Discrete Quantum Walks and Search Algorithms

J.C. Adcock
10/4/15

Abstract

Recently a number of discrete quantum walk based algorithms have been produced [1-6]. These are closely
related to, or are specific cases of, structured search applied using a quantum walk. The formalism of discrete
quantum walks has clear classical parallel in the form of Markov chains. Similarly, search via quantum walk has
similar parallels in classical structured search. This report will review the field of search via discrete quantum
walk and give a technical overview of the mathematical methods and structure.

1 Introduction

Search algorithms are of fundamental interest to computer science and have been studied thoroughly in the
classical domain. Generally speaking, search algorithms aim to solve the problem of identifying a single
“marked” element x* (or subset of elements x* € M) in some set of z € X. Using naive random sampling,
one expects to find such an element in O(N/M) queries, where ||X|| = N and |[|M|| = M. However, Grover’s
seminal 1996 paper “A fast quantum mechanical algorithm for database search”, showed that an unstructured
search for a single marked item could be completed in O(\/N ) queries to an oracle function, a square root
speed up compared to classical approaches. This opened to the door to a new area of study and approach to
search problems and subsequent work has lead to numerous developments such as a more general quantum
search [7,8].

This report aims to introduce discrete quantum walk based quantum searches, whilst reviewing in detail a
number of current results and identify regions of interest for further study and research. This section is split in
to two parts. Section 1.1 will briefly review the current literature give an overall feel for the research landscape,
whilst section 1.2 will give an introduction to Markov chains (which provide the basis for our quantum walks)
and classical search algorithms. Discrete time quantum walks will be discussed in Section 2 and searching via
discrete quantum walk will be discussed in Section 3. A summary of main results and concluding remarks will
then be made in Section 4.

1.1 Brief Historical Reivew

The first hint that quantum walks on graphs may produce effective search algorithms came from the discovery
that discrete quantum walks on finite graphs (first defined in 2000 [9]) can have exponentially faster hitting
times (time taken to get from one node to another node). This was shown first for continuous time decision
trees [10], then for discrete walks on graphs such as the hypercube, and ‘glued tree’ graphs [11-13]. Naturally
this seems to imply that searching using a quantum walk would be a fruitful avenue to pursue. This was
first realised in context of the element distinctness problem (which can be reduced to search) by Ambainis [1],
who found an optimal [14] O(N %) algorithm for the problem, (improving the best quantum algorithm by a
fractional power) by implementing quantum walks on Johnson graphs. This work utilised a type of search via
quantum walk to produce it’s result, and opened up enquiry in to search via quantum walk.

After this seminal work, Childs [15] and Shenvi [16], arrived at discrete quantum walk search algorithms for
the case of the d-dimensional lattice (complexity O(v/N Poly(Log(N)))) and hypercubes (complexity O(v/N))
respectively. Though these have larger complexities than Grover’s algorithm, these are of use if a cost is
associated in grovers algorithm of moving between sites where data is stored, which is likely in a physical
implementation. The quantum walk formalism subverts this, efficiently traveling around the data structure.
Meanwhile, the field of quantum walks on graphs was continually explored with results such as [17,18] exploring
the effect of coins and initial states.



A major breakthrough was made in 2004 when Szegedy [2,19] prescribed a way to generate quantum walks
using the classical Markov chains they correspond to directly. Szegedy prescribed a method to produce these
walks provided the Markov chain has a symmetric, ergodic, reversible transition matrix P (these terms are
definied in section 2). This approach generalises Grover search as well as Ambainis’ previous results [1,18] to a
larger space of quantum walks. Due to that fact that its construction is based around classical random walks,
it was possible for Szedegy to use properties of the classical Markov process, such as the eigenvalue gap, to
analyse the complexity of the algorithm. With this, Szegedy presented an algorithm for the related problem of
detecting if the set of marked elements contains members. This runs with complexity O(¢o + \/%(gbl + ¢2)).
Here, ¢ is the cost of sampling at random from the data, ¢, is the cost of propagating the quantum Markov
process once, ¢ is the cost of checking that the current element is marked. The number of marked elements
is M = eN and ¢ is the eigenvalue gap of the Markov process’ transition matrix P. There is a similar classical
algorithms for implementing a search of this type is of complexity O(¢dg + i((bl + ¢2)), which is essentially
given by Algorithm 1 with n = 1. In this paper Szegedy also found the important result that hitting times on
quantum walks are quadratically faster than their classical counterparts. These facts give hope for a quantum
search (not just detection) with complexity O(¢g + \/%(qﬁl + ¢2)).

Ambainis’ original search algorithm on Johnson graphs has a minimum complexity of O(¢g + ﬁ(% +¢2)),

which is comparable to classical Algorithm 1 with n = % with a square root speed up in € and § (though similarly
it is possible to “set m = 1”7 in this algorithm, which achieves the same complexity as Szegedy’s detection
algorithm. It should be noted that Ambainis’ algorithm reduces to Grovers for the complete graph (which exists
in the set of Johnson graphs). This complexity is slightly better that that of Szegedy’s detection algorithm,
however the restriction to Johnson graphs reduces the utility of this approach to less general search and
applications, for example group commutativity can not be tackled using only Johnson graphs [20]. Moreover,
the algorithm will only find a single marked element. These facts hint that better complexities for search may
be attainable on more general graphs.

Magniez, Nayak, Roland and Santha (MNRS) [3] improved upon this work by producing a scheme where a
Szegedy style Markov chain quantum walk is used to produce a reflection operator for an amplitude amplifica-
tion scheme. This combines elements of Ambainis’ previous work with that Grover’s search, providing a more
general graph based search. The MNRS algorithm is valid for a larger class of Markov chains (those which are
reversible and ergodic) and improves has an improved complexity of O(¢pg + ﬁ( % + ¢2)) for the problem of
finding a single marked element. This type of search is equivalent to a quantum version of Algorithm 1 with
n = 4. This classical version has complexity O(¢o + %(% + ¢2)).

Recently, Krovi et. al. have discovered an algorithm that extends the MNRS algorithm to the case of
multiple marked elements, again encompassing a larger class of Markov chains. The only condition they
require is that the Markov chain be reversible. They also show that the problem of detecting marked vertices
is equally as hard as searching (and finding) them for quantum walk search algorithms.

1.2 Searching on a graph

It is easy to imagine a data set which has underlying structure such that random search has more complexity.
For example if it is known that x* come from a known process or distribution, then an algorithm could become
more efficient by using this information in the algorithm. One way of doing this would be to simply alter
the probability distribution used to randomly sample the elements. Another common approach is to represent
the data structure as a weighted graph (or Markov chain), where a data point is chosen according to some
distribution and the Markov process iterated until a marked element is found, or for a set number of steps
until a new starting point is chosen. Algorithm 1, given below, is an example of a general graph based search
for some Markov process P corresponding to the graph G(E, V).

Clearly properties of the algorithm depend on the values of the parameters ¢, n and the probability distri-
bution used to sample . These will effect the likelihood that a marked element is found an also the overall
efficiency of the algorithm. For example, a large value of ¢ is needed in order for the algorithm to converge,
however if ¢ is too large it will cause a large delay if there exists no marked element in the set M.

So far we have talked about searching using a Markov process P, but can we use the properties of the
Markov chain P to infer properties of the search algorithm? Some definitions and results will help us here.

Definition 1. An n-state Markov chain is a description of a classical probabilistic process with no memory.
It can be represented by an n X n square matrix P such that the rows sum to 1 (P is stochastic) and the
components pgy corresponds to the probability of transition from state x to state y.



Algorithm 1: Search on a Graph for one marked element using Markov Process

1 Initialise x € X with some random distribution
2 fori=1totdo

3 if £ € M then

4 ‘ Output z, stop

5 else

6 ‘ Iterate Markov Process n times: x = x P"
7 end

8 end

9 Output ‘No marked element found’

Clearly P must be connected if we wish to find all possible marked elements. Another obviously desirable
property is that of irreducibility - that every state can be reached from every other state. Less obviously, any
irreducible chain has a stationary vector state m such that 7P = m, where 7 is a distribution over the states
x € X with magnitude 1. This is a result of the Perron-Frobenius theorem [21]. Other properties that will be
of use when examining the discrete quantum walk construction of Ambainis, Szegedy and others [1,2] include
ergodicity - a Markov chain is ergodic if it is irreducible and also aperiodic - and reversibility - by defining
TePay = Tz (D)) Where (py,) = P* is the reverse of P, we say if P is reversible if P = P*. Clearly if P = PT,
then P* = P. Yet another important concept is that of an eigenvalue gap. if a Markov chain P is ergodic, then
it has a single eigenvalue with magnitude 1. The eigenvalue gap §p of P is then the difference the between the
largest and second largest eigenvalues.

This eigenvalue gap can be used to evaluate the mixing (and hitting) times of classical Markov processes -
the hitting time for a marked element M of a symmetric ergodic Markov process P, H(P, M) is O(3). Moreover,
Szegedy showed that for symmetric, ergodic Markov processes the quantum hitting time for a marked element
was always of order the square root of the classical hitting time [2].

Two important but distinct cases of Algorithm 1 occur when, for a search on an ergodic Markov chain, n = 1
and n = %, the inverse of the eigenvalue gap. It is easy to see why the case where n = 1 is an effective algorithm,
since it checks at every step of the Markov process for a marked element. The complexity of such at approach
can be found to be O(¢g + é(qﬁl + ¢2)), where ¢, are defined as in section 1 but are the equivalent classical
counterparts. Since the reciprocal eigenvalue gap is a measure of the hitting time, one expects that letting the
system propagate for n = % steps may provide marked elements with fewer checks. Such an algorithm will

have complexity O(¢q + %(% + ¢2)).

2 Discrete time Quantum Walks

Discrete quantum walks can be naively implemented by replacing each state of a classical undirected graph
with a quantum state and using a “coin” ancillary state to define the direction that the quantum walk will
go in. Clearly for unitarity we must have the graph be d-regular and the quantum walk algorithm will be
UC...CUC |z) |c), where C is an operator that takes the coin state |¢) of a walker state |z)|c) in to equal
super-positions of all the possible coin states unitarily, whilst U moves the walker in one step defined by it’s
coin ancillary state. One example of this is given by a discrete quantum walk on an infinite line (composed
of states |—o0)..|—1),]0),|1)..|oo)) produced by using the two dimensional Hadamard as a coin operator C'.
This is equivalent to a walk on the undirected graph of infinite vertices in a line connected only to their nearest
neighbour.
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It is clear to see that the coin operator can have a large effect on the dynamics, altering the kinds of inter-
ference that occurs during the walk. For example, the Hadamard coin shown above produces very unbalanced
distributions over the states, with positive states constructively interfering and negative ones destructively
interfering. Good coins have a large and balanced mixing effect, or in other words, are far away from the
identity. Examples of good coins include the “Grover diffusion operator”, G = —H®NUH®N (where U inverts
the phase of the state |0)) which appears in Grover’s algorithm, and the discrete quantum Fourier transform.
It is worth noting that the condition of unitarity and using the same C at each operation means that this
approach can only work for random walks on d-regular graphs - a small subset of possible configurations.

The above, coin based, approach follows that of [9] and has been shown to produce exponentially faster
hitting times on regular graphs than the classical counterpart [11-13,18,22]. We are interested in general
Markov processes which can have differently weighted transition probabilities, corresponding to the weights of
a directed weighted graph, so require an extension of discrete quantum walks to these processes.

One way to do this was proposed by Szegedy in 2004 [2,19] and does so by acting on the space of the edges
of a weighted graph G corresponding to the process P with N states. This space of edges corresponds to the
space CN ® CV. The reason for this can be seen by comparison with the coin based walk above - we have
simply replaced the combined space of the state and coin with the space of edges, which are equivalent (a state
consisting of two neighbouring states is replaced with a state corresponding to the transition between them).
For a Markov process P, we may define states

N
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This state corresponds to the directional edge of Markov chain that takes state ¢ to state j (which occurs with
classical probability P;;. Notice that |¢;) is normalised since P is stochastic. Clearly we have a unique state for

each possible transition of P, thus our states correspond to the edges of P. If we define S = Zf\fj:l li) |7) (] (4
to “swap” the states then

N
II:= ZWJ) (5]

is the projector on to the subspace spanned by [¢;). The unitary Wp that will implement the quantum
Markov process given by P is given by
Wp=S2I-1)

which is a reflection about the subspace spanned by {|¢);)}. the swap operator S ensures that the quantum
states, which correspond to the directed edges of the graph, are correctly identified with respect to a walk on
the vertices of the graph, and show the direction the walk (on the vertices) has moved in that step. It is easy to
see that this is very close to the Grover diffusion operator G = —H*NUH®N = 2|+) (+| — I. Here, however,
we have reflection taking in to account those states connected to the j* vertex of the chain. This can be seen
as starting from from the edge (¢,j) (the one-way edge from vertex i to vertex j) we have transitions P;; in

[¢;) = Zf;l V/Pij i) |7)) instead of about all possible states (given by |+)). Clearly then the Grover coin
walk corresponds to a walk of this kind on an equally weighted, fully connected graph (the Markov process
corresponding to a uniformly random system). This illustrates the connection between discrete quantum walks
and unstructured search. The next section will focus on algorithms that utilise this walk formalism and its
connection to produce novel quantum search algorithms. Whilst it appears that this is close to a Grover’s style
search algorithm, Szegedy published only an algorithm for finding if the set of marked elements contains any
elements, as the more general Markov chain diffusion operator can not be used naively (merely replacing the
Grover diffusion operator) to construct a search algorithm.

3 Searching With Quantum Walks

A natural way to extend the definition of quantum walk given above to search is to simply modify the Markov
transition matrix P used above to only contain transitions to the sought, marked elements, but not away from
them (whilst keeping the new transition matrix stochastic by putting p}, = 1 for marked elements 7). We call
this the absorbing walk P’. To search using a quantum walk, we iterate Wp, and after the quantum hitting
time % , which is of order the square root of the classical hitting time [2], a measurement should produce a

single marked element with good probability. Hence \/—157 steps are needed for a set of k = €N marked elements.
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Figure 1: A Schematic showing the difference of the original Szegedy quantum walk [?] (left), and the
walk employed by Magniez et. al. (MNRS) in their quantum walk based search algorithm [3] (right).
Starting with the state |i) |j) (the state corresponding to the directed edge from i to j), the Szegedy walk
corresponds to to spreading the left-hand state |i) over the neighbours of state |j), then employing a
swap operator to make sure the directionality of the walk is properly conserved. Notice that the walks is
equivalent to a walk on vertices if the “receiving” state of the transition is considered. Instead of the swap
operator, the MNRS Walk implements a spreading over the right-hand, |j) states around the left-hand
keti states, implementing two steps of the walk and circumventing one of the walk steps. This second step
corresponds to a step of the reverse quantum walk Wp=.

This is a quantum analogue of the Algorithm 1 with n = 1 and thus has cost O(¢g + \/%qﬁl). Here we have

no checking cost as no checking operation is performed, we merely expect that after n = % steps of the walk,

we should have been “trapped” on a marked element (as once these have been reached on the walk, there is
no way for the walk to move away from them). Here we are not guaranteed to find a marked element upon
measurement, and we can not know the algorithm has indeed produced one. Moreover in the implementation
of this kind of walk, where the transition probabilities are modified depending on whether the vertex is marked
or not seems require that we know which vertices are marked, so that we can alter the transition probabilities
of the Markov chain

A more inspired way to use the quantum walk machinery of Szegedy for search is to try to use it’s relation
to Grover’s algorithm, in which the Grover diffusion operator and checking “oracle” are used to “rotate” (in
state space) towards an initial state towards the sought elements. A naive way of doing this would be to simply
replace the Grover diffusion operator G with the Quantum walk operator Wp. Unfortunately this does not
succeed for general Markov processes, as the iterated Grover step no longer correspond to a constant rotation
toward the marked item - it varies from iteration to iteration. However, it is possible to recast Ambainis’
search algorithm as an instance of Grover’s algorithm with some power of Wp replacing G. This is based on a
Lemma proved by Ambainis in [1] where he proves that constraints on Grover’s G can be relaxed whilst still
converging on to a marked element - an important result in the study of Grover’s algorithm. However, this
freedom is not enough to insert arbitrary random walks as the diffusion in Grover’s algorithm, hence Szegedy
left the implementation of search on his quantum walks an open problem.

The MNRS algorithm [3] improved on this by using a a modified version of Szegedy’s quantum walk to
generate reflection operators that can be used in an amplitude amplification scheme (generalized Grover’s
algorithm for many marked elements, see [7] and for the exact scheme used [8]). Thus the structure of the more
general quantum walk can be used to produce operators which are compatible with the structure of Grover’s
algorithm, whilst still producing a result in O(¢g + ﬁ(% + ¢2)).

The MNRS quantum walk is similar to that of Szegedy, but rather than swapping the indices at each
operation in order to the preserve the directionality of the walk, a reversed time step of P (labelled P*) is
taken. This produces the equivalent of two walk steps, however with an intermediate step that does not
correspond to the pure walk (see Figure 1). This is done to produce the desired eigenvalue properties of the



walk.

In Grover’s algorithm, we reflect our initial state |¢) alternately over |¢+) and |¢), where |¢) is the desired,
marked element. This produces a rotation on the the marked element after v N 7 iterations. Similarly, setting
|€) = |7), the stationary distribution of Wp, and alternately implementing reflections about |ut) and |7)
rotates on to the |u) after O(1) iterations. Unfortunately implementing a reflection about |r) is difficult
(whereas rotations about |u’) can be done with a phase flip oracle with cost ¢» (checking cost). This is
resolved by the fact that as the stationary distribution of P, |r) is the only eigenvector of P with eigenvalue
1 [3]. Thus implementing a phase estimation algorithm on Wp allows all of the states which produced non
zero estimate of the phase to have their phase flipped. This is equivalent to an approximate version of a
reflection about |7}, and allows the Grover-like scheme utilising the quantum walk to be implemented with
cost O(¢p + ﬁ(log(ﬁ)% + ¢2)). This is possible as in order to do phase estimation, we do not need to use

the checking oracle, but must iterate % steps of the walk. Using an amplitude amplification scheme of Hoyer

et. al. [8] this can be reduced to the claimed complexity of O(¢pg + ﬁ(% + ¢2)).

This new approach led to the development of the algorithm of Krovi et. al. [6] who use a Markov chain P(s),
which is a superposition of the absorbing (P’) and standard (P) Markov chain such that P(s) = (1—s)P+ P’.
Their result extends Szegedy’s original detection algorithm to the problem of Finding the elements provided
an initial guess to the stationary distribution of P(s) can be supplied. This is a similar notion to knowing how
many marked elements must be found, since P(s) depends on the absorbing walk P’. Similarly to the MNRS
algorithm, phase estimation is then used to find an approximate Grover reflection operator, with an amplitude
amplification providing the conversion to the marked element.

4 Concluding Remarks

Aside from the obvious applications, graph based search algorithms can be applied (or shown to be equivalent)
to several more abstract problems. For example and as previously mentioned, search on Johnson graphs can
be used to solve the element distinctness problem. We will now list various problems that have been recently
improved by quantum graph search (and their complexities in terms of queries to an oracle) [23].

Johnson walk based problems have been studied the most due to the early work completed by Ambainis.
Some quantum algorithms based on Johnson graph search that beat their classical counterparts include:

e Element Distinctness: This can be solved optimally with quantum walk search with query complexity
2
O(n%) 1]
5

e Matrix Product Verification: This can be solved with quantum walk search in time O(n3

5]
) [4]

e Finding Triangles on a Graph: This can be solved with quantum walk search in time O(n%) (3]

alon

)

e Restricted Range Associativity: This can be solved with quantum walk search in time O(

There is also the Group Commutativity problem which requires more general graphs.
e Group Commutativity: This can be solved with quantum walk search in time O(n3 log(n)) [3]

This is almost certainly an incomplete list as the results are still relatively new and progress is continually
being made in this field. Clearly graph based search is a powerful tool, and can be used to great effect to
produce new, faster than classical quantum algorithms for a variety of problems.
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