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Maximum output p-norms

For a quantum channel N : B(CdA)→ B(CdB), i.e. CPTP map,
the maximum output p-norm of N is

‖N‖1→p := max{‖N(ρ)‖p, ρ > 0, tr ρ = 1},

where ‖X‖p := (tr |X|p)1/p is the Schatten p-norm.

The following is a reasonable conjecture:

Multiplicativity Conjecture [Amosov, Holevo and Werner ’00]

For any channels N1, N2, and any p > 1,

‖N1 ⊗N2‖1→p = ‖N1‖1→p‖N2‖1→p.

For any N1, N2, the > direction of this equality is immediate
(just take a product input to N1 ⊗N2), but in general the 6
direction is far from immediate.
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Why care about multiplicativity?

The multiplicativity conjecture would imply at least two
“operational” conjectures:

Additivity conjecture
The Holevo capacity, entanglement of formation and
minimum output von Neumann entropy are all additive.

QMA(2) parallel repetition conjecture
The success probability in quantum Merlin-Arthur proof
systems with two provers can be amplified by parallel
repetition.



The additivity conjecture

Studying ‖N‖1→p is equivalent to studying

Hmin
p (N) :=

1
1 − p

log ‖N‖p
1→p,

the minimum output Rènyi p-entropy of N.

Multiplicativity of maximum output p-norms is equivalent
to additivity of minimum output Rényi p-entropies.

The minimum output von Neumann entropy Hmin(N) is
obtained by taking the limit p→ 1.
[Shor ’03] showed that additivity of this quantity is
equivalent to other additivity conjectures in quantum
information theory, e.g.:

Additivity of Holevo capacity of quantum channels
(maxpi,|vi〉H(N(

∑
i pivi)) −

∑
i piH(N(vi)))

Additivity of entanglement of formation
(minpi,|vi〉

∑
i piH(trB vi))
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The QMA(2) parallel repetition conjecture

For any quantum channel N, N(ρ) = trE VρV† for some
isometry V : CdA → CdB ⊗ CdE .

Define the support function of the separable states

hSEP(M) := max
ρ∈SEP

tr Mρ,

where SEP is the set of separable quantum states, i.e.
states ρ which can be written as

ρ =
∑

i

piρi ⊗ σi.

Fact
Let N be a quantum channel with corresponding isometry V,
and set M = VV†. Then

hSEP(M) = ‖N‖1→∞.
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An interpretation of hSEP

hSEP has a natural interpretation in terms of QMA(2) protocols.

Merlin1 Merlin2

Arthur

|ψ1〉 |ψ2〉

This is a computational model where a computationally
bounded verifier (Arthur) wishes to solve a decision
problem, given access to two unentangled “proofs” from
Merlin A and Merlin B [Kobayashi et al ’03].

The Merlins are all-powerful but Arthur cannot trust
them.
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An interpretation of hSEP

Consider a QMA(2) protocol with soundness error s, i.e.
on inputs which Arthur should reject, for all proofs |ψ1〉,
|ψ2〉, Arthur accepts with probability at most s.

Let Arthur’s measurement operator which corresponds to
“reject” be M.

Then the maximum probability with which the Merlins
can convince him to (incorrectly) accept is hSEP(M) = s.

So, if hSEP(M⊗n) = hSEP(M)n, Arthur can simply repeat the
protocol n times in parallel to achieve soundness error at
most sn.
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Failure of multiplicativity

Unfortunately (?), the Multiplicativity Conjecture is false for
all p > 1!

When Who What How

2002 Werner & Holevo p > 4.79 ρ 7→ 1
d−1

(
(tr ρ)I − ρT)

3/7/07 Winter p > 2 Random unitary
23/7/07 Hayden 1 < p < 2 Random subspace
Dec 07 Cubitt et al p . 0.11 Random/explicit
2008 Hayden & Winter p > 1 Random subspace
2008 Hastings Hmin Random subspace
2009 Grudka et al p > 2 Antisym. subspace

Further, for p =∞ it’s really, really false: If Panti is the
projector onto the antisymmetric subspace of Cd ⊗ Cd,

hSEP(Panti) =
1
2
, but hSEP(P⊗2

anti) >
1
2

(
1 −

1
d

)
.
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What about more copies?
So we have an example of a channel N such that

‖N⊗2‖1→∞ ≈ ‖N‖1→∞.
What about ‖N⊗n‖1→∞ for large n?

The following two extreme possibilities could be true:

‖N⊗n‖1→∞ ?
6 ‖N‖n/2

1→∞
for all N; or there might exist a family of channels N such
that there is no constant α > 0 such that

‖N⊗n‖1→∞ 6 ‖N‖αn
1→∞

If the first case is true, the largest possible violation of
multiplicativity is quite mild, and a form of parallel
repetition holds for quantum Merlin-Arthur games.
If the second case is true, severe violations are possible
and parallel repetition fails.
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Weak multiplicativity

Definition
A quantum channel N obeys weak p-norm multiplicativity
with exponent α if, for all n > 1,

‖N⊗n‖1→p 6 ‖N‖αn
1→p.



Today’s message

Random quantum channels obey weak∞-norm multiplicativity!

Main result (informal)
Let N be a quantum channel whose corresponding subspace is
a random dimension r subspace of CdA ⊗ CdB . Then the
probability that N does not obey weak∞-norm
multiplicativity with exponent 1/2 − o(1) is exponentially
small in min{r, dA, dB}.

Note: The above result holds with the following (fairly weak)
restrictions on r, dA, dB:

r = o(dAdB).
min{r, dA, dB} > 2(log2 max{dA, dB})

3/2.
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Other p and the von Neumann entropy

This∞-norm result also implies similar results for other
p-norms and the von Neumann entropy.

By the (matrix) Hölder inequality, if N obeys weak∞-norm multiplicativity with exponent α, N also obeys
weak p-norm multiplicativity for any p > 1, with exponent
α(1 − 1/p), via

‖X‖∞ 6 ‖X‖p 6 ‖X‖1/p
1 ‖X‖

1−1/p∞ .

Using monotonicity of Rényi entropies, we can also write
down a result for the von Neumann entropy in certain
regimes, e.g. r = dA = dB:

1
n

Hmin(N
⊗n) >

1
2

Hmin(N) − O(1).
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Proof technique

Conceptually very simple:

1 Let M be the projector onto a random dimension r
subspace of CdA ⊗ CdB .

2 Relax hSEP(M) to a quantity which is multiplicative.
3 Prove an upper bound on this quantity.
4 Prove a lower bound on hSEP(M).

The only technical part is (3), which uses techniques from
random matrix theory.

Similar techniques were used by [Collins and Nechita ×3, ’09],
[Aubrun ’10], [Collins, Fukuda and Nechita ’11], . . .
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Relaxing hSEP(M)

We use the operator norm of the partial transpose MΓ .

A bipartite quantum state ρ is said to be positive partial
transpose (PPT) if ρΓ > 0.

We have SEP ⊂ PPT and hence

hPPT(M) := max
ρ∈PPT

tr Mρ > hSEP(M).

Observation

hPPT(M) 6 ‖MΓ‖∞.
Observation
For any operators M, N,
‖(M⊗N)Γ‖∞ = ‖MΓ ⊗NΓ‖∞ = ‖MΓ‖∞‖NΓ‖∞.
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We have SEP ⊂ PPT and hence

hPPT(M) := max
ρ∈PPT

tr Mρ > hSEP(M).

Observation

hPPT(M) 6 ‖MΓ‖∞.
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Lower bounding hSEP(M)

Proposition
Let M be the projector onto an r-dimensional subspace of
CdA ⊗ CdB . Then

hSEP(M) > max
{

r
dAdB

,
1

dA

}
.

(Proof: for the first part, pick a uniformly random product
state; for the second part, note that by the correspondence with
quantum channels, any state output from the channel which
corresponds to M must have largest eigenvalue at least 1/dA.)

Thus, if we can show that ‖MΓ‖∞ = O
(

max
{

r
dAdB

, 1
dA

}1/2
)

with high probability, we’ll be done.
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Large deviation bounds

Our main result will follow easily from putting good
upper bounds on E tr(MΓ )k for arbitrary k.

Let M0 be the projector onto an arbitrary dim r subspace
of CdA ⊗ CdB and set

M(k) := EU[U⊗kM⊗k
0 (U†)⊗k].

Then
E tr(MΓ )k = tr[D(κ)ΓM(k)],

where

D(π) :=

dAdB∑
i1,...,ik=1

|iπ(1)〉|iπ(2)〉 . . . |iπ(k)〉〈i1| . . . 〈ik|

is the representation of the permutation π ∈ Sk which acts
by permuting the k systems, and κ is an arbitrary k-cycle.
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Main technical result

Theorem
For any k satisfying 2k3/2 6 min{dA, dB, r},

tr[D(κ)ΓM(k)] 6

{
poly(k)26krk/2d−k/2+1

A d−k/2+1
B if r > dB/dA

poly(k)26kd−k+1
A dB otherwise.

The above implies (when r > dB/dA, for example):

Theorem
There exists a universal constant C such that, for any δ > 0,

Pr

[
‖MΓ‖∞ > δ

28r1/2

d1/2
A d1/2

B

]
6 Cm16/3δ−(m/2)2/3

,

where m = min{r, dA, dB} > 2(log2 max{r, dA, dB})
3/2.
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Outline of proof

Write
M(k) =

∑
π∈Sk

απD(π)

for some απ (follows from Schur-Weyl duality).

Use
tr[D(κ)ΓD(π)] = dc(κπ)

A dc(κ−1π)
B ,

where c(π) is the number of cycles in π (proof:

tr[D(κ)ΓD(π)] = tr[(DdA(κ)⊗DdB(κ)
T)(DdA(π)⊗DdB(π))]

= tr[DdA(κ)DdA(π)] tr[DdB(κ
−1)DdB(π)]

= dc(κπ)
A dc(κ−1π)

B ).

Upper bound the απ coefficients.
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Bounding the απ coefficients

When k is small with respect to dAdB, the matrices {D(π)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1
(dAdB)k tr[D(π)†D(σ)] ≈ 0 if π 6= σ.

We know tr D(π)M(k) = rc(π) for any π. Because of the
near-orthonormality we ought to have

απ ≈
tr[M(k)D(π−1)]

tr[D(π−1)D(π)]
=

rc(π)

(dAdB)k .

In fact, the απ coefficients can be calculated explicitly in
terms of the Weingarten function.

Finding a bound on this function lets us upper bound απ.
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Completing the proof

Lemma
Assume k 6 (r/2)2/3. Then

|απ| 6 poly(k)24k rc(π)

(dAdB)k .

Using this bound on the απ coefficients, we’re left with

tr[D(κ)ΓM(k)] 6 poly(k)24k
∑
π∈Sk

dc(κπ)−k
A dc(κ−1π)−k

B rc(π)

To finish off, show that there can’t be “too many”
permutations π such that c(π), c(κπ) and c(κ−1π) are all
large simultaneously.
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Conclusions

We’ve proven weak multiplicativity for random quantum
channels by relaxing to a multiplicative quantity which we
can upper bound using ideas from random matrix theory.

The result obtained is probably the strongest one could
expect given known violations of multiplicativity.

In particular, by the results of Hayden and Winter, in
certain regimes

‖N ⊗N‖1→∞ ≈ ‖N‖1→∞
for random N, so increasing the exponent from 1/2 seems
unlikely (?).
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Open problems

Prove weak p-norm multiplicativity for all quantum channels!

On a more concrete level:
The technique used here fails completely for the
antisymmetric subspace.

However, [Christandl, Schuch and Winter ’09] have shown using
a different technique that the antisymmetric subspace also
obeys weak p-norm multiplicativity.

Can one proof technique be made to work for both
channels?
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