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Compressed Sensing

Abstract: The steady growing number of quantum bits used in modern quantum information exper-

iments gives rise to new problems. Especially if we want to determine the quantum state used in an

experiment, i.e. ascertain the density matrix of the state, the number of needed measurement settings

scales exponentially bad with Θ(4n), where n is the number of qubits.

Compressed sensing is a technique developed to overcome this problem by using matrix completion

methods to reconstruct a full density matrix of low rank states with fewer measurements.

This report explains themain ideas of compressed sensing to the reader and gives a (highly incomplete)

overview of the work done in the field.

It is my experience that proofs involving
matrices can be shortened by 50% if one
throws the matrices out. - E. Artin

April 10, 2015
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Chapter 1

Introduction

Modern experiments in the field of quantum information show a steady increase of

quantum bits (qubits) [1--3]. This increase leads to an exponential growth of the re-

quiredmeasurements needed in an experiment to fully characterise the quantumstate.

This fact can be easily seen if we consider the entries in the densitymatrix of states

with increasing numbers of qubits. For example the density operator ρ1 of a 1-qubit
state |ψ1〉 = α0 |0〉+ α1 |1〉 is represented as a matrix as

ρ1 =

(
α0α

∗
0 α1α

∗
0

α0α
∗
1 α1α

∗
1

)
, (1.1)

where ∗ denotes the complex conjugate of the coefficient αi. Since the Pauli matrices

σ1 =

(
0 1
1 0

)
(1.2)

σ2 =

(
0 −i
i 0

)
and (1.3)

σ3 =

(
1 0
0 −1

)
(1.4)

together with the identity

I =

(
1 0
0 1

)
=: σ0 (1.5)

form a basis for density matrices we can reconstruct the density matrix ρ1 as

ρ1 =

4∑
i=0

tr(ρ1σi)σi, (1.6)

where tr(ρ1σi) is the Hilbert-Schmidt inner product. Meaning we have to measure all

4 expectation values for the Pauli measurements σi.
If we now increase the number of qubits, let's say by one, and consider the 2-qubit

state |ψ2〉 = α0 |00〉 + α1 |01〉 + α2 |10〉 + α3 |11〉, the number of entries in the matrix

representation of the density operator ρ2 increase exponentially:

ρ2 =


α0α

∗
0 α1α

∗
0 α2α

∗
0 α3α

∗
0

α0α
∗
1 α1α

∗
1 α2α

∗
1 α3α

∗
1

α0α
∗
2 α1α

∗
2 α2α

∗
2 α3α

∗
2

α0α
∗
3 α1α

∗
3 α2α

∗
3 α3α

∗
3

 . (1.7)

It is easy to see that we now would need to measure 16 observables to fully charac-

terise the 2-qubit state. Namely the 42 = 16 Pauli expectation values of the form σi⊗σj
with i, j ∈ {0, 1, 2, 3}.
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Compressed Sensing

This method of determining the state produced in a quantum experiment is called

full state tomography. The problem with this method is that we number of measure-

ments needed scales as Θ(4n) where n is that numbers of qubits involved in the ex-

periment.

Compressed sensing[4] in a quantum sense is amethod to overcome this problem

in full state tomography by measuring only certain observables and utilising classical

matrix completionmethods to reconstruct the full information contained in the density

matrix.

1.1 Compressed Sensing

Compressed sensingwas first discussed in the context of classical signals. TheNyquist-

Shannon sampling theorem states that if we sample a classical analogue signal with a

certain rate r we can only reconstruct information from the signal which is contained

in frequencies lower than r
2 . This is the reason why audio CDs have a sampling rate of

≈ 44 kHz. Meaning that the highest frequency which can be reproduced is≈ 22 kHz,
a bit above the hearing threshold of the human ear (≈ 20 kHz).

However itwas shown thatwe canovercome the limitations of theNyquist-Shannon

theorem, if we have prior knowledge of the signal [4, 5]. More precisely the signal has

to be sparse in some domain and we have to know about this sparsity.

In particular it is often possible to make certain conclusions about the signal in the

frequency domain. If we say that the signal wewant to reconstruct is periodic, what we

are essentially meaning is that we know the signal is sparse in the frequency domain,

i.e. it consist of only a few frequencies.
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Figure 1.1: An example for a reconstruction of an signal wich is sparse in the frequency

domain (here the signal consists of only one frequency). It can be seen that the signal

(red) is sampled with a rate slower then half its frequency. The sampling points are

shown in dark blue. However, since we know that the signal is sparse in the frequency

domain, we can reconstruct the signal (bright blue) by apply a modulo operation on

the x-values of the sampling points.

An example for such a reconstruction is shown in figure 1.1. There the blue points

represented samples of the signal taken with a rate slower than double the frequency

of the signal. Yet, it is possible to reconstruct a full period of the signal by applying a

modulo operation on the x-values of the sampling points.
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Chapter 2

State Tomography via Compressed
Sensing

If we are talking about compressed sensing in a quantum setting [6], we are talking

about the possibility to gain full information about the density matrix of an unknown

state without having to measure the full set of observables which would be needed in

full state tomography.

The application of compressed sensing in quantummechanics is taking the ideas

from classical signalling theory [4] and extends them to a ``signal'' being a matrix, i.e.

generalising compressed sensing from vectors to matrices. The main idea is that in

general any matrix that is sparse in the sense that it is of low rank can be fully recon-

structed if we know some entries of the matrix. Meaning that if we have measured

some entries of our density matrix, we can use classical post-processing of this data

to fully reconstruct the density matrix. The problem of reconstruction matrices from

few entries is subject to the studies of Matrix completion [7, 8].

Intuitively it should be clear, that, since the (column) rank of a matrix is defined

by the number of individually linear independent column vectors, rd elements of the

matrix should be enough to uniquely describe it. Here r is the rank of the matrix and

d = 2n is the number of rows in the matrix. Note that this technique wont overcome

the exponential growth in measurement complexity, since rd still scales O(2n). It is
provably impossible for any protocol that can handle generic pure states to overcome

this exponential growth [6]. Also note that restricting a densitymatrix ρ to be of low rank

is acceptable, since a lot of interesting quantum states are either pure or inhibit certain

symmetries leading to a reduction of the rank of ρ. Pure states are always of rank 1,
since they are defined by d coefficients if written in ket notation. Evenwith the presence
of noise in the measurements a low rank density matrix is still a good approximation

for a nearly pure state.

2.1 Gross, 2009

This section is dedicated to the work presented work presented by Gross et al. in [6]

and [9]. It will give the reader an overview of the techniques involved in the proof and

show how the method reduces the measurements necessary to determine a density

matrix uniquely. The letter proves that O(rd log2 d) measurements are enough to

determine a density matrix ρ of rank r uniquely.
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Gross, 2009

2.1.1 A Protocol for efficient Tomography

The protocol Gross et al. describe in [6] goes as follows. Consider the case of a

n-qubit system. Any n-qubit Pauli matrix can be written as w =
⊗n

i=1wi where wi ∈
{σ0, σ1, σ2, σ3}. Since every wi has 4 values it can take, there exist 4n such matrices.

Intuitively it should be clear that, a matrix-basis for d × dmatrices needs at least that

many elements since d2 = 2n2 = 4n. Indeed those matrices w form a basis for d× d
density matrices. If we now drawm integersA1, . . . , Am from [1, 4n]we can measure

the corresponding expectation value of the observable w(Ai), i.e. tr(w(Ai)ρ), where
w(Ai) labels the Aith matrix constructed as mentioned above. This information is

then used to solve the convex optimisation problem

min ‖σ‖tr (2.1)

subject to trσ = 1

and tr(w(Ai)σ) = tr(w(Ai)ρ),

where σ is the best guess for ρ. Line 2 states that the trace of σmust be one, which is

important for any density matrix and line 3 guarantees the overlap between the infor-

mation we have about the density matrix ρ and the reconstruction σ.
Also, instead of minimising the trace norm ‖σ‖tr one should actually minimise the

rank of σ. However rank minimisation is a NP-hard problem, hence the trace norm

acts as a surrogate to approximate low-rank in a matrix. Only the restriction on low

rank matrices allows to set up the convex optimisation problem likes this.

The convex optimisation problem (2.1) can then be efficiently solved on a classi-

cal computer. Gross et al. claim that their reconstruction algorithm takes about one

minute on a laptop computer for a 8-qubit state. Remember that this means calculat-

ing 48 = 65536matrix entries.

The main result of [6] is given as

Theorem 1. Let ρ be an arbitrary state of rank r. If m = cdr log2 d randomly cho-

sen Pauli expectations are known, then ρ can be uniquely reconstructed by solving the

convex optimisation problem (2.1) with probability of failure exponentially small in c.

To proof this Gross et al. utilise a ``sampling operator''

R : ρ→ d

m

m∑
i=1

w(Ai) tr (ρw(Ai)) . (2.2)

Note that the sampling operator is essentially a matrix valued projection. It is exactly a

matrix valued projection if Ai 6= Aj ∀i 6= j (compare equation (1.6)). With that we can

rewrite the convex optimisation problem (2.1) to be

min ‖σ‖tr (2.3)

subject to Rσ = Rρ. (2.4)

It can be easily seen that σ is a unique solution for ρ if for all deviations∆ := σ − ρ,∆
is either infeasible

R∆ 6= 0, (2.5)

meaning the coefficients tr((Ai)σ) do not agree with the information we have learned

from the measurements of ρ, or

‖ρ+∆‖tr > ‖ρ‖tr, (2.6)

meaning σ is not a solution to the convex optimisation problem, since the deviation

increases the trace norm (which we are minimising).
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State Tomography via Compressed Sensing

A tool from convex optimisation becomes handy in the proof of theorem 1: the

construction of a strict subgradient Y for the norm serves as a so called dual certificate

[10]. Y is called a strict subgradient if

‖ρ+∆‖tr > ‖ρ‖tr + tr(Y∆) ∀∆ 6= 0. (2.7)

Meaning that if we find such a Y which is also in the range of R and since R∆ = 0,
it follows that tr(Y∆) = 0. This fact is illustrated in figure 2.1. If we can find a matrix

Figure 2.1: Thematrix space our optimisation problem is living on. In (a) we can see an

affine hyperplaneAwhich is defined by the expectation values tr (ρw(Ai)) obtained by
measurements. The axis Ω defines the m known parameters. (b) Illustrates the fact

that we recover the density matrix ρ uniquely, if A is an supporting hyperplane of the

space B = {σ|‖σ‖tr ≤ ‖ρ‖tr} at ρ. In other words we must find a matrix Y normal to

a supporting hyperplane of B and A. Picture taken from [9].

Y that is normal to a supporting hyperplane of the space of matrices with lesser trace

norm than ρ and is also normal to an affine space given by themmeasured expectation

values. We find that tr ∆Y = 0 since∆ lies in the affine space.

For the further proceeding of the proof it is useful to define the vector space U =
range(ρ), i.e. the column space of ρ and further the space T = {σ | (I − PU )σ(I −
PU ) = 0}, wherePU is the projector onto spaceU . Then thematrix valued projectorPT

(projection into T ) can be used to decompose∆ into∆T +∆⊥
T , denoting the parts of∆

living in T and in the space orthogonal to T , respectively. This is useful since as shown

Figure 2.2: The decomposition into the spaces T and T⊥. From the construction of

T it can be seen, that if we write ρ with respect to its eigenbasis, all r eigenvalues ρi
are living on the matrix space T meaning that any deviation ∆⊥

T is decoupled from ρ.
Picture taken from [9].

in figure 2.2 this construction helps to separate the space on which the r eigenvalues
of our density operator are defined on, i.e. the space on which its diagonal entries

are non-zero if represented with respect to its eigenbasis, from the space orthogonal

to that. In particular we can distinguish two cases for ∆: case (i) where ‖∆T ‖2 >
d2‖∆⊥

T ‖2 and case (ii) where ‖∆T ‖2 ≤ d2‖∆⊥
T ‖2.
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Gross, 2009

In case (i) the proof is relatively easy written down, but involves a very powerful and

complex technique, a large deviation bound, whose introduction lies beyond the scope

of this report. The interested reader may refer to section II-D in [9]. In this case ∆ is

mostly dominated by∆T and all we need to show is that the restrictionA := PTRPT

ofR on T is invertible [9]. Using the large deviation bound we can show that

Pr (‖A − IT ‖ > t) < 4dre−t2κ/8, (2.8)

where κ = m/(dr). We are only giving a short outline on how the proof for the above

statement works. If we define a family of operators

Z(Ai) =
d2

m
PTPw(Ai)PT , (2.9)

where Pw(Ai) is the matrix valued projection on to w(Ai), it is easy to see that

PTRPT =
m∑
i=1

Z(Ai), (2.10)

and E(Z(Ai)) = IT . Hence we can write

PTRPT − IT =
m∑
i=1

Z(Ai)− E(Z(Ai)) (2.11)

and derive an operator valued Bernstein inequality for the random variables X(Ai) =
Z(Ai)− E(Z(Ai)).

Equation (2.8) states that the probability of ‖A−IT ‖ > 1
2 is smaller than 4dre−κ/32 :=

p1. It is thus with high probability that ‖R∆‖2 > 0, and hence∆ is infeasible.

The proof for case (ii) is more elaborate and uses the dual certificate mentioned

before. In [9] it shown that

‖∆T ‖2 < d2‖∆⊥
T ‖2 (2.12)

together with

∆ ∈ range(R⊥) (2.13)

yields ‖ρ+∆‖tr > ‖ρ‖tr (see equation (2.7)) and hence∆ does not fullfill the minimi-

sation condition. This however does only hold if we can find such a dual certificate Y .

So what remains is to prove the existence of a dual certificate Y .

We call the matrix Y ∈ span(w(A1), . . . , w(Am)) an almost subgradient if

‖PTY − PU‖2 ≤ 1/(2d2), ‖P⊥
T Y ‖ < 1/2. (2.14)

Gross et al. developed a recursive process, the ``golfing scheme'', which converges

exponentially fast to such a dual certificate and hence completes the proof of theorem

1.

If we draw l sets of κ0rd Pauli observables, the process is written down as follows.
DefineX0 = PU ,

Yi =
i∑

j=1

RjXj−1, Xi = PU − PTYi, (2.15)

Y = Yl, where Rj is associated to the jth batch of Pauli matrices drawn. As before

we assume again that Aj is the restriction of Rj on T and ‖Aj − IT ‖2 < 1
2 . We also

denote the probability that the latter doesn't hold as p2. We find

‖Xi‖2 = ‖Xi−1 − PTRiXi−1‖2 (2.16)

= ‖(IT −Ai)Xi−1‖2 ≤ 1/2‖Xi−1‖2, (2.17)
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State Tomography via Compressed Sensing

it follows from the first and last term above that ‖Xi‖2 ≤ 2−i‖X0‖2 = 2−i√r. If l ≥
log2(2d

2√r), we fullfill the first part of equation (2.14). Again using the large-deviation

technique it is shown in [6] that ‖P⊥
T R〉Xi−1‖ ≤ 1/(4

√
r)‖Xi−1‖2 with high probability

(1− p3). Hence,

‖P⊥
T Yl‖ ≤

l∑
j=1

‖P⊥
T RjXj−1‖ ≤ 1

4

∞∑
j=0

2−l <
1

2
, (2.18)

which is the second half of equation (2.14).

In a last step Gross et al. estimate their probability of failure pf ≤ p1+p2+p3. If we
want a exponential small failure probability pfe

−µ we have to set κ0 = 64µ(1+ln(8dl)),
which means that m = dr(ln d)2O(1) Pauli expectation values have to be sampled.

2.1.2 Further Remarks

In [6] Gross et al. make further observations on their results. They state that methods

are robust against noisymeasurements and the possibility that the true state ρt is only
approximated by a low rank matrix ρ (‖ρt − ρ‖ < ε1). Noisy measurements would

manifest in a way such that the expectation values are not tr(ρtw(Ai)) but tr(ωw(Ai))
for some matrix ω. Their altered protocol reads as follows: choose some λ ≥ 1 and

ε ≥ λ(
√
d2/mε1+ε2), where ε2 ≥ ‖Rω−Rρt‖2 is the deviation of themeasurements

from the true state. Note that ε2 can be estimated from statistics on themeasurement

process. Now solve the convex optimisation problem

min ‖σ‖tr subject to‖Rσ −Rω‖2 ≤ ε. (2.19)

Furthermore the authors state that their method of tomography can be certified

in the sense that one can find a certificate (assuming the unknown state is pure) the

reconstruction error from O(cd log2 d) Pauli expectation values, where the probability

of failure is exponentially small in c.
On a last remark [6] improves the classical post processing by choosing the el-

ements of the Pauli basis, which we measure the expectation values for, in a more

structured way. This speeds up the classical processing time, however for the cost

of precision in the reconstruction. This approach is called a hybrid method because

it is equivalent to a certain structured matrix completion problem. A comparison be-

tween both methods (random sampling and hybrid) can be seen in figure 2.3. It is

obviously that both methods approach good values for the fidelity of the reconstruc-

tion very quickly with increasing sparsity. However, especially in the plot for trace norm

the decreased accuracy for the hybrid methods becomes visible.
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Flammia, 2012

Figure 2.3: Numerical simulation of the reconstruction process presented in [6]. It can

be seen that the fidelity of the reconstruction quickly approaches high values of fidelity

(> 95%) with increasing sparsity, while the trace distance decreases. In the plot for the
trace norm the lesser accuracy for the hybrid method can be clearly seen. The data

used to test the methods was produced numerically from a simulated 8-qubit state,
where depolarising and statistical noise were added.

2.2 Flammia, 2012

In 2012 Flammia together with Gross et al. refined their previous result by utilising a

restricted isometry property (RIP) for low rank matrices in the analysis of the tomog-

raphy protocol [11]. The construction of the matrix basis w(Ai) used to determined

them expectation values is the same as before in [6], however this letter aims to make

better predictions about the precision needed for each measurement. Hence in the

analysis it is assumed that t identical copies of the quantum state are available. So

every measurement setting can be carried out t/m times. This approach gives better

estimators for the total number of needed measurement, contrary to before were ev-

ery expectation value was assumed to be known with perfection (except for during the

remarks on noisy measurements at the end of [6]).

Also the definition of the ``sampling operator'' is somewhat different, A is given as

a linear map A : Hd → Rm defined for all i ∈ [1,m]

(A(ρ))i =

√
d

m
tr (w(Ai)ρ). (2.20)

This now allows us to write the output of the sampling operation as a vector

y = A(ρ) + z, (2.21)

where z contains all the statistical noise in themeasurement and the vector y contains
all the coefficients as a list. Note that those ``known'' coefficients are exactly the same

as before.

The paper goes on and analyses two different estimators for reconstructing ρ. The
first estimator is as before a trace norm minimisation called Dantzig selector

ρ̂DS = arg min
X

‖X‖tr, subject to ‖A∗(A(X)− y)‖ ≤ λ, (2.22)

whereA∗ is the adjoint ofA and λ has to be chosen according to the noise in the sys-

tem, similar to ε in equation (2.19). The other estimator is obtained by a least-squares

11
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linear regression with regularisation called matrix Lasso (least absolute shrinkage and

selection operator)

ρ̂Lasso = arg min
X

1

2
‖A(X)− y‖22 + µ‖X‖tr, (2.23)

where again µ is chosen according to the noise present in the measurements.

As mentioned before the analysis of the protocols in this thesis makes use of the

RIP. We say that the sampling operator complies with the RIP if there exists a constant

0 ≤ δr < 1 for allX ∈ Cd×d with

(1− δr)‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δr)‖X‖F . (2.24)

This is to say that the space of low-rank matrices can be embedded in a lower dimen-

sional manifold, which is the action of A, in a way such that the norm is only slightly

distorted. In a different article it is shown that the sampling operator satisfies the RIP

[12].

Combining theRIP of the sampling operator togetherwith results fromother sources

[8, 13] Flammia et al. are able to construct a proof for the following theorem, which

wont be presented in this report. In the following C , C0, C1, C
′
0, and C

′
1 are fixed con-

stants. ρc is part of the decomposition of ρ = ρr + ρc, where ρr is the best rank r
approximation of ρ and ρc is the residual.

Theorem 2. LetA be the randomPauli sampling operator (2.20)withm ≥ Crd log6 d.
Then, with high probability, the follwing holds:

Let ρ̂DS be the matrix Danzig selector (2.22), and choose λ so that ‖A∗(z)‖ ≤ λ.
Then

‖ρ̂DS − ρ‖tr ≤ C0rλ+ C1‖ρc‖tr. (2.25)

Alternatively, let ρ̂Lasso be thematrix Lasso (2.23), and chooseµ so that ‖A∗(z)‖ ≤ µ/2.
Then

‖ρ̂Lasso − ρ‖tr ≤ C ′
0rµ+ C ′

1‖ρc‖tr. (2.26)

Note that the first terms on the right side in both inequalities in the theorem above

depend on the noise z which depends on the number of measurements available for

eachPauli expectation value. Also note the lower bound formgiven above is a poly log d
factor bigger then for the result using a dual certificate, however the error bounds given

in equations (2.25) and (2.26) are tighter.

2.2.1 Sample Complexity

The more interesting result of the paper, which discussed in this section, are the con-

sideration of the total sample complexity t. Since it is an import figure of merit in an

actual experimental setting. Because t represents the number of total measurements

needed to reconstruct the density matrix, it relates directly to the time needed to carry

out the tomography protocol.

Theorem 3. Given t = O(( rdε )
2 log d) copies of ρ and used to measure different Pauli

expectation values, then the following holds with high probability over the measure-

ment outcomes:

Let ρ̂DS be the matrix Dantzig selector (2.22), and set λ = ε/(C0r) for some ε > 0.
Then

‖ρ̂DS − ρ‖tr ≤ ε+ C1‖ρc‖tr. (2.27)

Alternatively, let ρ̂Lasso be the matrix lasso (2.23), and set µ = ε/(C ′
0r). Then

‖ρ̂Lasso − ρ‖tr ≤ ε+ C ′
1‖ρc‖tr. (2.28)
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Proof. Let's assume we have t copies of a quantum state and fix our choice of Pauli

observableswewant tomeasure, i. e. we chooseA1, . . . , Am numbers. Nowwedefine

Bij to be the outcome of the jth measurement of the ith observable, hence j ∈ [1, t
m ],

i ∈ [1,m], Bij ∈ {1,−1} and EBij = tr(w(Ai)ρ). The vector y can then be written as

yi =

√
d

m

m

t

t/m∑
j=1

Bij , Ey = A(ρ). (2.29)

If we want to bound ‖A∗(y − A(ρ))‖, we can use the Bernstein inequality. First

write

A∗(y) =

√
d

m

m∑
i=1

w(Ai)yi =
d

t

m∑
i=1

t/m∑
j=1

w(Ai)Bij (2.30)

and

A∗A(ρ) =
d

m

m∑
i=1

w(Ai) tr(w(Ai)ρ). (2.31)

Then expressA∗(y −A(ρ)) as sum of independent random variables

A∗(y −A(ρ)) =

m∑
i=1

t/m∑
j=1

Xij , Xij =
d

t
w(Ai)[Bij − tr(w(Ai)ρ)]. (2.32)

It is notable that EXij = 0 and ‖Xij‖ ≤ 2d/t =: R. For the second moment it holds

E(X2
ij) = E(

d2

t2
I[Bij − tr(w(Ai)ρ)]

2) (2.33)

and hence

σ2 :=

∥∥∥∥∥∥
∑
ij

E(X2
ij)

∥∥∥∥∥∥ =
∑
ij

d2

t2
[1− tr(w(Ai)ρ)

2]) (2.34)

≤ t · d
2

t2
=
d2

t
. (2.35)

Now using the matrix-valued Bernstein inequality we find

Pr [‖A∗(y −A(ρ)‖ ≥ λ] ≤ d · exp
(
− λ2/2

σ2 + (Rλ/3)

)
≤ d · exp

(
− tλ2/2

d(d+ 1)

)
. (2.36)

Set λ = ε/(C0r) for the Dantzig selector and we conclude for any t ≥ 2C4λ
−2d(d +

1) log d = 2C4(C0r/ε)
2d(d+ 1) log d,

Pr [‖A∗(y −A(ρ)‖ ≥ ε

C0r
] ≤ d · exp (−C4 log d) = d1−C4 . (2.37)

Applying theorem 2 completes the proof!

The paper then goes a long way to proof the tightness of the bound shown above,

which wont be covered here.
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(a) (b)

(c)

Figure 2.4: The result for the numerical simulations in [11]. The total time T on which

the simulated measurements are taken is increased between sub-figures 2.4a and

2.4c. The time needed to switch between two measurement settings c was assumed

to be 20, i.e. 20 times longer then one measurement itself. In every plot the matrix

Lasso (red) and the Dantzig selector (blue) outperform the maximum likelihood esti-

mator (green) given as a benchmark. More surprising is that as soon as a high fidelity

is reached a further increasing of m results in approximately the same fidelity. As a

consequence measuring fewer Pauli expectation values with higher precision is the

favourable technique, since the classical algorithms scale withm. Picture taken from

[11].
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2.2.2 Numerical Simulations

As before in [6] Flammia et al. tested their results with numerical simulations. How-

ever to simulate a realistic lab situation they assumed a time c it takes to change

the measurement setting. Hence they were able to address the question whether it

is more favourable to measure one Pauli expectation value many times, resulting in

lesser noise, or whether it is better to have noisier results for more Pauli expectation

values. In both cases the process was restricted to a time T . The results can be found
in figure 2.4.

Finally the paper ends bymentioning the application of compressed sensingmeth-

ods in quantumprocess tomography, which is another interesting fieldwhere resources

typically scale exponentially.

2.3 Schwemmer, 2014

A good example for the usefulness of compressed sensing is given in [14]. There

the authors compare different types of tomography protocols considering a permu-

tationally invariant 6-photon Dicke state. It's only thanks to the extremely high pump

power (8.4 W ) used in this cavity-enhanced spontaneous parametric down conver-

sion (SPDC) experiment that a full state tomography could be carried out and used as

a reference for different state reconstruction methods.

Note that the number of parameters needed to be determined is 64 − 1 = 4095.
However due to the symmetries in the Dicke states

|D(n)
N 〉 =

(
N

n

)−1/2∑
i

Pi(|H⊗(N−n)〉 ⊗ |V ⊗n〉), (2.38)

wherePi denotes all possible permutations of the qubits, |H/V 〉i denotes the polarisa-
tion of the ith qubit,N is the total photon number and n is the number of photons in the

|V 〉 state. The authors go beyond compressed sensing schemes, in particular using

the permutationally invariance (PI) of the states to develop even more effective meth-

ods reaching polynomial scaling in the number of qubits. This is not surprising since

compressed sensing is capable of dealing with any generic quantum states whereas

the restriction on Dicke states naturally allows for further reductions of the parame-

ters needed to describe the state uniquely. A PI state is defined by
(
N+3
N

)
= O(N3)

parameters.

In the experiment all 36 = 729 Pauli settings where measured over 50 hours. Note
that the identity observable doesn't have to bemeasured since it drops out of any other

Pauli measurement. Randomly chosen subsets of this data was then used to evaluate

the different tomography methods.

A comparison of the different methods tested can be seen in table 2.1. Firstly, note

that the state produced in the 6-photon experiment mainly is a mixture states |D(2)
6 〉,

|D(3)
6 〉 and |D(4)

6 〉, hence is suitable for compressed sensing (low rank). The first col-

umn in table 2.1 represents the overlaps of the measured data with the respective

Dicke states obtained by full tomography and serves as a reference. Taking the per-

mutational symmetry into account the second column of data was obtained by only 28
measurement settings, still giving good agreement with the full state tomography. The

third column is the result of a compressed sensing scheme in which only 270 expecta-
tion values from the full state tomography were taken into account. Finally the last row

combined both techniques and needed only 16 measurement settings to reconstruct

the quantum state with good fidelity.
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State Full PI CS PI, CS

|D(0)
6 〉 0.001 0.001 0.001 0.002

|D(1)
6 〉 0.005 0.008 0.011 0.006

|D(2)
6 〉 0.197 0.222 0.181 0.207

|D(3)
6 〉 0.604 0.590 0.615 0.592

|D(4)
6 〉 0.122 0.127 0.118 0.119

|D(5)
6 〉 0.003 0.004 0.003 0.005

|D(6)
6 〉 0.000 0.003 0.001 0.004∑

0.933 0.954 0.929 0.935

Table 2.1: The fidelities compared to the different Dicke states measured with full to-

mography, PI tomography, compressed sensing from 270measurement settings and

PI tomography combined with compressed sensing, respectively.

The paper is a good demonstration of the power of compressed sensing schemes

but also a reminder that if we can assume more information about the state we want

to determine (on top of low rank), it is possible to find even more efficient schemes

then compressed sensing. Especially in state preparation problems, where we want to

certify the quality of a source of known states, additional assumption about the output

state are often valid.
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Chapter 3

Conclusion

In this report we summarised the work done in the field of (quantum) compressed

sensing in the group of David Gross. They were able to show the feasibility of com-

pressed sensing methods in the framework of quantum information. Although com-

pressed sensing can never overcome the exponential scaling in terms ofmeasurement

effort, the square root improvement for low rank states is a very powerful tool to reduce

measurement costs and enables experimentalists to carry out more complex studies

with more qubits, which were not possible before.

The second paper [11] presented in this report gives especially good bounds on the

accuracy of their protocol and makes precise predictions on the actual time needed to

carry out the measurements needed for a successful reconstruction of the density

matrix.

The last paper presented here [14] is a good example of the application of com-

pressed sensing in a real experimental setting, yet, it also reminds the reader that it is

often feasible to go beyond compressed sensing andmake further assumption on the

state which we want to determine. By doing so Schwemmer et al. showed a dramatic

decrease in the number of neededmeasurements and even achieved polynomial scal-

ing. The original work on permutationally invariant quantum tomography can be found

in [15], where the polynomial scaling for such states was presented for the first time.

We want to conclude by mentioning an idea suggested by the author. The work

carried out on compressed sensing so far mainly focuses on efficient tomography

schemes. Yet, intuitively, compressed sensing could find a much broader application.

Consider an algorithm simulating quantum mechanics on a classical computer. As

we know, such a algorithm also scales exponentially bad comparable to the measure-

ment effort in full tomography. However if we could design an algorithm working on a

quadratically smaller space of dimension rd a quadratic speed up might be achieved

whilemaintaining a good fidelity, enabling classical simulationswithmanymore qubits

than possible today.
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