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Quantum computing
A quantum computer is a machine designed to use the principles of
quantum mechanics to do things which are fundamentally impossible for
any computer built only based on classical physics.

Daily Mail, 15 October 2013
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This talk

1. A brief introduction to the quantum computing model
2. Quantum algorithms: what quantum computers can do
3. Experimental implementations
4. Further reading
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The quantum model: qubits
On a normal (“classical”) computer, we store information as bits.

I A bit can be either in the state 0, or the state 1.

I Physically, we can store a bit in some object that has two states:

Pic: coins-of-the-uk.co.uk

I A qubit (“quantum bit”) is stored in a tiny physical system like an
individual atom that behaves quantum mechanically.
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The quantum model: qubits
As well as being in states corresponding to 0 or 1, a qubit can be
anywhere in between!

0 1α + β

I Here α and β are any numbers (in fact, more generally complex
numbers. . . ) satisfying α2 + β2 = 1.

I This is called superposition.

If we have n qubits, they can be in a superposition of 2n different states:

0 0 0 1 1 0 1 1α + β + γ + δ

This allows a quantum computer to run an algorithm on many possible
inputs simultaneously.
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Measurement and entanglement
I If we measure some qubits, we see each outcome with probability

equal to its corresponding coefficient squared.

I For example, imagine we have two qubits in the state

0 0 1 1
1√
2 + 1√

2

I Then if we measure the qubits, we get outcome 00 with probability 1
2 ,

and outcome 11 with probability 1
2 .

I But what if the first qubit is in Bristol, and the second is on the Moon?

I It seems that the measurement result in Bristol has instantaneously
affected the qubit on the Moon. . .

I This bizarre phenomenon is known as quantum entanglement.
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Shor’s algorithm

Integer factorisation

Given an integer N such that N = p × q for prime numbers p and q, find p
and q.

For example: given 15 as input, the output should be 3 and 5.

Shor’s algorithm

I In 1994, Peter Shor described a quantum
algorithm which can factorise large integers
efficiently.

I No efficient classical algorithm is known for
this problem.

Pic: physik.uni-graz.at
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Factorisation and cryptography

Why should we care about integer factorisation?

I The RSA cryptosystem which underlies Internet security relies on the
hardness of integer factorisation.

I If we could factorise large numbers efficiently, we could break this
cryptosystem.

In 2009, a 232-digit number was factorised using hundreds of computers
over a period of 2 years. . . by comparison, a large quantum computer
could factorise a number with thousands of digits in a matter of minutes.
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Grover’s algorithm

I One of the most basic problems in computer science
is unstructured search.

I Imagine we have n boxes, each containing a 0 or a 1.
We can look inside a box at a cost of one query.

0 0 1 0 0 0 1 0

I We want to find a box containing a 1.

I On a classical computer, this task could require n
queries in the worst case.

But on a quantum
computer, Grover’s algorithm can solve the problem
with roughly

√
n queries.

Pic: Bell Labs
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Experimental implementations
There are a number of different technologies which could be used to
implement a quantum computer.

Photonic quantum circuits on silicon (University of Bristol)
Pic: University of Bristol
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Experimental implementations

“Bulk” optics (University of Bristol)
Pic: Carmel King
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Experimental implementations

Ion trap (David Wineland group, NIST)
Pic: nobelprize.org
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Quantum computing FAQs

1. When can I have one?

2. Will I have one on my desk?
3. Can they help discover aliens?

To summarise:

I Quantum computing is a new and exciting model of computation
which can do things that classical computing simply cannot.

I A massive international effort is ongoing to build a large-scale
quantum computer, including here at Bristol.

I There are still many fascinating open problems to address.
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Further reading

I Winning a Game Show with a Quantum Computer
Ashley Montanaro
http://www.cs.bris.ac.uk/~montanar/gameshow.pdf

I Quantum Computing Since Democritus
Scott Aaronson
http://www.scottaaronson.com/democritus/

I Introduction to Quantum Computing, University of Waterloo
John Watrous
https://cs.uwaterloo.ca/~watrous/LectureNotes.html
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Partial timeline: Theory of quantum computing
...

1984 Quantum cryptographic key distribution invented [Bennett+Brassard]

1985 General quantum computational model proposed [Deutsch]

1992 First exponential quantum speed-up discovered [Deutsch and Jozsa]

1993 Quantum teleportation invented [Bennett et al.]

1994 Shor’s algorithm rewrites the rulebook of classical cryptography

1995 Quantum error-correcting codes invented [Shor]

1996 Quantum simulation algorithm proposed [Lloyd]

1996 Quantum speed-up for unstructured search problems [Grover]

1998 Efficient quantum communication protocols [Buhrman et al.]

2003 Exponential speed-ups by quantum walks invented [Childs et al.]
...
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Partial timeline: Quantum computing experiments
...

1997-8 Quantum teleportation demonstrated [Innsbruck, Rome, Caltech, . . . ]

1998 Quantum error-correction demonstrated [MIT]

2001 Shor’s algorithm factorises 15 = 3× 5 using NMR [IBM]

2005 8 qubits controlled in ion trap [Innsbruck]

2008 Photonic waveguide quantum circuits demonstrated [Bristol]

2010 Entangled states of 14 qubits created in ion trap [Innsbruck]

2012 21 = 3× 7 factorised using quantum optics [Bristol]

2012 100µs coherence for superconducting electronic qubits [IBM]

2013 First publicly-accessible “quantum cloud” [Bristol]
...
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