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Maximum output p-norms
Some definitions:

A quantum channel N : B(CdA)→ B(CdB) is a completely
positive, trace-preserving map (i.e. a map which takes
quantum states to quantum states).

The maximum output p-norm of N is

‖N‖1→p := max{‖N(ρ)‖p, ρ > 0, tr ρ = 1},

where ‖X‖p := (tr |X|p)1/p is the Schatten p-norm.
Studying ‖N‖1→p is equivalent to studying

Hmin
p (N) :=

1
1 − p

log ‖N‖1→p,

the minimum output Rènyi p-entropy of N.
The minimum output von Neumann entropy Hmin(N) is
obtained by taking the limit p→ 1.
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The case p =∞
For any quantum channel N, N(ρ) = trE VρV† for some
isometry V : CdA → CdB ⊗ CdE (a form known as the
Stinespring dilation).

Define the support function of the separable states

hSEP(M) := max
ρ∈SEP

tr Mρ,

where SEP ⊂ B(CdA ⊗CdB) is the set of separable quantum
states, i.e. states ρ which can be written as

ρ =
∑

i

piρi ⊗ σi.

Fact
Let N be a quantum channel with corresponding isometry V,
and set M = VV†. Then

hSEP(M) = ‖N‖1→∞.
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Other interpretations of hSEP

hSEP has a natural interpretation in terms of QMA(2) protocols.

This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B.

The Merlins are all-powerful but Arthur cannot trust
them.

If Arthur’s measurement operator which corresponds to a
“yes” outcome is M, the maximum probability with which
the Merlins can convince him to accept is hSEP(M).



Other interpretations of hSEP

hSEP has a natural interpretation in terms of QMA(2) protocols.

This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B.

The Merlins are all-powerful but Arthur cannot trust
them.

If Arthur’s measurement operator which corresponds to a
“yes” outcome is M, the maximum probability with which
the Merlins can convince him to accept is hSEP(M).



Other interpretations of hSEP

hSEP has a natural interpretation in terms of QMA(2) protocols.

This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B.

The Merlins are all-powerful but Arthur cannot trust
them.

If Arthur’s measurement operator which corresponds to a
“yes” outcome is M, the maximum probability with which
the Merlins can convince him to accept is hSEP(M).



Multiplicativity of maximum output p-norms

The following is a reasonable conjecture:

Multiplicativity Conjecture [Amosov, Holevo and Werner ’00]

For any channels N1, N2, and any p > 1,

‖N1 ⊗N2‖1→p = ‖N1‖1→p‖N2‖1→p.

For any N1, N2, the > direction of this equality is
immediate (just take a product input to N1 ⊗N2), but in
general the 6 direction is far from immediate.

This conjecture is equivalent to additivity of minimum
output Rényi p-entropies.
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Why care about multiplicativity?

In the limit p→ 1, multiplicativity (i.e. additivity of von
Neumann entropy) is equivalent to other additivity
conjectures in quantum information theory [Shor ’03], e.g.:

Additivity of Holevo capacity of quantum channels
(maxpi,|vi〉H(N(

∑
i pivi)) −

∑
i piH(N(vi)))

Additivity of entanglement of formation
(minpi,|vi〉

∑
i piH(trB vi))

In the case p =∞, multiplicativity is equivalent to parallel
repetition for QMA(2) protocols.

In other words, if hSEP(M⊗n) = hSEP(M)n, Arthur can
simply repeat the protocol n times in parallel to achieve
failure probability exponentially small in n.
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Failure of multiplicativity

Unfortunately (?), the Multiplicativity Conjecture (MC) is false
for all p > 1!

When Who What How

2002 Werner & Holevo p > 4.79 ρ 7→ 1
d−1

(
(tr ρ)I − ρT)

3/7/07 Winter p > 2 Random unitary
23/7/07 Hayden 1 < p < 2 Random subspace
Dec 07 Cubitt et al p . 0.11 Random/explicit
2008 Hayden & Winter p > 1 Random subspace
2008 Hastings Hmin Random subspace
2009 Grudka et al p > 2 Antisym. subspace

Further, for p =∞ MC is really, really false: If Panti is the
projector onto the antisymmetric subspace of Cd ⊗ Cd,

hSEP(Panti) =
1
2

, but hSEP(P⊗2
anti) >

1
2

(
1 −

1
d

)
.
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Random quantum channels

The counterexamples of Hayden and Hayden-Winter are
random constructions.

Let N : B(CdA)→ B(CdB)’s corresponding subspace S in
the Stinespring form be a random r-dimensional subspace
of CdB ⊗ CdE .

In other words, form the projector P = VV† onto S by
taking the projector onto an arbitrary fixed subspace
S0 ⊆ CdB ⊗ CdE and conjugating it by a Haar-random
unitary.

Hayden and Winter show that, for any p > 1, and
r ≈ d1+1/p, the pair of channels (N, N̄) violates
multiplicativity with high probability.

Again, for p =∞, the violation is almost maximal:

‖N ⊗ N̄‖1→∞ ≈ ‖N‖1→∞.
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What about more copies?

We have examples of channels N such that

‖N⊗2‖1→∞ ≈ ‖N‖1→∞.

What about ‖N⊗n‖1→∞ for large n?

The following two extreme possibilities could be true:

‖N⊗n‖1→∞ ?
6 ‖N‖n/2

1→∞
for all N; or there might exist a channel N such that

‖N⊗n‖1→∞ ?≈ ‖N‖1→∞.

If the first case is true, the largest possible violation of
multiplicativity is quite mild, and a form of parallel
repetition holds for quantum Merlin-Arthur games.
If the second case is true, severe violations are possible
and parallel repetition completely fails.
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Weak multiplicativity

Definition
A quantum channel N obeys weak p-norm multiplicativity
with exponent α if, for all n > 1,

‖N⊗n‖1→p 6 ‖N‖αn
1→p.

By the (matrix) Hölder inequality, if N obeys weak∞-norm multiplicativity with exponent α, N also obeys
weak p-norm multiplicativity for any p > 1, with exponent
α(1 − 1/p), via

‖X‖∞ 6 ‖X‖p 6 ‖X‖1/p
1 ‖X‖

1−1/p∞ .

We therefore concentrate on p =∞ in what follows.
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Today’s message

Random quantum channels obey weak
p-norm multiplicativity!

Main result (informal)
Let N be a quantum channel whose corresponding subspace is
a random dimension r subspace of CdA ⊗ CdB . Then the
probability that N does not obey weak∞-norm
multiplicativity with exponent 1/2 − o(1) is exponentially
small in min{r, dA, dB}.

Note: The above result holds with the following (fairly weak)
restrictions on r, dA, dB:

r = o(dAdB).
min{r, dA, dB} > 2(log2 max{dA, dB})

3/2.
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Proof technique

Conceptually very simple:

1 Let M be the projector onto a random dimension r
subspace of CdA ⊗ CdB .

2 Relax hSEP(M) to a quantity which is multiplicative.
3 Prove an upper bound on this quantity.
4 Prove a lower bound on hSEP(M).

The only technical part is (3), which uses techniques from
random matrix theory.

Similar techniques were used by [Collins and Nechita ×3, ’09],
[Collins, Fukuda and Nechita ’11], . . .
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Relaxing hSEP(M)

We use the operator norm of the partial transpose of M.

Recall that the partial transpose Γ is the superoperator
defined by

(|ij〉〈kl|)Γ = |il〉〈kj|

and extending by linearity.

A bipartite quantum state ρ is said to be positive partial
transpose (PPT) if ρΓ > 0.

We have SEP ⊂ PPT and hence

hPPT(M) := max
ρ∈PPT

tr Mρ > hSEP(M).
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transpose (PPT) if ρΓ > 0.

We have SEP ⊂ PPT and hence

hPPT(M) := max
ρ∈PPT

tr Mρ > hSEP(M).



Two claims

Proposition

hPPT(M) 6 ‖MΓ‖∞.

(Proof:

hPPT(M) = max
ρ,ρ>0,ρΓ>0,trρ=1

tr Mρ = max
σ,σ>0,σΓ>0,trσΓ=1

tr MσΓ ,

and for any density matrix σ, tr MσΓ = tr MΓσ 6 ‖MΓ‖∞.)

Observation
For any operators M, N,
‖(M⊗N)Γ‖∞ = ‖MΓ ⊗NΓ‖∞ = ‖MΓ‖∞‖NΓ‖∞.
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Lower bounding hSEP(M)

Proposition
Let M be the projector onto an r-dimensional subspace of
CdA ⊗ CdB . Then

hSEP(M) > max
{

r
dAdB

,
1

dA

}
.

(Proof: for the first part, pick a uniformly random product
state; for the second part, note that by the correspondence with
quantum channels, any state output from the channel which
corresponds to M must have largest eigenvalue at least 1/dA.)

Thus, if we can show that ‖MΓ‖∞ = O
(

max
{

r
dAdB

, 1
dA

}1/2
)

with high probability, we’ll be done.
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Numerical intuition: random rank r subspaces
of C16 ⊗ C16

‖MΓ‖∞

r
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Analytic intuition

Important intuition that ‖MΓ‖∞ should be small comes
from previous work by [Aubrun ’11] and [Banica and Nechita
’11] on the partial transpose of random quantum states.

For constant 0 < α < 1 and growing d, set r = αd2. Let G
be a d2 × r matrix whose entries are picked from the
complex normal distribution N(0, 1), and set W = GG†/d2.

Aubrun showed that with high probability
‖WΓ‖∞ = O(

√
r/d).

As the columns of G are approximately orthogonal for
large d, one might expect the operator norm of the partial
transpose of the projector onto a random r-dimensional
subspace of Cd ⊗ Cd to behave similarly.

We show that this is indeed the case.
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Large deviation bounds

Our main result will follow easily from putting good
upper bounds on E tr(MΓ )k for arbitrary k.

Let M0 be the projector onto an arbitrary dim r subspace
of CdA ⊗ CdB and set

M(k) := EU[U⊗kM⊗k
0 (U†)⊗k].

Then
E tr(MΓ )k = tr[D(κ)ΓM(k)],

where

D(π) :=

dAdB∑
i1,...,ik=1

|iπ(1)〉|iπ(2)〉 . . . |iπ(k)〉〈i1| . . . 〈ik|

is the representation of the permutation π ∈ Sk which acts
by permuting the k systems, and κ is an arbitrary k-cycle.
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Main technical result

Theorem
For any k satisfying 2k3/2 6 min{dA, dB, r},

tr[D(κ)ΓM(k)] 6

{
poly(k)26krk/2d−k/2+1

A d−k/2+1
B if r > dB/dA

poly(k)26kd−k+1
A dB otherwise.

The above implies (when r > dB/dA, for example):

Theorem
There exists a universal constant C such that, for any δ > 0,

Pr

[
‖MΓ‖∞ > δ

28r1/2

d1/2
A d1/2

B

]
6 Cm16/3δ−(m/2)2/3

,

where m = min{r, dA, dB} > 2(log2 max{r, dA, dB})
3/2.
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Outline of proof

Write
M(k) =

∑
π∈Sk

απD(π)

for some απ (follows from Schur-Weyl duality).

Use
tr[D(κ)ΓD(π)] = dc(κπ)

A dc(κ−1π)
B ,

where c(π) is the number of cycles in π (proof:

tr[D(κ)ΓD(π)] = tr[(DdA(κ)⊗DdB(κ)
T)(DdA(π)⊗DdB(π))]

= tr[DdA(κ)DdA(π)] tr[DdB(κ
−1)DdB(π)]

= dc(κπ)
A dc(κ−1π)

B ).

Upper bound the απ coefficients.
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Bounding the απ coefficients

When k is small with respect to dAdB, the matrices {D(π)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1
(dAdB)k tr[D(π)†D(σ)] ≈ 0 if π 6= σ.

Because of this near-orthonormality we ought to have

απ ≈
tr[M(k)D(π−1)]

tr[D(π−1)D(π)]
=

rc(π)

(dAdB)k .

Lemma
Assume k 6 (r/2)2/3. Then

|απ| 6 poly(k)24k rc(π)

(dAdB)k .

See Friday’s talk by Aram Harrow for many more examples
where this philosophy comes in useful.
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Outline of proof

Using this bound on the απ coefficients, we’re left with

tr[D(κ)ΓM(k)] 6 poly(k)24k
∑
π∈Sk

dc(κπ)−k
A dc(κ−1π)−k

B rc(π)

or in other words

tr[D(κ)ΓM(k)] 6
poly(k)24k

dk
Adk

B

∑
a,b,c∈{1,...,k}

N(a, b, c)da
Adb

Brc

where

N(a, b, c) := |{π ∈ Sk : c(κπ) = a, c(κ−1π) = b, c(π) = c}|.



Basic combinatorial lemma

Lemma
N(a, b, c) = 0 unless

a + b 6 k + 2, a + c 6 k + 1, and b + c 6 k + 1.

Further, if all of these validity inequalities are satisfied,

N(a, b, c) 6 4k−1k(3/2)(k+2−max{a+b,a+c,b+c})+1.

Intuition: there aren’t “too many” permutations which are
close to saturating the validity inequalities.

Proof: some combinatorics of the symmetric group...
Based on a relationship between permutations saturating
the validity inequalities and non-crossing partitions [Biane
’97] and a recurrence for permutations close to saturating
them [Adrianov ’97]. See e.g. [Aubrun ’11] for related results.
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Finishing the proof

Using this lemma, relax to

tr[D(κ)ΓM(k)] 6
poly(k)24k

dk
Adk

B
max

(a,b,c) valid

{
4kk(3/2)(k−max{a+b,a+c,b+c})da

Adb
Brc
}

,

and then again to

tr[D(κ)ΓM(k)] 6
poly(k)26k

dk
Adk

B
max

(a,b,c) valid

{
da

Adb
Brc
}

.

Relax this maximisation to a simple linear program based
on the validity constraints.

Use duality to put upper bounds on this linear program.
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Conclusions

We’ve proven weak multiplicativity for random quantum
channels by relaxing to a multiplicative quantity which we
can upper bound using ideas from random matrix theory.

The result obtained is probably the strongest one could
expect given known violations of multiplicativity.



Open problems

Prove weak p-norm multiplicativity for all quantum channels!

On a more concrete level:
The technique used here fails completely for the
antisymmetric subspace.

However, [Christandl, Schuch and Winter ’09] have shown using
a different technique that the antisymmetric subspace also
obeys weak p-norm multiplicativity.

Can one proof technique be made to work for both
channels?

What about the limit p→ 1?
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Thanks!

arXiv:1112.5271

arXiv:1112.5271


Bounding the απ coefficients

Let A be the symmetric matrix defined by
Aπσ = dc(π−1σ)−k, for π,σ ∈ Sk.

Given some matrix M such that M =
∑
π∈Sk

απDd(π), A
determines the coefficients απ as follows:

tr MDd(σ) =
∑
π∈Sk

απdc(πσ) = dk
∑
π∈Sk

Aσ−1παπ.

So, if we can invert A, we can determine the απ
coefficients corresponding to M(k) by

απ =
1

(dAdB)k

∑
σ∈Sk

A−1
πσrc(σ).

Note that A is approximately equal to the identity when d
is large with respect to k, as its off-diagonal entries rapidly
decay.



Bounding the απ coefficients

In order to evaluate the entries of A−1, we define the
Weingarten function [Collins and Śniady ’06]

Wg(π) :=
1

(k!)2

∑
λ`k

(fλ)2

sλ(1×d)
χλ(π).

Facts [Collins and Śniady ’06]

A−1
πσ = dk Wg(π−1σ).

Further,
|A−1
πσ| 6 (Ck−1 + O(d−2))dc(π−1σ)−k,

where Cn is the n’th Catalan number.

Now we just need to carefully upper bound the resulting sum.


