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1. Smulation of various kinds.

(a) Imagine we are given a quantum circuit on n qubits which consists of poly(n) gates
picked from the (universal) set { H, X, CNOT, T'}, followed by a final measurement of all
the qubits. Assume that at each step in the computation the quantum state is unen-
tangled (i.e. is a product state of the n qubits). Show that the circuit can be simulated
efficiently classically: that is, there is an efficient classical algorithm for sampling from
the probability distribution on the final measurement outcomes.

(b) For each of the following sets of quantum gates, determine whether or not the set is uni-
versal for quantum computation. You may assume that {H, X, CNOT, T} is universal.

i. {H,CNOT,T}.
ii. {X,CNOT,T}.

iii. (harder) {C'Z, K, T}, where C'Z is a controlled-Z gate and K = % (1),

(c) Show that the phase oracle Uy as defined in the lecture notes cannot be used to implement
the bit oracle Oy, even if f only has 1 bit output.

2. Grover’s algorithm.

(a) Let N = 4 and consider the case where there is one marked element. Write down and
multiply out all the matrices and vectors occurring for one step of Grover’s algorithm,
to verify the claim in the lecture notes that the algorithm finds the marked element with
certainty. What is the final state if another step is made?

(b) Write down an expression for the (z,y)’th matrix entry of the matrix —H®"UyH®"
occurring in Grover’s algorithm.

(c) Let N be arbitrary and consider the case of Grover search for one marked element. What
is the probability that the marked element is found if the qubits are measured after only
one step of the algorithm?

(d) Consider Grover search for k marked elements, where k& = eN is known in advance.
Describe how to modify Grover’s algorithm so that it finds a marked element with
certainty using O(1/4/€) queries. This can be seen as “quantum de-randomisation”, a
process with no classical analogue.

3. Quantum oracle interrogation. In this question, you will prove the following result of
Wim van Dam.



Theorem 1. Given oracle access to bits of an unknown n-bit string x, there is a quantum
algorithm that learns x completely with success probability at least 0.999 using n/2 + O(y/n)
queries, for any x.

This success probability can in fact be taken to be any constant strictly less than 1. Of course,
classically we need precisely n queries to learn x with this worst-case success probability.

(a) Show that, for any x € {0,1}", given the n qubit state

1 .
e) = on/2 Z (=1D)"y),
ye{0,1}"
there is a quantum algorithm that determines x with certainty using no additional queries
to the bits of . (Here x -y = ), x;y; is the inner product of  and y modulo 2.)

(b) For any 0 < r < n, consider the state
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where R =37 (). Show that, for some r = n/2 + O(y/n), [(¥z]¢5)[* > 0.999 (hint:
look up Chernoff bounds).

(c) Show that the state |¢7) can be produced using r queries to bits of z.
(d) Use parts (a)-(c) to prove Theorem 1.

4. The QFT.

(a) Write down the circuit for the QFT on 2 qubits. Multiply out the matrices in the circuit
and check that the result is what you expect.

(b) This part is about approximately implementing the QFT, proving a claim made in the
lecture notes. Define the distance D(U, V') between unitary operators U and V' as the
maximum over all states [¢)) of ||U|¢) — V[¢)]|.

i. Show that D(-,-) is subadditive: D(U1Us, V1V3) < D(Uy, Vi) + D(Us, V3).
ii. Give a quantum circuit for an operator @gn on n qubits such that égn uses O(nlogn)
gates and show that D(@gn, Q2n) < 1/p(n) for any desired polynomial p(n).

iii. Consider an arbitrary quantum circuit which has poly(n) gates in total, starts with
the state |0)®™ and finishes with a measurement in the computational basis, followed
by some classical postprocessing. Argue that any uses of (Qo» within the circuit can
be replaced with égn without significantly affecting the output of the algorithm.

5. Shor’s algorithm.

(a) Suppose we would like to factorise N = 85 and we choose @ = 3. Show that a and N
are coprime (without factorising N) using Euclid’s algorithm. Follow the steps of the
integer factorisation algorithm to factorise 85 using this value (calculating the order of
a classically!). You might like to use a computer.

(b) Imagine we want to factorise N = 21 and we choose a = 4. Does the integer factorisation
algorithm work or not?



