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For any Ny, N, the > direction of this equality is immediate
(just take a product input to N7 ® N»), but in general the <
direction is far from immediate.



Why care about multiplicativity?

The multiplicativity conjecture would imply at least two
“operational” conjectures:

Additivity conjecture

The Holevo capacity, entanglement of formation and
minimum output von Neumann entropy are all additive.

QOMA(2) parallel repetition conjecture

The success probability in quantum Merlin-Arthur proof
systems with two provers can be amplified by parallel
repetition.
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e Studying |IN||1_,p is equivalent to studying

. 1 p
Hp™ (N) = =7 logHNHl_m,

the minimum output Renyi p-entropy of N.

@ Multiplicativity of maximum output p-norms is equivalent
to additivity of minimum output Rényi p-entropies.

@ The minimum output von Neumann entropy H™n(N) is
obtained by taking the limit p — 1.

@ [Shor ‘03] showed that additivity of this quantity is

equivalent to other additivity conjectures in quantum
information theory, e.g.:

e Additivity of Holevo capacity of quantum channels

(maxy, o) HN(_; pivi)) = 2_; piH(N(0:)))
o Additivity of entanglement of formation

(miny, o) >_; piH(trp v;))
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Fact

Let N be a quantum channel with corresponding isometry V,
and set M = VVT. Then

hsgp(M) = [[N][1-5c0-
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@ The Merlins are all-powerful but Arthur cannot trust
them.
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An interpretation of hggp

@ Consider a QMA(2) protocol with soundness error s, i.e.
on inputs which Arthur should reject, for all proofs [{1),
[p2), Arthur accepts with probability at most s.

@ Let Arthur’s measurement operator which corresponds to
“reject” be M.

@ Then the maximum probability with which the Merlins
can convince him to (incorrectly) accept is higpp(M) =s.

@ So, if hgpp(M®") = hegp(M)", Arthur can simply repeat the
protocol n times in parallel to achieve soundness error at
most s".
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Failure of multiplicativity

Unfortunately (?), the Multiplicativity Conjecture is false for

allp > 1!
When Who What How
2002 | Werner & Holevo | p >4.79 | p— 15 ((trp)I — pT)
3/7/07 Winter p>2 Random unitary
23/7/07 Hayden 1<p<2| Random subspace
Dec 07 Cubitt et al p <011 Random /explicit
2008 | Hayden & Winter | p >1 Random subspace
2008 Hastings Hmin Random subspace
2009 Grudka et al p>2 Antisym. subspace

Further, for p = oo it’s really, really false: If Puny is the
projector onto the antisymmetric subspace of C? @ C7,

hsgp(Panti) =

1
5

but hspp(P23,) >

anti

(-3
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for all N; or there might exist a family of channels N such
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o If the first case is true, the largest possible violation of
multiplicativity is quite mild, and a form of parallel
repetition holds for quantum Merlin-Arthur games.

@ If the second case is true, severe violations are possible
and parallel repetition fails.



Weak multiplicativity

Definition
A quantum channel N obeys weak p-norm multiplicativity
with exponent o if, for all n > 1,

IN®"]l1p < [INIIFS,.
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Main result (informal)

Let N be a quantum channel whose corresponding subspace is
a random dimension r subspace of C% © C%. Then the
probability that N does not obey weak co-norm
multiplicativity with exponent 1/2 —o0(1) is exponentially
small in min{r, d4, dg}.

Note: The above result holds with the following (fairly weak)
restrictions on r, d4, dg:

@ r= O(dAdB).

e min{r,da,dp} > 2(log, max{da, dg})3/2.
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Other p and the von Neumann entropy

This co-norm result also implies similar results for other
p-norms and the von Neumann entropy.

@ By the (matrix) Holder inequality, if N obeys weak
oo-norm multiplicativity with exponent &, N also obeys
weak p-norm multiplicativity for any p > 1, with exponent

(1 —1/p), via

1-1
1Xlloo < I1X1lp < IXIL/71X]10 .

e Using monotonicity of Rényi entropies, we can also write
down a result for the von Neumann entropy in certain
regimes, e.g. r = d = dp:

1
;Hmin(NQM) = Hmin(N) - O(l)

N =



Proof technique

Conceptually very simple:
@ Let M be the projector onto a random dimension
subspace of C¥ ® C%,
@ Relax hggp(M) to a quantity which is multiplicative.
@ Prove an upper bound on this quantity.

@ Prove a lower bound on hggp(M).



Proof technique

Conceptually very simple:
@ Let M be the projector onto a random dimension
subspace of C¥ ® C%,
@ Relax hggp(M) to a quantity which is multiplicative.
@ Prove an upper bound on this quantity.

@ Prove a lower bound on hggp(M).

The only technical part is (3), which uses techniques from
random matrix theory.

@ Similar techniques were used by [Collins and Nechita x3, '09],
[Aubrun "10], [Collins, Fukuda and Nechita ‘'11], ...
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@ We have SEP ¢ PPT and hence

hppr(M) := max tr Mp > hsgp(M).
p€ePPT

Observation

hppr(M) < [|[M" | oo

Observation

For any operators M, N,
(MO N) oo = [M" @ N"loo = [M" [|oIN" | co-
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Lower bounding hggp(M)

Proposition

Let M be the projector onto an r-dimensional subspace of
C% @ C%. Then

r 1
> — .
hsgp(M) > max {dAdB' dA}

(Proof: for the first part, pick a uniformly random product
state; for the second part, note that by the correspondence with
quantum channels, any state output from the channel which
corresponds to M must have largest eigenvalue at least 1/d4.)

1/2
Thus, if we can show that |[M" ||, = O <max {d/\rdg' i} >
with high probability, we’ll be done.
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Large deviation bounds

@ Our main result will follow easily from putting good
upper bounds on E tr(M")* for arbitrary k.

@ Let My be the projector onto an arbitrary dim r subspace
of C% ® C% and set

MW = By [USMGF Ut ®h.

@ Then
Etr(M")* = tr[D(x)" MW,
where
dAdB
D(m) =Y liga)ling) - lix) (il .- (i
11,00y lk:1

is the representation of the permutation 7t € S; which acts
by permuting the k systems, and « is an arbitrary k-cycle.
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Main technical result

Theorem
For any k satisfying 2k3/2 < min{dy4, dg, 1},

DT MW < | POy (RI2¥r2 d g i > dy/dy
r X
poly (k)2%d *1dp otherwise.

The above implies (when r > dp/d4, for example):

Theorem
There exists a universal constant C such that, for any & > 0,

28 1/2

Pr ||Mr||oo > éﬁ le6/36 (m/2) 2/3
dA dB

where m = min{r,du, dg} > 2(log, max{r, da, dg))3/2.
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@ Write
M® = 3 axD(m)

TLES)

for some o (follows from Schur-Weyl duality).

@ Use .

tr[D(k)"D(m)] = d g <,

where c(7) is the number of cycles in 7 (proof:

tr[D(x)"'D(n)] = tr[(Dy, () @ Dy, (x)")(Dy, (1) @ Dy, (7))
= tr[Dy, (<)Dy, ()] tr[Dyy (c 1) Dy (70)]

_ d;‘( Kﬂ)d%(KflT[))_

@ Upper bound the «, coefficients.
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@ When k is small with respect to d4dp, the matrices {D(7)}
are almost orthonormal with respect to the normalised
Hilbert-Schmidt inner product, i.e.

1
(dadp)*

tr[D(m)'D(0)] ~ 0 if 7t # .

e We know tr D(71)M'¥) = (™) for any 7. Because of the
near-orthonormality we ought to have

trM S D(1)] ye(70)

~

0(7[~ —

tr[D(nY)D(m)]  (dadp)c

@ In fact, the x, coefficients can be calculated explicitly in
terms of the Weingarten function.

e Finding a bound on this function lets us upper bound «.
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Completing the proof

Lemma
Assume k < (r/2)%/3. Then

loer| < poly(k)

@ Using this bound on the o coefficients, we're left with

1

tr[D(x)"M®] < poly(k)2# 3~ af <™ gl el
TLES)

@ To finish off, show that there can’t be “too many”
permutations 7t such that c(7t), c(k7) and c(k~17t) are all
large simultaneously.
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Conclusions

@ We’ve proven weak multiplicativity for random quantum
channels by relaxing to a multiplicative quantity which we
can upper bound using ideas from random matrix theory.

@ The result obtained is probably the strongest one could
expect given known violations of multiplicativity.

@ In particular, by the results of Hayden and Winter, in
certain regimes

IN® m‘lﬁoo ~ |IN][1- 00

for random N, so increasing the exponent from 1/2 seems
unlikely (?).
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Open problems

Prove weak p-norm multiplicativity for all quantum channels!

On a more concrete level:

@ The technique used here fails completely for the
antisymmetric subspace.

e However, [Christandl, Schuch and Winter ‘09] have shown using
a different technique that the antisymmetric subspace also
obeys weak p-norm multiplicativity.

@ Can one proof technique be made to work for both
channels?
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