Weak multiplicativity for random quantum
channels

Ashley Montanaro

Centre for Quantum Information and Foundations,
Department of Applied Mathematics and Theoretical Physics,
University of Cambridge

arXiv:1112.5271

Engineering and Physical Sciences
M Research Council


arXiv:1112.5271

Maximum output p-norms
Some definitions:

@ A quantum channel N: B(Cl1) — B(C%*) is a completely
positive, trace-preserving map (i.e. a map which takes
quantum states to quantum states).



Maximum output p-norms
Some definitions:

@ A quantum channel N: B(Cl1) — B(C%*) is a completely
positive, trace-preserving map (i.e. a map which takes
quantum states to quantum states).

@ The maximum output p-norm of N is
INl1p = max{||N(p)[l,, p >0, trp =1},

where || X||, := (tr|XP)!/? is the Schatten p-norm.



Maximum output p-norms
Some definitions:

@ A quantum channel N: B(C4) — B(C%) is a completely
positive, trace-preserving map (i.e. a map which takes
quantum states to quantum states).

@ The maximum output p-norm of N is
INl1p = max{||N(p)[l,, p >0, trp =1},
where || X||, := (tr|XP)!/? is the Schatten p-norm.
e Studying | N||1—p is equivalent to studying

min 1
Hy™(N) = ¢ 7 log || N]l1—p.

the minimum output Renyi p-entropy of N.



Maximum output p-norms
Some definitions:

@ A quantum channel N: B(C4) — B(C%) is a completely
positive, trace-preserving map (i.e. a map which takes
quantum states to quantum states).

@ The maximum output p-norm of N is
INl1p = max{||N(p)[l,, p >0, trp =1},
where || X||, := (tr|XP)!/? is the Schatten p-norm.
e Studying | N||1—p is equivalent to studying

min 1
Hy™(N) = ¢ 7 log || N]l1—p.

the minimum output Renyi p-entropy of N.

@ The minimum output von Neumann entropy H™"(N) is
obtained by taking the limit p — 1.
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The case p = oo

e For any quantum channel N, N(p) = trg VpVT for some
isometry V : C% — C% ® C% (a form known as the
Stinespring dilation).

@ Define the support function of the separable states

h M) = tr Mp,
sep(M) max, tr Mp

where SEP ¢ B(C% @ C%) is the set of separable quantum
states, i.e. states p which can be written as

p= ZPz‘pi ® 0.
i

Fact

Let N be a quantum channel with corresponding isometry V,
and set M = VVT. Then

hsgp(M) = [[N][1-5c0-




Other interpretations of hggp
hsep has a natural interpretation in terms of OMA(2) protocols.

e This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B.



Other interpretations of hggp
hsep has a natural interpretation in terms of OMA(2) protocols.

e This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B.

@ The Merlins are all-powerful but Arthur cannot trust
them.



Other interpretations of hggp
hsep has a natural interpretation in terms of OMA(2) protocols.

e This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B.

@ The Merlins are all-powerful but Arthur cannot trust
them.

@ If Arthur’s measurement operator which corresponds to a
“yes” outcome is M, the maximum probability with which
the Merlins can convince him to accept is hsgp(M).
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Multiplicativity of maximum output p-norms

The following is a reasonable conjecture:

Multiplicativity COI‘lj ecture [Amosov, Holevo and Werner “00]

For any channels N1, N, and any p > 1,

N1 ® Nall15p = [[N1]l15p | N2l 15p-

@ For any Ny, N, the > direction of this equality is
immediate (just take a product input to N1 ® N3), but in
general the < direction is far from immediate.

@ This conjecture is equivalent to additivity of minimum
output Rényi p-entropies.
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Why care about multiplicativity?

@ In the limit p — 1, multiplicativity (i.e. additivity of von
Neumann entropy) is equivalent to other additivity
conjectures in quantum information theory [Shor ‘03], e.g.:

e Additivity of Holevo capacity of quantum channels
(max, o,y HIN(3_; pivi)) — 2_; piH(N(vi)))
o Additivity of entanglement of formation

(miny, o) >_; piH(trp v;))

@ In the case p = oo, multiplicativity is equivalent to parallel
repetition for QMA (2) protocols.

@ In other words, if hggp(M®") = hggp(M)", Arthur can
simply repeat the protocol n times in parallel to achieve
failure probability exponentially small in #.
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Failure of multiplicativity

Unfortunately (?), the Multiplicativity Conjecture (MC) is false

for all p > 1!
When Who What How
2002 | Werner & Holevo | p >4.79 | p— 15 ((trp)I — pT)
3/7/07 Winter p>2 Random unitary
23/7/07 Hayden 1<p<2| Random subspace
Dec 07 Cubitt et al p <011 Random /explicit
2008 | Hayden & Winter | p >1 Random subspace
2008 Hastings Hmin Random subspace
2009 Grudka et al p>2 Antisym. subspace

Further, for p = oo MC is really, really false: If Pany is the
projector onto the antisymmetric subspace of C? @ C¥,

hsgp(Panti) =

1
5

but hspp(P23,) >

anti

(-3
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Random quantum channels

The counterexamples of Hayden and Hayden-Winter are
random constructions.

o Let N : B(C9) — B(C%)’s corresponding subspace S in
the Stinespring form be a random r-dimensional subspace
of C%  C%.

e In other words, form the projector P = VV onto S by
taking the projector onto an arbitrary fixed subspace
Sp C C% ® C% and conjugating it by a Haar-random
unitary.

@ Hayden and Winter show that, for any p > 1, and
r = dP ) the pair of channels (N, N) violates
multiplicativity with high probability.

@ Again, for p = oo, the violation is almost maximal:

HN ® N”l—)oo ~ ||NH1~>00-
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What about more copies?

@ We have examples of channels N such that
IN®2]l1 5500 2 [IN]l100-
e What about |[N®"||_,, for large n?
@ The following two extreme possibilities could be true:

,
IN®" 1500 < INI o0

for all N; or there might exist a channel N such that

= ?
IN®"][1200 & [IN]l1c0-

o If the first case is true, the largest possible violation of
multiplicativity is quite mild, and a form of parallel
repetition holds for quantum Merlin-Arthur games.

@ If the second case is true, severe violations are possible
and parallel repetition completely fails.
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Definition
A quantum channel N obeys weak p-norm multiplicativity
with exponent o if, for all n > 1,

”N®HH1—>;7 ||NH1~>p

@ By the (matrix) Holder inequality, if N obeys weak
oo-norm multiplicativity with exponent o, N also obeys
weak p-norm multiplicativity for any p > 1, with exponent
(1 —1/p), via

1-1
1X[loo < X1y < IXIVPIX )57

@ We therefore concentrate on p = oo in what follows.
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Today’s message

Random quantum channels obey weak
p-norm multiplicativity!

Main result (informal)

Let N be a quantum channel whose corresponding subspace is
a random dimension r subspace of C% ® C%. Then the
probability that N does not obey weak co-norm
multiplicativity with exponent 1/2 — o(1) is exponentially
small in min{r, d4, dg}.

Note: The above result holds with the following (fairly weak)
restrictions on r, d4, dg:

@ r= O(dAdB).

e min{r,d,,dp} > 2(log, max{d,, dg})3/2.
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Proof technique

Conceptually very simple:
@ Let M be the projector onto a random dimension
subspace of C¥ ® C%,
@ Relax hggp(M) to a quantity which is multiplicative.
@ Prove an upper bound on this quantity.

@ Prove a lower bound on hggp(M).

The only technical part is (3), which uses techniques from
random matrix theory.

@ Similar techniques were used by [Collins and Nechita x3, '09],
[Collins, Fukuda and Nechita '11], ...
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Relaxing hsgp(M)

We use the operator norm of the partial transpose of M.

@ Recall that the partial transpose " is the superoperator
defined by

(157) (kI = [i1) (kjl
and extending by linearity.

@ A bipartite quantum state p is said to be positive partial
transpose (PPT) if p" > 0.

@ We have SEP cC PPT and hence

hppr(M) := max tr Mp > hsgp(M).
pEPPT
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Two claims

Proposition
hppr(M) < Moo
(Proof:
hppr (M) = max trMp = max tr Mo,
0,00,p" >0,tr p=1 0,020,07 >0,tr T =1

and for any density matrix o, tr Mo' =trM" o < |M"|x.)

Observation

For any operators M, N,
(M@ N) oo = [M" @ N'loo = [M" [|oINT | co-
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Lower bounding hggp(M)

Proposition

Let M be the projector onto an r-dimensional subspace of
C% @ C%. Then

r 1
> — .
hsgp(M) > max {dAdB' dA}

(Proof: for the first part, pick a uniformly random product
state; for the second part, note that by the correspondence with
quantum channels, any state output from the channel which
corresponds to M must have largest eigenvalue at least 1/d4.)

1/2
Thus, if we can show that |[M" ||, = O <max {d/\rdg' i} >
with high probability, we’ll be done.




Numerical intuition: random rank r subspaces
of C'¢ ® Cl1®

IM" oo
16 |
14 1
12 1
1.0
0.8
0.6
0.4 1
0.2 1

0 : : : : : : : : r
32 64 96 128 160 192 224 256
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Analytic intuition

e Important intuition that |M" || should be small comes
from previous work by [Aubrun '11] and [Banica and Nechita
‘11] on the partial transpose of random quantum states.

@ For constant 0 < « < 1 and growing d, set r = ad?. Let G
be a d> x r matrix whose entries are picked from the
complex normal distribution N(0, 1), and set W = GG'/d%.

@ Aubrun showed that with high probability
W' |oo = O(V7/d).

@ As the columns of G are approximately orthogonal for
large d, one might expect the operator norm of the partial
transpose of the projector onto a random r-dimensional
subspace of C? ® C* to behave similarly.

@ We show that this is indeed the case.
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Large deviation bounds

@ Our main result will follow easily from putting good
upper bounds on E tr(M")* for arbitrary k.

@ Let My be the projector onto an arbitrary dim r subspace
of C% ® C% and set

MW = By [USMGF Ut ®h.

@ Then
Etr(M")* = tr[D(x)" MW,
where
dAdB
D(m) =Y liga)ling) - lix) (il .- (i
11,00y lk:1

is the representation of the permutation 7t € S; which acts
by permuting the k systems, and « is an arbitrary k-cycle.



Main technical result

Theorem
For any k satisfying 2k3/2 < min{dy4, dg, 1},

tr[D (k)" MM < poly (k)286A/ 24 K2 2 if > dp/ds
r[D(k <
poly (k)2%d *1dp otherwise.




Main technical result

Theorem
For any k satisfying 2k3/2 < min{dy4, dg, 1},

DT MW < | POy (RI2¥r2 d g i > dy/dy
r X
poly (k)2%d *1dp otherwise.

The above implies (when r > dp/d4, for example):

Theorem
There exists a universal constant C such that, for any & > 0,

28 1/2

Pr ||Mr||oo > éﬁ le6/36 (m/2) 2/3
dA dB

where m = min{r,du, dg} > 2(log, max{r, da, dg))3/2.




Outline of proof

@ Write
M® = 3 axD(m)

TLES)

for some o (follows from Schur-Weyl duality).



Outline of proof

@ Write
M® = 3 axD(m)

TLES)

for some o (follows from Schur-Weyl duality).

o Use
r _ qc(km) c(k17)
tr[D(k)"D(m)] = d <™ g,

where c(7) is the number of cycles in 7



Outline of proof

@ Write
M® = 3 axD(m)

TTE Sk

for some o (follows from Schur-Weyl duality).

@ Use )

te[D(k) ' D(m)] = d\<dy < 7,

where c(7) is the number of cycles in 7 (proof:

tr[D(x)"'D(n)] = tr[(Dy, () @ Dy, (x)")(Dy, (1) @ Dy, (7))
= tr[Dy, (<)Dy, ()] tr[Dyy (c 1) Dy (70)]

_ e gty



Outline of proof

@ Write
M® = 3 axD(m)

TLES)

for some o (follows from Schur-Weyl duality).

@ Use .

tr[D(k)"D(m)] = d g <,

where c(7) is the number of cycles in 7 (proof:

tr[D(x)"'D(n)] = tr[(Dy, () @ Dy, (x)")(Dy, (1) @ Dy, (7))
= tr[Dy, (<)Dy, ()] tr[Dyy (c 1) Dy (70)]

_ d;‘( Kﬂ)d%(KflT[))_

@ Upper bound the «, coefficients.



Bounding the o, coefficients

@ When k is small with respect to d4dp, the matrices {D(7)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1

(dadp)F t[D(m)D(0)] ~ 0 if 7 # 0.




Bounding the o, coefficients

@ When k is small with respect to d4dp, the matrices {D(7)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1

(dadp)F t[D(m)D(0)] ~ 0 if 7 # 0.

@ Because of this near-orthonormality we ought to have
_ trM®D(r 1] re(70)

S wD( D] (dadg)*




Bounding the o, coefficients

@ When k is small with respect to d4dp, the matrices {D(7)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1

(dadp)F t[D(m)D(0)] ~ 0 if 7 # 0.

@ Because of this near-orthonormality we ought to have
_ trM®D(r 1] re(70)

S wD( D] (dadg)*

Lemma

Assume k < (r/2)%/3. Then
rc(n)

s :
(dadp)*

lotr| < poly/(k)




Bounding the o, coefficients

@ When k is small with respect to d4dp, the matrices {D(7)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1

(dadp)F t[D(m)D(0)] ~ 0 if 7 # 0.

@ Because of this near-orthonormality we ought to have
_ trM®D(r 1] re(70)

S wD( D] (dadg)*

Lemma

Assume k < (r/2)%/3. Then
rc(n)

s :
(dadp)*

lotr| < poly/(k)

See Friday’s talk by Aram Harrow for many more examples
where this philosophy comes in useful.



Outline of proof

@ Using this bound on the o coefficients, we're left with

1

tr[D(K)FM(k)] < pOly(k)24k Z d;(K?T)—kdg(K_ ﬂ)—krc(n)
TES)
or in other words
poly(k)2%

T s(k)
tr[D(x)" M'™] < 7

> Nla,b,c)dydyr
a,b,ce{l,... .k}

where

N(a,b,c):=Hme S;:c(km) =a,c(k'm) = b, c(m) = c}.



Basic combinatorial lemma

Lemma
N(a,b,c) =0 unless

a+b<k+2 a+c<k+1 andb+c<k+1.

Further, if all of these validity inequalities are satisfied,

N(ﬂ b C) < 4k71k(3/2)(k+27max{u+b,a+c,b+c})+l

@ Intuition: there aren’t “too many” permutations which are
close to saturating the validity inequalities.



Basic combinatorial lemma

Lemma
N(a,b,c) =0 unless

a+b<k+2 a+c<k+1 andb+c<k+1.

Further, if all of these validity inequalities are satisfied,

N((l b C) < 4k71k(3/2)(k+27max{u+b,a+c,b+c})+1

@ Intuition: there aren’t “too many” permutations which are
close to saturating the validity inequalities.

@ Proof: some combinatorics of the symmetric group...
@ Based on a relationship between permutations saturating
the validity inequalities and non-crossing partitions [Biane

'97] and a recurrence for permutations close to saturating
them [Adrianov '97]. See e.g. [Aubrun '11] for related results.



Finishing the proof

@ Using this lemma, relax to

24k

tr[D(K)FM(k)} < % max {4kk(3/2)(k—max{a+b,a+c,b+c})dﬁlqdlérc} ,
dAdB (a,b,c) valid

and then again to

6k
raqe)r - Poly(k)2 a b ¢
tr[D(k)' M) < 7dﬂ‘4d’§ (u'br’rc\)aéhd {dAdBr } )



Finishing the proof

@ Using this lemma, relax to

poly (k)2% max {4kk(3/2)(k—max{a+b,a+c,b+c})dfqdlérc}

tr[D(x)"M¥] <
[ ( ) } dﬁd’é (a,b,c) valid
and then again to

6k
k) < Poly(k)2 a b ¢
D) MY < max {dsdhre}.

@ Relax this maximisation to a simple linear program based
on the validity constraints.

@ Use duality to put upper bounds on this linear program.



Conclusions

@ We've proven weak multiplicativity for random quantum
channels by relaxing to a multiplicative quantity which we
can upper bound using ideas from random matrix theory.

@ The result obtained is probably the strongest one could
expect given known violations of multiplicativity.
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On a more concrete level:

@ The technique used here fails completely for the
antisymmetric subspace.

@ However, [Christandl, Schuch and Winter '09] have shown using
a different technique that the antisymmetric subspace also
obeys weak p-norm multiplicativity.

@ Can one proof technique be made to work for both
channels?



Open problems

Prove weak p-norm multiplicativity for all quantum channels!

On a more concrete level:

@ The technique used here fails completely for the
antisymmetric subspace.

@ However, [Christandl, Schuch and Winter '09] have shown using
a different technique that the antisymmetric subspace also
obeys weak p-norm multiplicativity.

@ Can one proof technique be made to work for both
channels?

What about the limit p — 1?



Thanks!
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Bounding the o, coefficients

@ Let A be the symmetric matrix defined by
Ano = d(T™ lo)—k , for m, 0 € S;.

e Given some matrix M such that M =} s, ¥nDy(m), A
determines the coefficients o, as follows:

trMD,(o Z 00 dSl ) = gk Z Ag 0.

TTESK TTESK

@ So, if we can invert A, we can determine the o
coefficients corresponding to M*) by

—1
G = dAdB k Z !

@ Note that A is approximately equal to the identity when d
is large with respect to k, as its off-diagonal entries rapidly
decay.



Bounding the o, coefficients

@ In order to evaluate the entries of A~!, we define the
Weingarten function [Collins and Sniady "06]

Z (flxd

Facts [Collins and Sniady "06]
Azl =d*Wg(n o).

Further, 1
IAZL] < (Cpeq 4+ O(d™2))aclm o)=k

where C,, is the n’th Catalan number.

v

Now we just need to carefully upper bound the resulting sum.



