G and H, we have to accept if there is no permutation π
of the vertices of G such that π(G) = H (see Figure 27). The Graph Isomorphism problem is in
NP (and thus Graph Non-Isomorphism is in co-NP), as a certificate of isomorphism between G
and H is just the permutation π. However, it is not obvious how to certify that no such π exists,
and it is not known whether Graph Non-Isomorphism is in NP.

Nevertheless, we can give an interactive proof for Graph Non-Isomorphism. The protocol
proceeds as follows.

1. Arthur picks one of G and H at random, applies a random permutation π to the vertices and
sends the permuted graph P to Merlin.

87

2. Merlin attempts to identify which of the graphs G and H was used to produce P and sends
this information back to Arthur.

3. Arthur accepts if Merlin’s reply is correct, and rejects otherwise.

We now prove that this protocol works. If G and H are not isomorphic, then given P , Merlin
can identify whether P = π(G) or P = π(H) (he has unbounded computational power and in
particular can solve Graph Isomorphism!). Thus Merlin can reply with the correct answer and
Arthur accepts with certainty. On the other hand, if G and H are isomorphic, then π(G) is
indistinguishable from π(H), so Merlin cannot guess which graph was used to produce P with
probability greater than 1/2 (which he can achieve by just picking G or H at random). Thus
Arthur incorrectly accepts isomorphic graphs with probability at most 1/2. This can be reduced
to 1/4 (to fit into the definition of IP) by performing the protocol twice and accepting only if both
repetitions accept.

15.1 Interactive proofs and polynomial space

The following remarkable result completely characterises the interactive proof model, in terms of a
rather powerful and different-looking complexity class.

Theorem 15.2. IP = PSPACE.

Theorem 15.2 can be split into two parts.

Theorem 15.3. IP ⊆ PSPACE.

Proof. Let L ∈ IP, and let V be the verifier for the corresponding IP protocol for deciding L.
Assume the protocol has k messages. We would like to show that we can determine whether x ∈ L,
for any x, using polynomial space. It suffices to determine whether there exists a prover P such
that the probability that V outputs 1 using prover P on input x is at least 2/3; if there is such a
prover, then x ∈ L, otherwise x /∈ L.

Let P (x,m1, . . . ,mi) be the maximal probability that x is accepted over all provers, given that
the first i messages were m1, . . . ,mi. That is, the maximum is taken over all possible choices of
prover from message i + 1 onwards. P (x) is precisely the maximal probability that V accepts x,
over all provers, while P (x,m1, . . . ,mk) can be evaluated given only knowledge of the verifier’s
behaviour. For each i, we therefore compute P (x,m1, . . . ,mi−1) from P (x,m1, . . . ,mi). If mi is a
message from the prover to the verifier, we have

P (x,m1, . . . ,mi−1) = max
mi

P (x,m1, . . . ,mi),

whereas if mi is a message from the verifier to the prover we have

P (x,m1, . . . ,mi−1) = EriP (x,m1, . . . ,mi),

where ri is the string of random bits used by the verifier to determine message mi. P (x) can
therefore be computed recursively using polynomial space, by a similar argument to the proof that
TQBF can be solved in polynomial space.

88

In order to show the reverse inclusion PSPACE ⊆ IP, it suffices to give an interactive protocol
for the TQBF problem; the proof of this is somewhat technical, so we first prove a simpler result.
Define the language 3-SATK as follows:

3-SATK = {φ : φ is a 3-CNF formula with exactly K satisfying assignments}.

This is a generalisation of the co-NP-complete language 3-SAT, which is just 3-SAT0, and a re-
striction of the #P-complete problem #3-SAT. We will show that 3-SATK is in IP for any K; in
particular, this implies co-NP ⊆ IP.

15.2 Arithmetisation

Arithmetisation, which we briefly discussed near the start of the course, is a process establishing
a link between boolean formulas and polynomials over some finite field F. Given a 3-CNF formula
φ(x1, . . . , xn) with m clauses, introduce variables X1, . . . , Xn ∈ F. For each clause, write a polyno-
mial of degree at most 3 by mapping xi 7→ (1−Xi), ¬xi 7→ Xi, taking the product and subtracting
the result from 1. For example,

x1 ∨ ¬x4 ∨ x5 7→ 1− (1−X1)X4(1−X5),

and let the polynomial for the j’th clause be denoted pj(X1, . . . , Xn). For each possible assignment
of 0’s and 1’s to X1, . . . , Xn, pj(X1, . . . , Xn) = 1 if the j’th clause is satisfied by that assignment,
and pj(X1, . . . , Xn) = 0 otherwise. Multiplying these polynomials together, we get

Pφ(X1, . . . , Xn) =

m∏
j=1

pj(X1, . . . , Xn),

which evaluates to 1 on satisfying assignments X1, . . . , Xn and 0 on unsatisfying assignments. Thus
Pφ is a polynomial of degree at most 3m. We now use arithmetisation to prove the following claim.

Theorem 15.4. 3-SATK ∈ IP.

Given input φ, we begin by constructing the polynomial Pφ. The number of satisfying assign-
ments of φ is precisely

Nφ :=
∑

X1∈{0,1}

∑
X2∈{0,1}

· · ·
∑

Xn∈{0,1}

Pφ(X1, . . . , Xn).

The prover wishes to convince the verifier that Nφ = K. The prover first sends the verifier a prime
p such that 2n < p ≤ 22n; the verifier can check that p is prime using a polynomial-time primality
test (e.g. the Miller-Rabin test discussed previously, or a deterministic test for primality). From
now on, all computations are done over the field Fp. As 0 ≤ Nφ < p, Nφ = 0 if and only if Nφ ≡ 0
modulo p.

We now give a general protocol for testing the following claim: given a prime p, an element
K ∈ Fp, and a degree d polynomial g(X1, . . . , Xn) : Fnp → Fp,∑

X1∈{0,1}

∑
X2∈{0,1}

· · ·
∑

Xn∈{0,1}

g(X1, . . . , Xn) = K. (1)

89

We assume that the verifier can evaluate g(X1, . . . , Xn) for any X1, . . . , Xn in time poly(n) (this
is certainly true for g = Pφ). For each assignment of values b2, . . . , bn ∈ {0, 1} to X2, . . . , Xn,
g(X1, b2, . . . , bn) is a polynomial of degree at most d in the single variable X1. Thus

h(X1) :=
∑

b2∈{0,1}

· · ·
∑

bn∈{0,1}

g(X1, b2, . . . , bn)

is also a degree d polynomial, and if claim (1) holds, then h(0) + h(1) = K. In order to check this
claim, we perform the following recursive protocol.

• If n = 1, the verifier checks that g(0) + g(1) = K. If so, he accepts; otherwise, he rejects. If
n ≥ 2, the verifier asks the prover to send a description of the polynomial h(X1).

• The prover sends a polynomial h̃(X1) (if the prover is honest, h̃(X1) = h(X1)).

• The verifier rejects if h̃(0) + h̃(1) 6= K. Otherwise, he picks r ∈ Fp uniformly at random, and
uses the same protocol recursively to check that∑

X2∈{0,1}

· · ·
∑

Xn∈{0,1}

g(r,X2, . . . , Xn) = h̃(r).

Lemma 15.5. If (1) is false, then the verifier rejects with probability at least (1− d/p)n.

Proof. Assuming that (1) is false, we prove the lemma by induction on n. For the base case n = 1,
if g(0) + g(1) 6= K the verifier rejects with certainty. In the first round, the prover is supposed to
return h(X1). If he does so, then as h(0) + h(1) 6= K, the verifier rejects with certainty. So assume
h̃(X1) 6= h(X1). Then h̃(X1)− h(X1) is a nonzero polynomial of degree at most d, and hence has
at most d roots. Thus there are at most d values r such that h̃(r) = h(r). Hence, when the verifier
picks a random r, Pr[h̃(r) 6= h(r)] ≥ 1 − d/p. If h̃(r) 6= h(r), then at the next recursive step the
prover has an incorrect claim to prove. By the inductive hypothesis, he fails to convince the verifier
with probability at least (1 − d/p)n−1. Hence the probability that the verifier rejects is at least
(1− d/p)(1− d/p)n−1 = (1− d/p)n.

This lemma implies Theorem 15.4, because we have (1− d/p)n ≥ 1−nd/p ≥ 1−3mn/2n, which
is very close to 1 and in particular larger than 2/3.

15.3 Extending the protocol to TQBF

The idea of arithmetisation can be used to prove that in fact TQBF ∈ IP, and hence IP = PSPACE.
Given a quantified boolean formula

ψ = ∀x1∃x2∀x3 . . . ∃xnφ(x1, . . . , xn),

where φ is a 3-CNF1 boolean formula, we create a polynomial Pφ(X1, . . . , Xn) in the same way as
before. Then ψ is true if and only if∏

X1∈{0,1}

∐
X2∈{0,1}

∏
X3∈{0,1}

· · ·
∐

Xn∈{0,1}

Pφ(X1, . . . , Xn) = 1,

1TQBF remains PSPACE-hard under this restriction, though we technically did not show this in Theorem 8.3.

90

where we use the notation ∐
Xn∈{0,1}

g(Xn) := 1− (1− g(0))(1− g(1))

for the arithmetisation of ∃. We will check this using essentially the same idea as for 3-SATK , but
will need to introduce a new technical trick. Imagine we want to verify that∏

X1∈{0,1}

∐
X2∈{0,1}

∏
X3∈{0,1}

· · ·
∐

Xn∈{0,1}

g(X1, . . . , Xn) = 1 (2)

for some polynomial g : Fnp → Fp. If we write

h(X1) =
∐

b2∈{0,1}

∏
b3∈{0,1}

· · ·
∐

bn∈{0,1}

g(X1, b2, . . . , bn),

then (2) holds if and only if h(0)h(1) = 1, so checking this claim suffices to solve TQBF. Unfor-
tunately, if h(X1) is defined in the same way as before (i.e. recursively), its degree could become
exponentially large; each operator

∏
and

∐
can double the degree of the polynomial. In particular,

h(X1) could become a polynomial of degree Ω(2n), which means that the prover cannot necessarily
communicate it efficiently to the verifier.

However, there is a trick which can fix this. The claim (2) only uses values Xi ∈ {0, 1}, which
implies thatXk

i = Xi for all k. This means that we can convert g into a multilinear polynomial g̃ (i.e.
a polynomial of degree at most 1 in each variable Xi) such that g̃(X1, . . . , Xn) = g(X1, . . . , Xn) on
allX1, . . . , Xn ∈ {0, 1}. Such polynomials have concise descriptions and can hence be communicated
efficiently from the prover to the verifier.

For any polynomial p, let Li(p) be the polynomial defined as

Li(p)(X1, . . . , Xn) = Xip(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)+(1−Xi)p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn).

It is easy to see that Li(p) is linear in Xi and Li(p)(X1, . . . , Xn) = p(X1, . . . , Xn) for X1, . . . , Xn ∈
{0, 1}. Thus, in particular,

L1L2 . . . Lng(X1, . . . , Xn)

is multilinear for any polynomial g. So claim (2) is equivalent to∏
X1∈{0,1}

L1

∐
X2∈{0,1}

L1L2

∏
X3∈{0,1}

L1L2L3 · · ·
∐

Xn∈{0,1}

L1L2 . . . Lng(X1, . . . , Xn) = 1. (3)

This expression is of size O(n2). As before, we now prove that claim (3) can be tested by the
verifier using a recursive procedure. Assume that, for some polynomial g(X1, . . . , Xk) and any
b1, . . . , bk,K, the prover can convince the verifier that g(b1, . . . , bk) = K with probability 1 if this
is true, and with probability at most ε if this is false. Then let h(X1, . . . , Xk) be the polynomial
obtained by taking

h(X1, . . . , Xk) = Og(X1, . . . , Xk),

where O is any of the three operations
∐
Xi∈{0,1},

∏
Xi∈{0,1}, or Li, for some i. Hence h depends

on at most k − 1 variables in the first two cases, and at most k in the third. Let d be an upper
bound on the degree of h with respect to Xi; for us, d ≤ 3m. We want to be able to check
that h(b1, . . . , bk) = K for any b1, . . . , bk,K; we will show that if this is not true, the prover can
convince the verifier that it is true with probability at most ε+ d/p. Assuming i = 1 without loss
of generality, we have three cases to check.

91

• O =
∏
X1∈{0,1}. The same as in the previous protocol: the prover sends the verifier a

polynomial h̃(X1) which is supposed to satisfy h̃(X1) = g(X1, b2, . . . , bk). The verifier checks
whether h̃(0)h̃(1) = K. If not, he rejects; if so, he picks r ∈ Fp at random and asks the prover
to prove h̃(r) = g(r, b2, . . . , bk).

• O =
∐
X1∈{0,1}. Essentially the same, but testing whether 1− (1− h̃(0))(1− h̃(1)) = K.

• O = L1. Once again the prover sends the verifier h̃(X1) which is supposed to satisfy h̃(X1) =
g(X1, b2, . . . , bk). This time, the verifier picks r ∈ Fp at random and checks that rh̃(1) + (1−
r)h̃(0) = K. If not, the verifier rejects; if so, he picks r′ ∈ Fp at random and asks the prover
to prove that h̃(r′) = g(r′, b2, . . . , bk).

The proof of correctness is now essentially the same as the remainder of the proof of Theorem 15.4.

15.4 Modifications to the interactive proof model

We have seen that allowing interaction and a very small probability of failure gives us the ability to
solve any problem in the class PSPACE. This result is perhaps additionally surprising because, if
we change completeness and soundness by only an exponentially small amount, we obtain precisely
the class NP. Indeed, if we let dIP be the class obtained from Definition 15.1 by replacing the
completeness parameter 2/3 by 1, and the soundness parameter 1/3 by 0, we have the following
result.

Theorem 15.6. dIP = NP.

Proof. The inclusion NP ⊆ dIP is immediate: as discussed at the start of this section, NP is
precisely dIP restricted to a single message. For the other direction, we prove that if L ∈ dIP, in
fact L ∈ NP. If V is the dIP verifier for L, a certificate that x ∈ L is a sequence of messages
m1, . . . ,mk between the prover and V that causes V to accept. To verify this certificate, simply
check that V (x) = m1, V (x,m1,m2) = m3, etc., and that V (x,m1, . . . ,mk) = 1. If x ∈ L, there
exists such a sequence of messages. But if such a sequence exists, then x ∈ L, by defining a prover
P such that P (x,m1) = m2, P (x,m1,m2,m3) = m4, etc.

One could also consider an extension of the model of interactive proofs to multiple provers.
This is conceivably more powerful than the class IP, because the verifier can perform consistency
checks across different provers. That is, if one prover is trying to trick Arthur, he might be able
to determine this by using another prover to double-check the first’s answers. Indeed, if we define
the class MIP in exactly the same way as IP, but allow the verifier to communicate with two
provers rather than one, we have the following result, which is arguably even more remarkable than
IP = PSPACE and we state without proof.

Theorem 15.7. MIP = NEXP.

It can also be shown that extending the model further, to more than two provers, does not lead
to any additional power: MIP with k provers is equal to MIP with 2 provers, for any k = poly(n).

15.5 Historical notes and further reading

The result that IP = PSPACE was announced on Boxing Day in 1989 by Shamir, swiftly following
important prior work by Lund, Fortnow, Karloff, Nisan and others; Babai has written a nice

92

discussion of the history of this result1. The exposition here of the proof is essentially based on
lecture notes by Jonathan Katz2 and Arora-Barak chapter 8; there are also some good lecture notes
by Oded Goldreich3. The result that MIP = NEXP is due to Babai, Fortnow and Lund and came
a matter of weeks after the proof that IP = PSPACE.

1http://www.cs.princeton.edu/courses/archive/spr09/cos522/BabaiEmail.pdf
2http://www.cs.umd.edu/~jkatz/complexity/f11/lecture19.pdf
3http://eccc.hpi-web.de/resources/pdf/cc2.pdf

93

http://www.cs.princeton.edu/courses/archive/spr09/cos522/BabaiEmail.pdf
http://www.cs.umd.edu/~jkatz/complexity/f11/lecture19.pdf
http://eccc.hpi-web.de/resources/pdf/cc2.pdf

16 Approximation algorithms and probabilistically checkable proofs

Thus far many of the problems we have considered have been decision problems, i.e. problems with
a yes-no answer. Many problems we wish to solve in practice have a different flavour and can be
understood as optimisation problems. For example:

• Knapsack: given a set of n values {vi} and weights {wi}, and a maximum weight M ,
maximise

∑n
i=1 vixi, subject to

∑n
i=1wixi ≤M , xi ∈ {0, 1}.

• Travelling Salesman: given a graph G whose edges are weighted with costs, find a tour
(cycle) that visits all vertices exactly once and achieves the lowest cost.

• Max-3sat: given a CNF boolean formula (not necessarily satisfiable) where each clause
contains at most 3 variables, find an assignment to the variables that satisfies the largest
number of clauses.

• Max-E3sat: the same as Max-3sat, but where each clause contains exactly 3 variables.

The decision variants of all of these are NP-complete, so we do not expect to be able to solve
them exactly in polynomial time. But often in practice we might be satisfied with a “reasonably”
approximate answer. The concept of the quality of an approximation can be formalised as follows.

Every optimisation problem P has a set of feasible solutions F (x) for each input x, and each
solution s ∈ F (x) has a value v(s)1. If P is a maximisation problem, the optimum value is then
defined as

OPT(x) = max
s∈F (x)

v(s);

and if P is a minimisation problem,

OPT(x) = min
s∈F (x)

v(s).

Let A be an algorithm which, given an instance x, returns a feasible solution A(x) ∈ F (x). If P is
a maximisation problem, we say that A is an α-approximation algorithm if, for all x, we have

A(x) ≥ αOPT(x),

and if P is a minimisation problem, we say that A is an α-approximation algorithm if, for all x,
we have

A(x) ≤ αOPT(x).

For a maximisation (resp. minimisation) problem P , the approximation threshold of P is the largest
(resp. smallest) α such that there exists a polynomial-time α-approximation algorithm for P . Be-
ware that there is no standardised terminology in this field; for example, some authors redefine
α 7→ 1/α for maximisation problems, so it is always at least 1.

Intuitively, the approximation threshold of a problem is how well we can expect to solve it in
practice. It will turn out that different NP-complete problems can have very different approximation
thresholds.

1This terminology makes sense if we want to maximise the value; for minimisation problems the term “cost”
might be more appropriate.

94

16.1 The good: arbitrarily close approximation

Theorem 16.1. There is a polynomial-time (1 − ε)-approximation algorithm for Knapsack, for
any ε > 0.

Proof. We first use dynamic programming to get a pretty good algorithm for solving Knapsack.
Let V = max{v1, . . . , vn} be the maximum value of an item. Define a (n+ 1)× (nV + 1) table W
by letting W (i, v) be the minimum weight attainable by selecting some subset of the first i items,
such that their total value is exactly v. W (0, v) =∞ for all v, and then

W (i+ 1, v) = min{W (i, v),W (i, v − vi+1) + wi+1}.

Once we have filled in the table, we pick the largest v such that W (n, v) ≤ M . This algorithm
solves Knapsack in time O(n2V). Note that this is not polynomial in the input size, as V might
be very large.

We can make this algorithm run faster, at the cost of introducing inaccuracy, by attempting
to reduce V . To do this, we simply truncate the last b bits of each value vi (for some b to be
determined) and replace them with zeroes, which can then be ignored. That is, we get new values
v′i = 2bbvi/2bc. We end up with an algorithm that runs in O(n2V/2b) time. How bad is the
solution we get? Defining S and S′ to be the original and new solutions (i.e. sets of items), we have
(exercise!) ∑

i∈S
vi ≥

∑
i∈S′

vi ≥
∑
i∈S′

v′i ≥
∑
i∈S

v′i ≥
∑
i∈S

(vi − 2b) ≥
∑
i∈S

vi − n 2b.

Therefore, as V is a lower bound on the value of the optimal solution, this algorithm runs in
time O(n2V/2b) and outputs a solution that is at most a (1 − ε) fraction of the optimum, where
ε = n2b/V .

But this implies that, for any ε, if we choose b such that 2b = V ε/n, we obtain an algorithm
running in O(n3/ε), which is polynomial in n for any fixed ε.

16.2 The bad: arbitrary inapproximability

Theorem 16.2. Unless P = NP, there is no polynomial-time (1 + ε)-approximation algorithm for
Travelling Salesman, for any ε > 0.

Proof. For a contradiction, suppose there is such an algorithm, and call it A. We will use it to
construct a polynomial-time algorithm for the NP-complete Hamiltonian Cycle problem.

Given a graph G with n vertices, the algorithm for Hamiltonian Cycle constructs a Trav-
elling Salesman instance with n vertices, where the distance between vertices i and j is 1 if
there is an edge in G between i and j, and (1 + ε)n otherwise. We now apply our approximation
algorithm A to this problem.

If A returns a tour of cost exactly n, then we know that G has a Hamiltonian cycle. On the
other hand, if A returns a tour with one or more edges of cost (1 + ε)n, then the total length of
the tour is strictly greater than (1 + ε)n. As we have assumed that A never returns a tour with
cost greater than (1 + ε) times the optimum cost, this means that there is no tour with cost n or
less. Therefore, G does not have a Hamiltonian cycle.

95

16.3 The ugly: approximability up to a constant factor

Theorem 16.3. Unless P = NP, there is no polynomial-time (7
8 + ε)-approximation algorithm for

Max-E3sat, for any ε > 0.

There is an easy randomised 7
8 -approximation algorithm for this problem: just pick an assign-

ment to the variables at random. A random assignment will satisfy each clause with probability
7
8 . By linearity of expectation, this implies that if there are m clauses, on average 7

8m clauses will
be satisfied. (This algorithm does not work for the more general Max-3sat problem. There is
in fact also a 7

8 -approximation algorithm for Max-3sat; this algorithm is based on semidefinite
programming and its proof of correctness is considerably more complicated.) Theorem 16.3 says
that one cannot do any better than this trivial algorithm, unless P = NP.

We will prove a weaker variant of this result, which can be stated as follows.

Theorem 16.4. Unless P = NP, there is an ε > 0 such that there is no polynomial-time (1 − ε)-
approximation algorithm for Max-3sat.

Note that we have lost the tight bound on the approximation ratio and have also generalised
from Max-E3sat to Max-3sat. The proof of Theorem 16.4 depends on a recently developed, and
apparently unrelated, concept in theoretical computer science: probabilistically checkable proofs
(PCPs).

16.4 Probabilistically checkable proofs

Imagine we have a proof system where a prover wishes to convince a verifier that the verifier’s input
is in a language L. Given an n-bit input x and a poly(n)-bit proof, the verifier first looks at x
and performs polynomial-time computation on x. The verifier then chooses, at random, a constant
number of bits of the proof to read. The verifier reads these bits and performs some test on them,
either accepting or rejecting the input depending on the result of the test.

The PCP Theorem states that any language L ∈ NP has a proof system of this form where:

• For all x ∈ L, there exists a proof such that the verifier accepts with probability 1.

• For all x /∈ L, for any proof, the verifier accepts with probability at most 1/2.

In comparison with the usual characterisation of NP, we are looking at much fewer bits of the proof,
but at the expense of having some probability of incorrectly identifying strings as being in L that
are actually not in L. One can generalise the notion of PCPs by writing

L ∈ PCPc,s(r(n), q(n))

to mean that there exists a probabilistic polynomial-time algorithm V which has access to r(n)
random bits, and may make q(n) queries to a proof oracle π, such that

• (Completeness) For all x ∈ L, there exists a proof π such that the probability that V
outputs 1 on π is at least c(n).

• (Soundness) For all x /∈ L and for all proofs π, the probability that V outputs 1 on π is at
most s(n).

Then it is immediate from the definition of NP that NP = PCP1,0(0,poly(n)), while the PCP
Theorem is that NP ⊆ PCP1,1/2(O(log n), O(1)).

96

16.5 The Max-qCSP problem

The proof of the full PCP Theorem is technical, and beyond the scope of this course. However, we
will prove two related results. First, that the PCP Theorem implies an inapproximability result
for Max-3sat. Second, we will prove a weaker variant of the PCP Theorem where the proof is
exponentially long (but the verifier still only looks at a constant number of bits). To prove the
first part, we first introduce a more general problem: Max-qCSP. A qCSP (“q-ary constraint
satisfaction problem”) instance is a collection of boolean functions φi : {0, 1}n → {0, 1} called
constraints, each of which depends on at most q of its input bits. The Max-qCSP problem is to
find an input x that satisfies the largest possible number of these constraints. Max-3sat is the
special case of Max-3CSP where the constraints are only allowed to be OR functions (perhaps
with negations of the input bits).

We will show that the PCP Theorem implies inapproximability of Max-qCSP, for some q =
O(1). Consider a language L ∈ NP. Given an n-bit input x, using the proof whose existence is
guaranteed by the PCP Theorem, we will construct an instance φ of Max-qCSP with m = poly(n)
constraints, such that:

• If x ∈ L, φ is satisfiable;

• If x /∈ L, the largest number of constraints of φ that can be satisfied is at most m
2 .

Consider a claimed proof that x ∈ L, and introduce poly(n) variables {yi}, with one variable
corresponding to each bit of the proof. Let R be a string of random bits generated by the verifier.
Then R corresponds to a set of bits of the proof to read, and a test function fR to perform on them.
For each R, we produce a constraint corresponding to fR. This constraint depends on the variables
that are read when random string R is generated, and is satisfied if and only if fR passes. As the
verifier only looks at a constant number of bits of the proof, there are at most O(log n) random
bits used, so at most poly(n) constraints will be produced.

Now, if x ∈ L, by the PCP Theorem all the constraints are satisfied. On the other hand,
if x /∈ L, at least half of the constraints must not be satisfied (or the probability of the verifier
accepting would be greater than 1

2).

But this reduction implies that, if we could distinguish between satisfiable instances of Max-
qCSP and those for which at most half the constraints are satisfiable, we could solve any problem
in NP, and hence P = NP. This in turn means that Max-qCSP cannot be approximated within a
ratio of 1

2 , unless P = NP.

16.6 Back to Max-3sat

The final step in the proof of Theorem 16.4 is to show that the result of the previous section implies
inapproximability of Max-3sat, which we will achieve by converting the Max-qCSP instance φ
into a Max-3sat instance φ′. First, using the universality of CNF formulae (Theorem 5.1), we can
rewrite each of the clauses in φ as a q-ary CNF expression with at most 2q clauses. Second, each
of the clauses in this CNF expression can be rewritten as the AND of at most q clauses of length
at most 3, using the standard reduction technique from SAT to 3-SAT. We therefore end up with
a CNF expression φ′ with at most m′ = q 2qm clauses, each of which is of length at most 3.

Now it is clear that, if φ is satisfiable, φ′ is also satisfiable. On the other hand, if an ε fraction
of the constraints of φ are not satisfied, then at least an ε

q 2q fraction of the clauses in φ′ are not

satisfied (as each constraint in φ corresponds to at most q 2q clauses in φ′). In particular, we see

97

that the ability to find an approximate solution to Max-3sat that is at least a (1 − (q 2q+1)−1)
fraction of the optimum implies the ability to find an approximate solution to Max-qCSP that
is at least a 1

2 fraction of the optimum. Taking ε = (q 2q+1)−1, we have proven Theorem 16.4:
there is a constant ε > 0 such that there is no polynomial-time (1− ε)-approximation algorithm for
Max-3sat, unless P = NP.

16.7 A weaker version of the PCP theorem

We now turn to proving the promised “toy version” of the PCP theorem. The result we will prove
is the following.

Theorem 16.5. For any language L ∈ NP, there exists a proof system consisting of proofs of
exponential length in the input size, where membership in L can be decided with constant probability
by reading only a constant number of bits of the proof. Formally, NP ⊆

⋃
c>0 PCP1,1/2(nc, O(1)).

This is much weaker than the best possible result that can be proven for proof systems with
exponentially long proofs; in fact, it is known that

⋃
c>0 PCP1,1/2(nc, O(1)) = NEXP. The rough

idea of the proof of Theorem 16.5 is as follows.

1. It suffices to give a probabilistically checkable proof of the above form for a single NP-complete
problem. We will use a problem called Quadratic Equations over F2, which is defined as
follows. Given a system S of m quadratic equations in n variables x1, . . . , xn over F2, where
the k’th equation is of the form

n⊕
i,j=1

A
(k)
ij xixj = bk,

is there an assignment to the variables which satisfies all the equations?

2. Imagine there does exist such a satisfying assignment u, and that the the verifier has access
to an oracle fu : {0, 1}n2 → {0, 1} such that fu(A) =

⊕n
i,j=1Aijuiuj . Then he can check that

u is really a satisfying assignment by evaluating fu on random linear combinations of the A(k)

matrices, and verifying that the answer is as expected.

3. The proof will thus consist of evaluations of fu(A) for all possible A ∈ {0, 1}n2
. Of course,

the verifier cannot trust this proof and must verify that it is of the required form.

4. In order to make it possible for the form of the proof to be checked with only a constant
number of queries, it is encoded using an error-correcting code with good error-detection
properties.

First, we show that Quadratic Equations really is a good problem to use.

Lemma 16.6. Quadratic Equations is NP-complete.

Proof. We show that Circuit Satisfiability ≤P Quadratic Equations. The proof is similar
to the arithmetisation of SAT. Given a circuit C using n input variables x1, . . . , xn and m gates,
introduce variables xn+1, . . . , xn+m, one for each of the gates. For each AND gate xi = xj ∧xk, add
an equation xi = xjxk; for each OR gate xi = xj ∨ xk, add an equation xi = 1− (1− xj)(1− xk);
for each NOT gate xi = ¬xj , add an equation xi = 1− xj . Finally, for the output gate xn+m, set
xn+m = 1. Then this system of equations has a solution if and only if C is satisfiable.

98

We now introduce the code that the prover will use for satisfying assignments, which we call
the linear encoding1. Each x ∈ {0, 1}n will be encoded as a 2n-bit codeword given by evaluating
the function Lx : {0, 1}n → {0, 1} defined by

Lx(y) = x · y =

n⊕
i=1

xiyi

on each possible string y ∈ {0, 1}n. This is a very inefficient encoding as it leads to an exponential
blow-up in the size of x. A function f : {0, 1}n → {0, 1} is said to be linear if f(y⊕z) = f(y)⊕f(z);
this terminology justifies the name of the above encoding, as follows.

Lemma 16.7. For all x ∈ {0, 1}n, Lx : {0, 1}n → {0, 1} is linear. Furthermore, every linear
function f : {0, 1}n → {0, 1} is a member of the set {Lx : x ∈ {0, 1}n}.

Proof. For the first part, we have

Lx(y ⊕ z) =

n⊕
i=1

xi(yi ⊕ zi) =

(
n⊕
i=1

xiyi

)
⊕

(
n⊕
i=1

xiyi

)
= Lx(y)⊕ Lx(z)

as required. For the second part, consider the set of bit-strings {ei : i ∈ [n]} where ei has a 1 at
the i’th position, and 0’s elsewhere. If f : {0, 1}n → {0, 1} is linear, then for any x ∈ {0, 1}n,

f(x) =
⊕
i,xi=1

f(ei) =
n⊕
i=1

f(ei)xi = Ly(x),

where y ∈ {0, 1}n is defined by yi = 1⇔ f(ei) = 1.

As Lx(y) = Ly(x), one can also view each function Lx(y) as encoding the values that every
possible linear function Ly takes on input x.

Lemma 16.8. For all x, y ∈ {0, 1}n such that x 6= y, |{z : Lx(z) 6= Ly(z)}| = 2n−1.

Proof. The claim follows from observing that the {Lx} functions are closely related to the characters
χS(x) = (−1)

∑
i∈S xi discussed previously in Section 14. Indeed, if s ∈ {0, 1}n corresponds to

S ⊆ [n] via si = 1 ⇔ i ∈ S, we have χS(x) = (−1)Ls(x) for all x. As (by Lemma 14.5) characters
corresponding to different subsets are orthogonal, linear functions corresponding to different bit-
strings x and y satisfy |{z : Lx(z) 6= Ly(z)}| = 2n−1.

Imagine the prover has a claimed solution u. He applies the linear encoding to u, and also to
the n2-bit string v formed by vij = uiuj , to give a (2n + 2n

2
)-bit proof (Lu, LuuT). (Of course,

the verifier cannot be sure that the proof is really of this form, but must check it for himself.)
Just as Lu encodes all linear functions of u, Lv encodes all quadratic functions of u; indeed, for
A ∈ {0, 1}n2

,

Lv(A) =

n⊕
i,j=1

Aijuiuj .

This will enable the verifier to check an arbitrary quadratic function of his choice.

1In the literature this is often called the Hadamard or Walsh-Hadamard code.

99

It will be convenient to treat these two bit-strings corresponding to all possible evaluations of
Lu, Lv as oracles f : {0, 1}n → {0, 1}, g : {0, 1}n2 → {0, 1} which the verifier is allowed to query
on arbitrary inputs. The verifier first determines whether f and g really are valid linear encodings
of some original bit-strings. By Lemma 16.7, this is equivalent to determining whether they are
linear functions. Therefore, it is natural to use the following linearity test to decide this.

Definition 16.1 (Linearity test). Given access to a function f : {0, 1}n → {0, 1}, pick x, y ∈ {0, 1}n
at random and compute f(x), f(y) and f(x⊕y). Accept if f(x)⊕f(y) = f(x⊕y); otherwise reject.

As the linearity test only makes a few queries to f and g, it is intuitively clear that it will not
be able to reject all nonlinear functions, but only those which are far from linear in some sense.
For functions f, g : {0, 1}n → {0, 1}, we say that g is ε-far from f if |{x : f(x) 6= g(x)}| = ε2n. For
a family of functions F , we say that g is ε-far from F if minf∈F |{x : f(x) 6= g(x)}| = ε2n.

Theorem 16.9. The linearity test accepts linear functions f : {0, 1}n → {0, 1} with certainty. If
f is ε-far from linear, it rejects f with probability at least ε.

We will prove Theorem 16.9 at the end. This theorem implies that, if the linearity test passes
for each of f and g, the verifier can assume that they are close to linear functions f̃ , g̃. However,
they may still differ from f̃ , g̃ on a small fraction of inputs. The following lemma shows that the
verifier can in fact evaluate the linear functions f̃ and g̃ on arbitrary inputs.

Lemma 16.10. If f : {0, 1}n → {0, 1} is ε-far from some linear function f̃ , f̃(x) can be computed
for any x ∈ {0, 1}n with success probability 1− 2ε using 2 queries to f .

Proof. In order to compute f̃(x), pick y ∈ {0, 1}n uniformly at random, and compute f(x⊕y)⊕f(y).
If f is linear (i.e. f = f̃), this equals f̃(x). But if f is ε-far from linear, then

Pr
y

[f(x⊕ y)⊕ f(y) 6= f̃(x)] ≤ Pr
y

[f(x⊕ y) 6= f̃(x⊕ y)] + Pr
y

[f(y) 6= f̃(y)] ≤ 2ε.

So, using the procedure of Lemma 16.10, the verifier can essentially assume that he has access
to the linear functions f̃ , g̃.

Lemma 16.11. Given access to linear functions f̃ : {0, 1}n → {0, 1}, g̃ : {0, 1}n2 → {0, 1}, there
is a test which uses two queries to f̃ and one to g̃ and such that if f̃ = Lu and g̃ = LuuT for some
u ∈ {0, 1}n, the test accepts; otherwise, the test rejects with probability at least 1/4.

Proof. The test picks r, s ∈ {0, 1}n uniformly at random and checks that f̃(r)f̃(s) = g̃(rsT). As f̃
is linear, we know that f̃ = Lu for some u. If g̃ = LuuT , then

g̃(rsT) =
n⊕

i,j=1

(uuT)ij(rs
T)ij =

(
n⊕
i=1

uiri

) n⊕
j=1

ujsj

 = Lu(r)Lu(s) = f̃(r)f̃(s),

so the test passes. On the other hand, if f̃ = Lu but g̃ = LB, B 6= uuT , then applying Lemma 16.8
to a row on which B and uuT differ, we have

Pr
s

[Bs 6= (uuT)s] ≥ 1/2,

100

where the multiplication is done over F2. Thus

Pr
r,s

[g̃(rsT) 6= f̃(r)f̃(s)] = Pr
r,s

[rTBs 6= rTuuT s] ≥ 1/4,

which proves the claim.

So, using the test of Lemma 16.11, the verifier can now assume that g̃ = LuuT for some u ∈
{0, 1}n. This implies that evaluating g̃(A) for any A ∈ {0, 1}n2

gives

n⊕
i,j=1

Aijuiuj .

The verifier is now finally able to apply this to check that u satisfies the system of equations S,
using the following procedure. He picks r ∈ {0, 1}m uniformly at random and calculates

g̃

(
m⊕
k=1

rkA
(k)

)
=

m⊕
k=1

rk

n⊕
i,j=1

A
(k)
ij uiuj .

If the answer is
⊕m

k=1 rkbk, the verifier accepts; otherwise, he rejects. This test will always accept
if u does indeed satisfy all the equations; if there is at least one equation u does not satisfy, it will
accept with probability 1/2 (by Lemma 16.8). This completes the protocol.

Let us calculate the parameters of the entire protocol. First, it is clear that the verifier only
examines a constant number of bits of the proof (14 bits!). If there is a u that satisfies all the
equations in S, the prover can use this u throughout and the verifier will accept with certainty. If
there is no such u, we check that the verifier rejects with constant probability. Assume the linearity
test succeeds with probability at least 7/8 on each of f and g (otherwise, the verifier will reject
with constant probability). This implies that each of these functions is 1/8-far from linear, so each
computation of f̃(x) or g̃(x) for any x succeeds with probability at least 3/4. Thus, if g̃ 6= LuuT for
some u, the test of Lemma 16.11 rejects with probability at least (3/4)3(1/4). On the other hand,
if g̃ = LuuT for some u that does not satisfy every equation in S, the last step of the protocol will
detect this with probability 1/2. So the verifier will reject incorrect “proofs” with at least constant
probability; this probability can be boosted to 1/2 by repetition.

16.8 The linearity test

We still need to prove correctness of the linearity test (Theorem 16.9). To do so, we will use Fourier
analysis on the group Zn2 , which we now briefly introduce.

For any positive integer n, recall that a character of the group Zn2 is a function χS : {0, 1}n →
{±1}, S ⊆ {1, . . . , n}, defined by χS(x) = (−1)

∑
i∈S xi . Introduce an inner product on functions

f, g : {0, 1}n → R, defined by

〈f, g〉 =
1

2n

∑
x∈{0,1}n

f(x)g(x).

We already proved the following (as Lemma 14.5).

Theorem 16.12 (Plancherel’s theorem). The functions {χS} form an orthonormal basis with
respect to the inner product 〈·, ·〉.

101

This implies that any function f : {0, 1}n → R can be expanded in terms of characters, as
follows:

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

for some real coefficients f̂(S), called the Fourier coefficients of f . These coefficients can be deter-
mined using the relation

f̂(S) = 〈χS , f〉 =
1

2n

∑
x∈{0,1}n

(−1)
∑
i∈S xif(x).

Orthonormality further implies Parseval’s theorem:

1

2n

∑
x∈{0,1}n

f(x)2 = 〈f, f〉 =
∑
S⊆[n]

f̂(S)2.

We will want to apply Fourier analysis to boolean functions. It will be convenient to consider,
instead of functions f : {0, 1}n → {0, 1}, functions f : {0, 1}n → {±1} by mapping 0 7→ 1, 1 7→ −1
(we call this the ±1 picture). In this picture, the linearity test previously discussed can be expressed
as follows.

Definition 16.2 (Linearity test, ±1 picture). Given access to a function f : {0, 1}n → {±1}, pick
x, y ∈ {0, 1}n at random and compute f(x), f(y) and f(x ⊕ y). Accept if f(x)f(y)f(x ⊕ y) = 1;
otherwise reject.

Recall that our goal was to distinguish between the two cases of f being linear and far from
linear. In the ±1 picture, this is equivalent to distinguishing between f being a character χS , or
far from any character.

If f is a character, it is clear that the linearity test always accepts. More generally, we can write
down the probability that the linearity test accepts as follows.

Lemma 16.13. The probability that the linearity test accepts a function f : {0, 1}n → {±1} is

1

2
+

1

2

∑
S⊆[n]

f̂(S)3.

Proof. As we have f(x)f(y)f(x ⊕ y) ∈ {±1}, the probability that the test accepts is equal to the
expectation of the indicator random variable ACC(x, y) = 1

2 + 1
2f(x)f(y)f(x⊕ y). Thus

Pr
x,y

[test accepts] = Ex,y[ACC(x, y)] =
1

2
+

1

2
Ex,y[f(x)f(y)f(x⊕ y)].

We now expand this last term in terms of the Fourier expansion of f , giving

Ex,y[f(x)f(y)f(x⊕ y)] = Ex,y

∑
S⊆[n]

f̂(S)χS(x)

∑
T⊆[n]

f̂(T)χT (y)

∑
U⊆[n]

f̂(U)χU (x⊕ y)

=

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U)Ex,y[χS(x)χT (y)χU (x⊕ y)].

102

Now observe that characters are “doubly” linear in the following sense:

χS(x)χT (x) = (−1)
∑
i∈S xi(−1)

∑
j∈T xj = (−1)

∑
i∈S∆T xi = χS∆T (x),

χS(x)χS(y) = (−1)
∑
i∈S xi+yi = χS(x⊕ y).

Thus

Ex,y[χS(x)χT (y)χU (x⊕ y)] = Ex,y[χS(x)χT (y)χU (x)χU (y)]

= Ex[χS(x)χU (x)]Ey[χT (y)χU (y)]

= Ex[χS∆U (x)]Ey[χT∆U (y)]

= δSUδTU ,

where δAB = 1 if A = B, and 0 otherwise, so

Ex,y[f(x)f(y)f(x⊕ y)] =
∑
S⊆[n]

f̂(S)3

as required.

We can now complete the proof of Theorem 16.9, which we restate here in the ±1 picture.

Theorem 16.14. The linearity test accepts linear functions f : {0, 1}n → {±1} with certainty. If
f is ε-far from linear, it rejects f with probability at least ε.

Proof. If f is linear, then f = χS for some S ⊆ [n], so f̂(S) = 1 and by Lemma 16.13 the linearity
test passes with certainty. More generally, if f is ε-far from linear, then

1− 2ε = max
S⊆[n]

〈f, χS〉 = max
S⊆[n]

f̂(S).

By Lemma 16.13, the probability that the linearity test passes is

1

2
+

1

2

∑
S⊆[n]

f̂(S)3 ≤ 1

2
+

1

2
max
S⊆[n]

f̂(S)
∑
T⊆[n]

f̂(T)2 =
1

2
+

1

2
max
S⊆[n]

f̂(S) = 1− ε,

where the inequality uses the fact that f̂(S)2 ≥ 0, and the first equality is Parseval’s theorem.

16.9 Further reading

Arora-Barak has much more information about PCPs (Chapters 11 and 22), including the proof of
the tight bound for Max-E3sat; there are even entire lecture courses on the subject1. The original
proof of the PCP Theorem was the culmination of a series of results drawing together many different
concepts in theoretical computer science. Ryan O’Donnell has written a nice history of this2. An
excellent introduction to the beautiful subject of Fourier analysis of boolean functions is provided
by lecture notes from a course on the topic, again by Ryan O’Donnell3.

Finally, linearity is just one example of a property of boolean functions which is known to have
an efficient tester. Oded Goldreich maintains a list of surveys about the now extensive field of
property testing4.

1http://www.cs.washington.edu/education/courses/cse533/05au/
2http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf
3http://www.cs.cmu.edu/~odonnell/boolean-analysis/
4http://www.wisdom.weizmann.ac.il/~oded/test.html

103

http://www.cs.washington.edu/education/courses/cse533/05au/
http://www.cs.washington.edu/education/courses/533/05au/pcp-history.pdf
http://www.cs.cmu.edu/~odonnell/boolean-analysis/
http://www.wisdom.weizmann.ac.il/~oded/test.html

	Complementary reading and acknowledgements
	Motivation
	The Turing machine model
	Efficiency and time-bounded computation
	Certificates and the class NP
	Some more NP-complete problems
	The P vs. NP problem and beyond
	Space complexity
	Randomised algorithms
	Counting complexity and the class #P
	Complexity classes: the summary
	Circuit complexity
	Decision trees
	Communication complexity
	Interactive proofs
	Approximation algorithms and probabilistically checkable proofs

