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We explore the open problem of the most efficient way to communicate classical data across quantum channels. We find
that traditional optimal measurement techniques do not necessarily maximise information transfer rates and therefore the
maximisation of the mutual information must be done explicitly. This inherently non-linear problem has been solved for pure,
symmetric signal states but has yet to be extended to arbitrary ensembles of mixed signal states, limiting their application to
physical quantum channels.

1 Introduction
The ambiguity of the quantum state is simultaneously the most useful and unhelpful feature of quantum information theory. On
the one hand an observer’s naivety of the quantum state allows us to perform calculations in large state spaces. On the other,
extracting information out of a quantum system is inherently difficult as the state is characterised by statistical quantities - most
importantly, its probability distribution. As the act of extracting information from a quantum state (measuring) disturbs the state
itself it is important to choose the best measurement possible. The choice of optimal measurements is particularly important
when considering communication rates over quantum channels as it is desirable to maximise the amount of information that can
be received. The problem is then to determine the choice of measurement that extracts the most amount of information out of
a quantum state from a sender (Alice) by a receiver (Bob). There are other considerations, such as optimising the quantum
state that is being sent - but these will not be focused on here. The other important task of sending quantum information over
quantum channels (such as quantum teleportation) will also not be considered and we are purely interested in sending classical
information using quantum states.

We begin with a review of the field of optimal measurements, before moving onto its application to the mutual information
of quantum channels.

2 Optimal measurements
In this section we briefly introduce the formalism of optimal quantum measurements. It is well known that in quantum
mechanics orthogonal states can be distinguished by projective measurements with certainty. However in the instances where
non-orthogonal states are used (such as in quantum key distribution) then projective measurements no longer reliably distinguish
between quantum states and a new strategy has to be found. There are several strategies that have been developed, and when
distinguishing more than 2 states it becomes difficult to prove optimality - however there are tools that can be used to find
at least approximately optimal measurements. Another thing of note that won’t be dealt with here is the implementation of
the optimal measurements that have been derived theoretically. In practice there may not exist experimental apparatus that
can efficiently implement optimal measurements, whereas a sub-optimal measurement could be efficiently implemented and
yield better results. In order to determine the set of optimal measurements, we introduce the concept of general measurements.
Once we have a set of general measurements we can impose constraints on the set to find the subset of optimal measurement
operators.

2.1 Generalised measurements
The act of an observer gaining information about a quantum system is governed by the general measurement postulate1

General measurement postulate: The collection of operators {M̂i} that act on the Hilbert space of a quantum
system are measurement operators if the action of the operator M̂i on the system state |Ψ〉 gives outcome i with



probability

P(i) =
∥∥M̂i |Ψ〉

∥∥2
= 〈Ψ|M̂†

i M̂i |Ψ〉 , (1)

such that the system is transformed into the state

|Ψ′〉= M̂i |Ψ〉√
〈Ψ|M̂†

i M̂i |Ψ〉
. (2)

The operators {M̂i} must also be complete, that is they must span the Hilbert space such that

∑
i

M̂†
i M̂i = I , (3)

where I is the identity.

Traditionally a special class of general measurements are used: projective or von Neumann measurements. In this formalism
each observable of the system is expressed as a Hermitian operator Ô that can be spectrally decomposed in terms of its
eigenstates2

Ô = ∑
i

λi |φi〉〈φi|= ∑
i

λiP̂i , (4)

where P̂i is a projection operator. The von Neumann formalism has the advantage that if the quantum system being probed is
in one of the eigenstates of Ô then a measurement using this operator will distinguish the state with certainty. As the states
{|φi〉} form an eigenbasis they are necessarily orthogonal, and as such if the quantum system can be expressed as a linear
superposition of this eigenbasis then the operator Ô can be used to completely determine the statistical properties of the quantum
state using many projective measurements of identically prepared quantum systems. Projection operators necessarily satisfy
the completeness requirement of the general measurement postulate as they are constructed from an eigenbasis and as such,
span the Hilbert space. As well as satisfying the general measurement postulate, projectors are also positive and orthonormal.
Orthonormality is easily demonstrated

P̂iP̂j = |φi〉〈φi|φ j〉〈φ j|= δi jP̂i , (5)

due to the orthonormality of the eigenbasis {|φi〉}. Positivity automatically follows from the requirement that

P(i) = 〈Ψ| P̂†
i P̂i |Ψ〉= 〈Ψ| P̂iP̂i |Ψ〉= 〈Ψ| P̂i |Ψ〉 ≥ 0 , (6)

as a probability is necessarily positive.
Recall that we are interested in optimising the distinguishability of quantum states that are not necessarily orthonormal - and

therefore the optimal set of quantum measurements may not be orthonormal. We therefore drop the orthonormality requirement
and propose a set of operators {Π̂i} related to a set of measurement operators {M̂i} through

Π̂i = M̂†
i M̂i . (7)

The set {Π̂i} is called a Positive Operator-Valued Measure (POVM) and represents a set of measurements through the relation
above. The POVM naturally satisfies the general measurement postulate through its construction in that the operators are
Hermitian, positive and complete. The framework of POVMs allow us to find general measurements of quantum systems
such that we can derive the set of measurement operators for an optimal POVM. It is entirely possible that a POVM is in fact
a set of projectors, however this will not be true in general. POVMs also allow us to accommodate for the case when the
observer makes a destructive measurement on the state. For example detecting a photon using an avalanche photodiode detector
necessarily destroys the photon and the quantum state is lost (it is not projected into the |1〉 photon number state for example).
In this sense a POVM is most useful when the observer is interested in the statistical properties of the quantum state that is
sent, rather than the state after measurement. When sending classical data over quantum channels, the classical data is encoded
in the statistics of the quantum state and not the states themselves and as such the POVM lends itself naturally to our aims.
Furthermore, a POVM represents a set of measurements that theoretically can be implemented in the laboratory.2, 3

Having formulated a set of general measurements we require a way to restrict the POVM such that we can distinguish
quantum states optimally. Several strategies will be explored in the following sections.
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2.2 Minimising error
We begin with the strategy where finding the optimal POVM is most straightforward and aim to minimise the probability of
misclassifying the state on measurement. In all generality the probability of making an error is the sum of the probability a
certain state is sent weighted by the probability that you get the wrong measurement outcome for that state. More formally this
is expressed2

Perror = ∑
i

P(i)∑
i 6= j

P( j|i) , (8)

where the probability of correct identification of outcome i is given by P(i|i) such that the total probability of correct
classification is given by

Pcorrect = 1−Perror = ∑
i

P(i)P(i|i) . (9)

Now consider the ensemble of N states with associated known sending probabilities E = {ρ̂i, pi}. The ensemble is associated
with a quantum channel from Alice (A) to Bob (B). The states {ρ̂i} are in general mixed states, but the formalism also applies
to pure states. The probability of error is now given by2

Perror =
N−1

∑
i=0

pi ∑
j 6=i

Tr(ρ̂iΠ̂ j) , (10)

where {Π̂i} is a POVM. We are now interested in the best POVM under this strategy. It is obvious that the POVM that
corresponds to the optimal measurement in this strategy is the one that minimises the probability of error. Necessary and
sufficient conditions on the POVM to be optimal exist and their derivations can be found in the literature,4 we only quote them
here. The optimal POVM {Π̂i} for minimising error in distinguishing between states {ρ̂i} with probability of being sent {pi}
must satisfy2

∑
i

piρ̂iΠ̂i− p jρ̂ j ≥ 0 ∀ j , (11)

or

Π̂i(piρ̂i− p jρ̂ j)Π̂ j = 0 ∀ i, j . (12)

These conditions are not independent and a POVM that satisfies one automatically satisfies the other.

2.2.1 Square-root measurement
The square-root measurement was developed by Hausladen and further developed with Wootters.5 It is a well-known example
of a POVM construction to minimise error and in many examples the square-root measurement satisfies the necessary and
sufficient conditions to minimise error. Let us begin by considering the signal states to be pure, that is consider the signal set
{|si〉} such that ρ̂ = ∑i |si〉〈si| (i.e. the probabilities are included in the signal state normalisation). Consider POVMs of the
form

Π̂i = |mi〉〈mi| , (13)

where {|mi〉} are our measurement states. We construct the square-root measurement set using the relation

|µi〉= ρ̂
− 1

2 |si〉 , (14)

where {|µi〉} are our square-root measurement states. Our POVM elements are now given by

Π̂i = ρ̂
− 1

2 |si〉〈si| ρ̂−
1
2 . (15)

Extending to an ensemble of mixed signal states E = {ρ̂i, pi}, equation 15 generalises to2

Π̂i = piρ̂
− 1

2 ρ̂iρ̂
− 1

2 . (16)

We will now apply the square-root measurement to the quantum key distribution protocol BB84 as an example of how this
strategy might be used.
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Application: quantum key distribution
In the original paper by Bennett and Brassard6 where the protocol now know as BB84 was developed it was assumed the chosen
measurements were optimal. In the interest of creating a one-time pad (or quantum key) Alice sends one of four states, Bob
then measures using the equivalent projection operators. Bob will only get a meaningful measurement half the time and when
he has finished measuring all sent states he reports the basis of the successful measurements to Alice who then informs him
which are correct. This forms the quantum key which both Alice and Bob share, and the key can then be used for encryption.
We would like to motivate optimality of this procedure by using the square root measurement strategy.

Bennet and Brassard motivated BB84 using photon polarisations in either the linear or diagonal basis, that is the four
possible states that could be sent were {|H〉 , |V 〉 , |D〉 , |A〉} which we will rewrite as the more familiar (but entirely equivalent)
set {|0〉 , |1〉 , |+〉 , |−〉} where |±〉 = (|0〉± |1〉)/

√
2. Note how the four states are neither linearly independent or form an

orthonormal basis - this is where the security of BB84 comes from. Each of the four states are sent with equal probabilities and
the density operator for this system is

ρ̂ =
1
4
(|0〉〈0|+ |1〉〈1|+ |−〉〈−|+ |+〉〈+|) = Î

2
, (17)

that is, the maximally mixed state. The only quantity to calculate to construct the square-root measurement is

ρ̂
− 1

2 =
√

2 Î , (18)

and from equation 16 we find the measurement set

{π̂i}=
{

1
2
|0〉〈0| , 1

2
|1〉〈1| , 1

2
|−〉〈−| , 1

2
|+〉〈+|

}
, (19)

where we use a lower-case π̂i to indicate a specific POVM. Note that ∑i π̂i = Î as required. The derived measurement set is
indeed the measurement set used in BB84 and can be written more compactly as π̂i = 1/2ρ̂i. Using the second condition on
error minimisation, equation 12, we can show

π̂i(piρ̂i− p jρ̂ j)π̂ j =
1
8

ρ̂i(ρ̂i− ρ̂ j)ρ̂ j , (20)

=
1
8
(ρ̂iρ̂iρ̂ j− ρ̂iρ̂ jρ̂ j) , (21)

=
1
8
(ρ̂iρ̂ j− ρ̂iρ̂ j) , (22)

= 0 , (23)

where we have used the fact that the density matrices are pure and therefore ρ̂2
i = ρ̂i. We have therefore proved that the

measurement set in BB84 minimises the probability of error in Bob determining the correct state.

2.3 Maximum confidence
An alternative strategy to minimising the total error of classification is to instead maximise the probability that a measurement
outcome correctly determines the sent state. While these might appear to be both sides of the same coin, they lead to quite
different strategies. More precisely we are interested in maximising2

P(ρ̂i|i) =
P(ρ̂i)P(i|ρ̂i)

P(i)
, (24)

We will begin by discussing linearly independent signal states as introduced by Ivanovic,7 proved optimal by Peres8 and further
developed by Dieks,9 before moving onto the more general case.

2.4 Unambiguous Discrimination
First consider distinguishing between N pure signal states {|si〉}. We wish to find the POVM {Π̂i} such that the probability in
equation 24 is unity, or equivalently2

P(i)δi j = 〈si|Π̂i |si〉 , (25)
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where P(i) is the probability of the measurement outcome i occurring, which happens if and only if the state is |si〉. This can
only be satisfied when the signal states are linearly independent such that we can construct the states {|s⊥i 〉} where state |s⊥i 〉 is
orthogonal to all signal states apart from |si〉. This can be formalised as

〈si|s⊥j 〉= 〈s j|s⊥j 〉δi j . (26)

It is fairly easy to motivate that this condition is only satisfied by linearly independent states: consider the linearly dependent
set {|0〉 , |1〉 , |+〉}; as the state |+〉 is a linear superposition of the other two states any state that is orthogonal to both |0〉 and
|1〉 will also be orthogonal to |+〉. Assuming therefore that the states are linearly independent we can construct the POVM
operators

Π̂i =
P( j) |s⊥j 〉〈s⊥j |
| 〈s j|s⊥j 〉 |2

, (27)

that satisfy the condition for maximising confidence as in equation 25. Therefore the POVM specified by equation 27 is said
to unambiguously discriminate between the signal states {|si〉} in that if measurement outcome i is recorded then the state
|si〉 was definitely sent. There is a catch however in that the POVM is only complete if the signal states are orthogonal and
therefore usually the POVM has to be completed with an additional operator. The most general way to do this is to define it as
the operator over the remainder of the space

Π̂? = Î−∑
i

Π̂i , (28)

where the ? indicates that the measurement outcome is meaningless and provides no information. The strategy can then
unambiguously discriminate between signal states with the trade-off of the occasional inconclusive result. It is important to
note that while this strategy can distinguish states with certainty, often the probability of an inconclusive result can be quite
high and such would often make it useless for a communication channel. However the application to quantum key distribution
discussed below demonstrates its usefulness in some circumstances. The linear independence condition on the signal states is
perhaps too prohibitive for any useful quantum system, however unambiguous discrimination has thankfully been generalised
to linearly dependent states.

Application: quantum key distribution
In 1992, Bennett proposed a new quantum cryptography protocol that relied on non-orthogonal, linearly independent states.10

As with BB84, Alice sends a set of signal states, this time {|0〉 , |+〉} which Bob has to be discriminate between using
unambiguous discrimination. Using equation 26 and 27 we can construct the POVM where the orthogonal signal set {|s⊥i 〉} is
{|1〉 , |−〉}. The probability of an inconclusive measurement is found to be 1/

√
2,11 and therefore the probability of successful

unambiguous discrimination is 1−1/
√

2≈ 29%. The low probability of success does not matter too much, Bob simply tells
Alice which bits he failed to discriminate and Alice throws away that part of her key. Now consider an eavesdropper, Eve, who
has access to the quantum states before Bob. If she uses unambiguous discrimination she will fail 71% of the time. If Eve then
tries to fool Bob by sending a replacement state to Bob then Eve will be unsure what state to send if she obtains an inconclusive
result. If Eve simply guesses which state to send she will therefore send the wrong state 35.5% of the time (half the time her
guess will be correct). For a secure channel, if Alice and Bob compared some of their bits then they should have a zero error
rate (as they are discarding all the inconclusive results). If instead there is an error rate of approximately 35% then this is a
clear signal of a compromised channel and they discard the key entirely. There are other details, and it is possible for Eve to
reduce her error rate, however it still stands that if there are any appreciable errors then the channel is insecure.11

2.5 Generalised maximum confidence measurements
The generalised form of unambiguous discrimination was developed by Croke et al12 and still attempts to maximise the
probability of equation 24 but with linearly dependent states. Now that the states are not necessarily linear independent
no POVM will be able to unambiguously discriminate the signal states, however we can still construct POVMs that will
maximise our probability of being correct. Rewriting equation 24 in terms of our ensemble of signal states with their associated
probabilities E = {ρ̂i, pi} and our POVM {Π̂i} (each associated with outcome i) we have12

P(ρ̂i|i) =
piTr(ρ̂iΠ̂i)

Tr(ρ̂Π̂i)
. (29)

As with unambiguous discrimination with wish to maximise the probability of equation 29. We begin with the ansatz12

Π̂i = wiρ̂
−1/2Q̂iρ̂

−1/2 , (30)
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where the positive, trace 1 operator Q̂i is to be determined and wi = P(i). It is interesting to compare equation 30 with
the square-root measurement POVM in equation 16 and see that the maximum confidence case appears to be a generalised
square-root measurement. The square-root measurement POVM was chosen such that the set of measurement operators would
be complete, now that it has been generalised the resulting POVM will not necessarily be complete just as with unambiguous
discrimination, and an inconclusive result will have to be included in general. By noting that wi = Tr(ρ̂Π̂i) and substituting in
our ansatz into equation 29 we find

P(ρ̂i|i) =
piTr(ρ̂iwiρ̂

−1/2Q̂iρ̂
−1/2)

wi
, (31)

= piTr(ρ̂iρ̂
−1/2Q̂iρ̂

−1/2) , (32)

= piTr(ρ̂iρ̂
−1)Tr

(
ρ̂−1/2ρ̂iρ̂

−1/2

Tr(ρ̂iρ̂−1)
Q̂i

)
, (33)

= piTr(ρ̂iρ̂
−1)Tr(σ̂iQ̂i) , (34)

where we have used the cyclic properties of the trace and defined

σ̂i =
ρ̂−1/2ρ̂iρ̂

−1/2

Tr(ρ̂iρ̂−1)
, (35)

which is also a positive, trace 1 operator. The probability P(ρ̂i|i) is therefore maximised when Q̂i is the projector onto the
eigenvector of σ̂i with the largest eigenvalue, that is

Q̂i = |λ max
i 〉〈λ max

i | , σ̂i |λ max
i 〉= λ

max
i |λ max

i 〉 , (36)

such that

max[P(ρ̂i|i)] = piTr(ρ̂iρ̂
−1)λ max

i , (37)

and our POVM becomes

Π̂i = wiρ̂
−1/2 |λ max

i 〉〈λ max
i | ρ̂−1/2 . (38)

Different choices of {wi} give distinct maximum confidence POVMs and are often chosen with the desire to minimise the
probability of an inconclusive measurement (ideally, zero probability). As a comparison to the square-root measurement,
consider the case of three symmetric qubit states12

|ψ0〉= cosθ |0〉+ sinθ |1〉 , (39)

|ψ1〉= cosθ |0〉+ e2πi/3 sinθ |1〉 , (40)

|ψ2〉= cosθ |0〉+ e−2πi/3 sinθ |1〉 . (41)

It can be found using the formalism above that the maximum confidence probability for these states is

Pmc(ρ̂i|i) = 2/3 . (42)

Calculating the same value for the square-root measurement we find

Psr(ρ̂i|i) =
1
3
(1+ sin2θ) , (43)

such that Psr(ρ̂i|i)≤ Pmc(ρ̂i|i) and the maximum confidence is better for all θ apart from π/4 where the two strategies are equal.
This was experimentally demonstrated by Croke et al.13

3 Quantum channels and mutual information
We now turn our attention to the application of optimal measurements to quantum channels. As with classical channels we
are interested in maximising the amount of information that can be decoded by our receiver, Bob. We start by making use of
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Shannon’s information theory which states that the observer’s knowledge of a system that has probability P(i) of being in state
i is given by the Shannon entropy

H =−∑
i

P(i) log2 P(i) , (44)

and any measurement of the system will alter the probabilities to conditional probabilities, altering the entropy and the
observer’s knowledge of the system. The resulting information gain of the observer is given by the difference between the
initial and final entropy of the system.3 In the context of channels, this information gain is known as the mutual information,
defined as14

I(X : Y ) = H(X)−H(X |Y ) , (45)

where X is all the possible signal values {xi} sent by Alice, and Y is the set of values {yi} determined by Bob such that

H(X |Y ) =−∑
i

P(yi)∑
i

P(xi|yi) log2 P(xi|yi) . (46)

Generalising the above formalism to an ensemble of signal states E = {ρ̂a, pa}, each denoting a message a sent by Alice to
Bob, then the mutual information between Alice and Bob is given by the Holevo bound14

I(A : B)≤ H(ρ̂)−∑
a

paH(ρ̂a) . (47)

where H(ρ̂) =−Tr(ρ̂ ln ρ̂) is the von Neumann entropy. In general, the equality does not hold and there are cases where no
choice of Bob’s POVM will allow the mutual information to reach its maximum value. However, it is a useful quantity to
maximise nonetheless and makes comparison of different POVMs easier in the context of quantum channels.

There are two distinct ways that mutual information is used. The two optimal measurement strategies that have been studied
so far have both essentially been minimising the error of misclassifying the signal state (or, minimising the‘Bayes cost’), which
is a well-behaved and easily solvable case - as has been demonstrated. Entropy, on the other hand, is a nonlinear quantity and in
turn the maximum mutual information is difficult to solve for. Therefore the two distinct cases are

1. A POVM is found by minimising the Bayes cost of the signal state ensemble. The mutual information is then found for
the POVM and compared to other strategies.

2. The fact that the mutual information is a convex function is utilised to find the POVM that maximises the mutual
information.

As already stated, the latter is much harder than the former, though is more likely to find the optimal quantum measurements
that closest approach the Holevo bound. An example of the first case is presented first by Hausladen et al14 and then extended
to mixed states by Schumacher and Westmoreland.15 In these two papers the square-root measurement is used to find a POVM
for which the mutual information is then calculated.

Davies was the first to tackle the second case using a group-theoretic approach16 and later extended for symmetric ensembles
(such as equations 39-41) by Sasaki et al.17 More recently, numerical methods have been developed to tackle this difficult
problem.18 However a general solution to find the optimal POVM that maximises the mutual information for a given quantum
ensemble and channel is still an open problem. Despite the difficulty of finding a generalised formalism for maximising
the mutual information, it should be noted that the strategy developed by Sasaki et al17 is perhaps sufficient for an optimal
(noiseless) quantum channel. Sasaki et al consider the set of M qubit states symmetrically distributed around a great circle on
the Bloch sphere, which we can represent as the ensemble

EM =

{
|ψk〉= cos

(
kπ

M

)
|0〉+ sin

(
kπ

M

)
|1〉 , pk =

1
M

∣∣∣∣∣ k = 0, ...,M−1

}
. (48)

Sasaki et al then go on to show that in order to maximise the mutual information only three POVM elements are required for
such an ensemble, no matter how large M is. This allows the construction of an alphabet of states to efficiently send classical
information via a quantum channel using only three measurement settings. For two non-orthogonal qubit states (M = 2) it was
predicted19 and then shown20 that the minimum error POVM coincides with the maximisation of mutual information. However
when using a binary (also M = 2) ensemble of mixed states is has been found that the optimal POVM that maximises the
mutual information differs from the POVM that minimises the Bayes cost.21 For M > 2, such as the triad in equations 39-41 it
has been demonstrated that the minimum error POVM does not maximise the mutual information22 and therefore more careful
measurements must be used in these cases. It is of importance to note that all of these experimental demonstrations occurred in
optics and therefore translate themselves well to the consideration of quantum communications.
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4 Summary
We have introduced the formalism of optimal quantum measurements. The main strategy is to use a generalised measurement
that minimises the Bayes cost. If considering the maximum amount of information that can be extracted from a given ensemble
sent across a quantum channel then the optimal quantum measurements changes for sets of 3 or more pure signal states -
however currently these states are restricted to being symmetrically distributed on the Bloch sphere. The formalism of Sasaki et
al has yet to be extended to mixed states and therefore cannot model the effect of noise in a quantum channel for more than two
signal states, nor have the ensemble probabilities been optimised for an optimal POVM. It is these two problems that hold back
full implementation of optimal quantum measurements in order to maximise the sending of classical information over quantum
channels.
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