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Introduction

We consider the quantum analogue of hypothesis testing:
quantum state discrimination.

Given an unknown state p; picked from an ensemble £ = {p;}
of quantum states, with a priori probabilities p;, how hard is it
to determine which state p» is?

Formally: let M = {;} be a quantum measurement (POVM)),
ie. w >0, ) ;u; =1 Define the probability of error

Pe(M, &) =) pjtr(mp))
i#j
Then what is

PE(E) = IIIIViInPE(M, 8)7
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(note: p-norms |[pl|, = (3_; Gi(p)p)l/”, oi(p) = i'th singular
value of p)

But for more than 2 states, no exact solution is known.

So we concentrate on finding bounds on the probability of
erTor.
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(has found applications in quantum algorithms; note fidelity

F(pi, p] H\/i\F”)

This bound relates the pairwise (local) distinguishability of a
set of states to their global distinguishability.

Could we find a similar lower bound?

Potential applications:
@ Security proofs in quantum cryptography

@ Lower bounds in quantum query complexity
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Lower bounds

Some recently developed lower bounds:

@ A bound based only on the individual states [Hayashi et
al "08]:
Pe(€) > 1 —nmaxpillpill

(gives nothing when any of the states are pure)

@ A recent bound in terms of the trace distance [Qiu "08]:

1 1
Pe(€) > 5 (1 — Z Pz’pinPj1>

i>j

(n = number of states)
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The new lower bound

Let € be an ensemble of quantum states {p;} with a priori
probabilities {p;}. Then

Pg(€) > ZPiP]‘F(Pi, P;)-

i>]

Note:

o ...the similarity to Pg(€) < 2 Zi>j ,/Pipj\/m-

@ ..it’s easy to use this bound in a multiple-copy scenario.
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Proving the lower bound

The bound is based on matrix inequalities. We need some
definitions:

@ Decompose pip; = Zj leij) (eijl, assume p; is d-dimensional
and write

Si=(leir) ---leia)) , S = (S1---Sn)

o Similarly, decompose p; = _; [fij){f;j| and write

N; = (Ifn)---Ifia)) N = (N1 ---Ny)

@ Define the block matrix A = NTS (so Ajj = NZT S;)
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Proof outline

We will prove the following.

PE(M, &) > 1A= D IIATA)3

7 i>]

= > _(s'S)401F = > _pipiFlpi 0))

i>j i>j
The red equality follows from:

> pwi=I=NN'=I= ATA=S'NN'S=5Ts

1
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The first equality

We want to show that

PE(M, €)= [|lA;l3
i#f

This is immediate:

145115 = tr((N]S))(S/N:)) = tr((NiN])(5;S1)) = pj tr (i)
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We want to show that
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The inequality

We want to show that
2 lI4gll3 = 3 llAT At
i#] i>j
Will follow from the following inequality:
D IATA)IE < D 11Aul3 + 1An i3
i>1 i>1
First step: can show that
2
> ltatanii < || ((afan - @Atan) |

i>1

(proof: by a majorisation argument)
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A block matrix inequality

We want to show that

|(Aatay, - ata),)

‘ < X Il + 1401

Group A into “super-blocks”:

(A11) (A12 A1n)
An Axp ... Ay

Anz Anz . Ann



A block matrix inequality (2)

We want to show that

|(atars- - (atan,)

‘ < X Il + 4al

Define a new 2 x 2 “super-block matrix” B by padding each of
these “super-blocks” in A with 0’s so that each super-block is
square and the same size. Then

2
H((ATA)H"‘(ATA)M)l = HBJ{1312+B;1322H%
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A block matrix inequality (2)

We want to show that

|(atars- - (atan,)

‘ < X Il + 4al

Define a new 2 x 2 “super-block matrix” B by padding each of
these “super-blocks” in A with 0’s so that each super-block is
square and the same size. Then

— ||BI,B1s + Bl Bn|?

< (IIBull3 + 1B2l13) (IB12ll3 + |B21 [13)
< |1Bizl5 + IIBali3

= > [Aul5 + 4al3

i>1

[ (tarans - atan, )|
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Getting the fidelities from S'S

We want to show the final equality

D (STS)ll = > piriF(pi 0))

i>] i>]

It is immediate that SZ-SI-T = pipi, so by the polar decomposition,
for some unitary U

5i = vpipil
Implies that in terms of the blocks of S,

ISTSilIT = I1Utvpipiy/pie; VIR = pipillv/ei\ /il = pipiF (o1, 0))

and the proof is complete.
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Tightness

Even for an ensemble of 2 states, this bound is not always tight
(i.e. does not reduce to the Holevo-Helstrom bound).

Consider an ensemble € = {p1, p2} where p; = p2, p1 =p,

p2 =1—p. Then

1 1 1 1
Pe(&) =5 —3Sllp— (1 =plelh = 5 —Ip =5
but the bound here guarantees only
Pg(€) = p(1—p)
1/2 Holevo-Helstrom bound

Pg(€)

New bound
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Thanks for your time!
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