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Introduction

The setting of communication complexity (CC) studies the
amount of communication between some parties required to
complete some task.

Here, we consider a traditional model of CC:

There are two parties, Alice and Bob, each of whom gets
an n-bit string x, y.

They want to compute some boolean function
f (x, y) : {0, 1}n × {0, 1}n → {0, 1} of their joint inputs.

They want to minimise the total number of (qu)bits
transmitted.

The minimum amount of communication they need is the
communication complexity of f .
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Introduction

Variations of the model:

Alice and Bob may have to succeed with certainty (the
exact model) or with some constant probability > 1/2 (the
bounded-error model).

They may be forced to only communicate in one direction
(the one-way model), or may be allowed to communicate
in both directions (the two-way model).

They may be allowed quantum communication, or just
classical communication.

They may be allowed to share public randomness.
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A zoo of communication complexity measures

For a function f (x, y) : {0, 1}n × {0, 1}n → {0, 1}, we define

Quantity Physics Success prob. Communication
Dcc(f ) Classical Exact Two-way
D1(f ) Classical Exact One-way
Rcc

2 (f ) Classical Bounded-error Two-way
R1

2(f ) Classical Bounded-error One-way
Qcc

E (f ) Quantum Exact Two-way
Q1

E(f ) Quantum Exact One-way
Qcc

2 (f ) Quantum Bounded-error Two-way
Q1

2(f ) Quantum Bounded-error One-way

We will always allow Alice and Bob to share randomness, but
not prior entanglement.



Quantum vs. classical CC

We are interested in whether Alice and Bob can reduce the
amount of communication they need by using quantum
communication.

Known that for partial functions (where there is a promise
on the input) there can be an exponential separation
between quantum and classical bounded-error CC, in both
the one-way and two-way models [Raz ’99, Gavinsky et al ’07].

Conjecture: For total functions, there can only be a
polynomial separation between quantum and classical
CC, in each of these models.

We aim to study this by looking at a particular class of
total functions: XOR functions.
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XOR functions

g(x, y) is an XOR function if g(x, y) = f (x⊕ y) for some boolean
function f : {0, 1}n → {0, 1}.

The case where f is symmetric (f (x) = h(|x|)) was recently
studied by [Shi and Zhang ’09]:

Exact quantum CC is always Ω(n).

Bounded-error two-way quantum CC is no better than
classical CC (up to log factors).

Proof uses a reduction to a previous result of [Razborov ’03].
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New results for general functions

We have various partial results on XOR functions:

A complete characterisation of exact one-way CC.

A conjecture which would imply that exact quantum and
deterministic CC are asymptotically equivalent.

Two general one-way randomised protocols, but...

An exponential separation between one-way quantum
and two-way deterministic CC.
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Specific types of function
We also consider two restricted types of function f :

Monotone functions: f (x ∨ y) > max{f (x), f (y)}.

Linear threshold functions (LTFs):

f (x) =


0 if

n∑
i=1

wixi 6 θ

1 if
n∑

i=1

wixi > θ

for some θ, the threshold of f , and some {wi}, the weights
of f .

Can assume the weights are all strictly positive, implying
that LTFs are monotone.
LTFs correspond to taking a weighted sum of differences
between Alice and Bob’s inputs.
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New results for specific types of function

We show that:

For monotone functions, the separation between exact
quantum and classical CC is at most quadratic.

For LTFs, exact quantum CC is always Ω(n).

There is an efficient one-way randomised protocol for
LTFs with high margin, where the margin

m = min
x

∣∣∣∣∣∑
i

wixi − θ

∣∣∣∣∣ .
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Fourier analysis

XOR functions can be studied using Fourier analysis on the
boolean cube, i.e. the group Zn

2 .

Let χS : {0, 1}n → {±1} be the parity function χS(x) = (−1)
∑

i∈S xi .

Then any function f : {0, 1}n → R can be expanded as

f (x) =
∑

S⊆[n]

f̂ (S)χS(x),

for some { f̂ (S) } – the Fourier coefficients of f .

Define ‖f̂‖p :=
(∑

S⊆[n] |̂f (S)|p
)1/p

, and the special case

‖f̂‖0 := | supp f̂ | = |{S : f̂ (S) 6= 0}|.
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Fourier analysis and XOR functions

One reason why Fourier analysis should help us study XOR
functions:

Let g(x, y) = f (x⊕ y) be an XOR function, and define the
communication matrix Mxy = g(x, y). Then, up to a constant
factor, the eigenvalues of M are the Fourier coefficients of f .

For example, this implies the following result for exact
two-way quantum CC:

Qcc
E (g) = Ω(log ‖f̂‖0),

using the “log rank” lower bound of [Buhrman and de Wolf ’01].
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Exact one-way CC

In this model, Alice sends a message to Bob, who must
compute f (x⊕ y) with certainty.

Recall that D1(f ), Q1
E(f ) denote the exact one-way

classical/quantum CC’s of f .

Let supp f̂ denote the support of the Fourier transform of
f , i.e. {S : f̂ (S) 6= 0}, and think of this as a subset of {0, 1}n.

Let dim f be the minimum k such that supp f̂ ⊆ {0, 1}n lies
in a k-dimensional subspace of {0, 1}n.

Then we have

D1(f ) = Q1
E(f ) = dim f .
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Exact one-way CC

Q1
E(f ) = D1(g) = dlog2 nrows(g)e [Klauck ’00], where

nrows(g) denotes the number of distinct rows in the
communication matrix Mxy = g(x, y).

nrows(g) =
∑

x∈{0,1}n

1
|{y : f⊕x = f⊕y}|

=
∑

x∈{0,1}n

1
|{y : f⊕(x⊕y) = f }|

=
2n

|{y : f⊕y = f }|
=

2n

|{y : 〈y, s〉 = 0 ∀s ∈ supp f̂ }|

= 2dim f .

We use the fact that f = f⊕y if and only if χy f̂ = f̂ .

This implies that there is no s ∈ supp f̂ such that 〈y, s〉 = 1,
where the inner product is taken over Fn

2 .
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Parity decision trees

A parity decision tree for some function f (x) is a decision tree
whose nodes are queries to the parity of some subset of bits of
the input x.

{1, 3}

{2, 4, 5}

0

0

1

1

0

{4}

1

0

0

1

1

The parity decision tree complexity D⊕(f ) is the minimum
depth of a parity decision tree for f .



Exact two-way CC and parity decision trees

Let Dcc(g) denote the exact classical CC of g.

Observation
Let g(x, y) = f (x⊕ y) be an XOR fn. Then Dcc(g) 6 2D⊕(f ).

Why? Any parity decision tree for f that uses at most D⊕(f )
queries on any input gives a communication protocol for g:

Each query to a subset S of the bits of the string x⊕ y can
be simulated by Alice sending the parity

⊕
i∈S xi to Bob,

and Bob sending Alice
⊕

i∈S yi.

This enables each of them to compute
⊕

i∈S(xi ⊕ yi).
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A conjecture about parity decision trees

Conjecture
Let f : {0, 1}n → {1, −1} be a boolean function. Then

D⊕(f ) = O(polylog(‖f̂‖0)).

Seems hard to prove, but in fact would follow from

Conjecture
Let f : {0, 1}n → {1, −1} be a boolean function. Then, for large
enough ‖f̂‖0, there exists a subset T ⊆ [n] such that
| supp(f̂ ) ∩ supp(f̂∆T)| > K‖f̂‖0, for some constant 0 < K < 1.
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One-way randomised protocols for XOR
functions (1)

If g(x, y) = f (x⊕y), f : {0, 1}n → {1, −1} is an XOR function, then

R1
2(g) = O(‖f̂‖2

1).

Protocol sketch:

Alice and Bob pick k = O(‖f̂‖2
1) subsets {Si} from the

family of subsets of [n], where the set S is picked with
probability |̂f (S)|/‖f̂‖1.
Alice sends the Bob the k bits χSi(x), who uses these bits
to compute

k∑
i=1

χSi(x)χSi(y) sgn(f̂ (Si)) =

k∑
i=1

χSi(x⊕ y) sgn(f̂ (Si)),

and outputs 1 if the result is positive, and −1 if negative.
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1).

Protocol sketch:

Alice and Bob pick k = O(‖f̂‖2
1) subsets {Si} from the

family of subsets of [n], where the set S is picked with
probability |̂f (S)|/‖f̂‖1.
Alice sends the Bob the k bits χSi(x), who uses these bits
to compute
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One-way randomised protocols for XOR
functions (1)

Proof sketch:

For each i, χSi(x⊕ y) sgn(f̂ (Si)) is a sample from a random
variable whose expectation is

1

‖f̂‖1

∑
S⊆[n]

χS(x⊕ y)f̂ (S) =
f (x⊕ y)

‖f̂‖1
.

The proof follows by a Chernoff bound.

This protocol is a variant of a protocol of [Kremer, Nisan and Ron
’99].
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One-way randomised protocols for XOR
functions (2)

If g(x, y) = f (x⊕ y) is an XOR function where f differs from a
parity function on k inputs, then

R1
2(g) = O(log k).

Special case: if f takes the value 0 on k inputs, R1
2(g) = O(log k).

Proof idea:

Parity functions can be computed using O(1)

communication.
Can check whether the input is in the “bad” set that
differs from a parity function using O(log k)
communication.
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One-way protocols are not the whole story

For any integer m, there is an XOR function g = f (x⊕ y) such
that Dcc(g) = O(m), but Q1

2(g) = Ω(2m).

The function f is the addressing function on m bits.

Divide the input into an m-bit address register a and a
2m-bit data register d, then set f (a, d) = da.

Theorem
If the matrix Mxy = g(x, y) has a 2k × k submatrix whose rows
are all distinct, then Q1

2(g) = Ω(k) [Klauck ’00].

Take the submatrix whose rows are of the form (0, d), and
columns of the form (a, 0).
For all pairs d 6= d ′, there exists an a such that da 6= d ′a.
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Monotone functions

If g(x, y) = f (x⊕ y) is an XOR function with f monotone, we
have

Dcc(g) 6 2D(f ) 6 4s(f )2 6 4 deg2(f )
2 6 4(log2 ‖f̂‖0)

2.

where:

Dcc(g) is the exact classical CC of g.
D(f ) is the classical decision tree complexity of f .
s(f ) is the sensitivity of f , i.e. the max over x of the # of
neighbours y of x such that f (x) 6= f (y).
deg2(f ) is the degree of f as a polynomial over F2.

Only the third inequality is new.
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Linear threshold functions (1)

Finally, we have some lower and upper bounds on the CC of
LTFs.

Let g(x, y) = f (x⊕ y), where f is an LTF. Then

Qcc
E (g) = Ω(n).

Proof idea: show that s(f ) = Ω(n), and use previous argument.
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Linear threshold functions (2)

R1
2(g) = O((θ/m)2)

Recall the margin m = minx |
∑

i wixi − θ|.

Protocol idea: Alice and Bob estimate
∑

i wi(xi ⊕ yi) to
within tolerance m.

This can be done by looking at parities of subsets of the
input.

Can be seen as a generalisation of a protocol of [Huang et al
’06] for computing the Hamming distance.



Conclusions

XOR functions are an elegant setting in which to study
communication complexity.

We have various partial results, but have still not
answered the original question: are the quantum and
classical CC’s of these functions polynomially related?

Further reading:

Our paper: arXiv:0909.3392
Survey paper on Fourier analysis by Ronald de Wolf:
theoryofcomputing.org/articles/gs001/gs001.pdf

Lecture course on Fourier analysis by Ryan O’Donnell:
www.cs.cmu.edu/˜odonnell/boolean-analysis/

arXiv:0909.3392
theoryofcomputing.org/articles/gs001/gs001.pdf
www.cs.cmu.edu/~odonnell/boolean-analysis/
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The end

Thanks for your time!




