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The basic problem

Given a quantum state, is it entangled?

Recall:

A pure n-partite state |ψ〉 is product if it can be written as
|ψ1〉 . . . |ψn〉, for some states |ψ1〉 , . . . , |ψn〉, and is
entangled if it is not product.

A mixed n-partite state ρ is separable if it can be written as

ρ =
∑

i

pi|ψ
i
1〉〈ψi

1|⊗ · · · ⊗ |ψi
n〉〈ψi

n|,

and is entangled if it is not separable.
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Variants

Many different variants of the problem of detecting
entanglement:

How are we given the input state?
Is it pure or mixed?
Is the state bipartite or multipartite?
What level of accuracy do we demand?
Do we want to detect entanglement in all states, or just
some of them?

These different variants have wildly differing complexities...



Good news and bad news

Given a bipartite pure state |ψ〉 as a d2-dimensional vector,
whether |ψ〉 is entangled can be determined efficiently
using the Schmidt decomposition.

Given a bipartite mixed state ρ as a d2-dimensional
matrix, it’s NP-hard to determine whether ρ is separable
(up to accuracy 1/poly(d)).

This was shown by [Gurvits ’03] for accuracy 1/exp(d) via a
reduction from the NP-hard Clique problem.
Later improved to 1/poly(d) by [Gharibian ’10] (using
techniques of [Liu ’07]) and also (implicitly) by [Beigi ’08].

See [Ioannou ’07] for an extensive discussion of the state of
the art circa 2006.
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Our main result

Let |ψ〉 be a pure n-partite state with local dimensions
d1, . . . , dn.
Let the nearest product state to |ψ〉 be |φ1〉 . . . |φn〉.
Let |〈ψ|φ1, . . . ,φn〉|2 = 1 − ε.

Theorem
There is an efficient quantum test, called the product test, that
accepts with probability 1 −Θ(ε), given two copies of |ψ〉.

Note that the parameters of the test don’t depend on the
local dimension d or the number of subsystems n.
This is similar to classical property testing algorithms.
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The rest of this talk

Introduction to the product test

Correctness of the product test

Quantum Merlin-Arthur games

Computational hardness of quantum information theory
tasks:

Computing minimum output entropy
Separability testing



The swap test

The product test uses as a subroutine the swap test.

|0〉 H • H NM





ρ
SWAP

σ

This test takes two (possibly mixed) states ρ, σ as input,
returning “same” with probability

1
2

+
1
2

tr(ρσ),

otherwise returning “different”.
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The product test

Product test
1 Prepare two copies of |ψ〉 ∈ Cd1 ⊗ · · · ⊗ Cdn ;

call these |ψ1〉, |ψ2〉.
2 Perform the swap test on each of the n pairs of

corresponding subsystems of |ψ1〉, |ψ2〉.
3 If all of the tests returned “same”, accept. Otherwise,

reject.

1

1

2

2

3

3

...

...
n

n|ψ1〉

|ψ2〉



Previous use of the product test

The product test has appeared before in the literature.

Originally introduced by [Mintert, Kuś, Buchleitner ’05] as one
of a family of tests for generalisations of the concurrence
entanglement measure.

Implemented experimentally for bipartite states by
[Walborn et al ’06].

Proposed by [AM, Osborne ’08] as a means of determining
whether a unitary operator is product.

Our contribution: to prove correctness of the test for all n.
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Analysing the product test

Lemma
Let Ptest(ρ) be the probability that the product test passes on
input ρ. Then

Ptest(ρ) =
1
2n

∑
S⊆[n]

tr ρ2
S.

Thus the product test measures the average purity of the
input |ψ〉 across bipartitions.

Note that it’s immediate that Ptest(ρ) = 1 if and only if ρ is
a pure product state.

So our main result says: if the average entanglement
across bipartitions of |ψ〉 is low, |ψ〉 must be close to a
product state.
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Our main result

Theorem
Let the nearest product state to |ψ〉 be |φ1〉 . . . |φn〉, and set
|〈ψ|φ1, . . . ,φn〉|2 = 1 − ε. Then

1 − 2ε+ ε2 6 Ptest(|ψ〉〈ψ|) 6 1 − ε+ ε3/2 + ε2.

Furthermore, if ε > 11/32, Ptest(|ψ〉〈ψ|) 6 501/512.

ε
0
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0 1

Upper bound on Ptest(|ψ〉〈ψ|)

Lower bound on Ptest(|ψ〉〈ψ|)
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Proof of correctness: plan of attack

The lower bound is easy: any test using two copies and
accepting all product states with certainty must accept |ψ〉
with probability at least (1 − ε)2.

The upper bound for states close to product is based on
writing |ψ〉 =

√
1 − ε |0n〉+

√
ε |φ〉 for some |φ〉, allowing

us to calculate
∑

S trψ2
S explicitly in terms of ε, |φ〉.

The upper bound for states far from product is based on
showing that one can find a k-partition such that the
distance from the closest product state (wrt this partition)
falls into the regime where the first upper bound works.
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Optimality of the product test

Can we do better than the product test?

Theorem
No non-trivial test can use only one copy of |ψ〉.
The product test is optimal among all tests that use two
copies of |ψ〉 and accept product states with certainty.

How bad is our analysis of the product test?

Theorem
The leading order constants cannot be improved.
There is a state |ψ〉 which is arbitrarily far from product
and has Ptest(|ψ〉〈ψ|) ≈ 1/2.

So (informally) these results can’t be improved much without
adding dependence on n or d.
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Quantum Merlin-Arthur games

The complexity class QMA is the quantum analogue of NP.

Merlin

Arthur

|ψ〉

Arthur has some decision problem of size n to solve, and
Merlin wants to convince him that the answer is “yes”.

Merlin sends him a quantum state |ψ〉 of poly(n) qubits.
Arthur runs some polynomial-time quantum algorithm A

on |ψ〉 and his input and outputs “yes” if the algorithm
says “accept”.



Quantum Merlin-Arthur games

We say that the language L (where L is the set of bit strings we
want to accept) is in QMA if there is an A such that, for all x:

Completeness: If x ∈ L, there exists a witness |ψ〉, a state
of poly(n) qubits, such that A outputs “accept” with
probability at least 2/3 on input |x〉 |ψ〉.

Soundness: If x /∈ L, then A outputs “accept” with
probability at most 1/3 on input |x〉 |ψ〉, for all states |ψ〉.

The constants 1/3 and 2/3 can be amplified to be
exponentially close to 0 and 1, respectively.



Quantum Merlin-Arthur games

QMA(k) is a variant where Arthur has access to k unentangled
Merlins.

Merlin1 Merlin2 ... Merlink

Arthur

|ψ1〉

|ψ2〉

|ψk〉

This might be more powerful than QMA because the lack of
entanglement helps Arthur tell when the Merlins are cheating.



Quantum Merlin-Arthur games

A language L is in QMA(k)s,c if there is an A such that, for all
x:

Completeness: If x ∈ L, there exist k witnesses
|ψ1〉 , . . . , |ψk〉, each a state of poly(n) qubits, such that A

outputs “accept” with probability at least c on input
|x〉 |ψ1〉 . . . |ψk〉.

Soundness: If x /∈ L, then A outputs “accept” with
probability at most s on input |x〉 |ψ1〉 . . . |ψk〉, for all states
|ψ1〉 , . . . , |ψk〉.

Also define QMAm(k)s,c to indicate that |ψ1〉 , . . . , |ψk〉 each
involve m qubits, where m may be a function of n other than
poly(n).



What can we do with k Merlins?

Theorem [Aaronson et al ’08]
Given a boolean CNF formula with n clauses, Arthur can
decide in poly(n) time whether it’s satisfiable, given
O(
√

n polylog(n)) unentangled quantum proofs of O(log n)

qubits each.

Arthur’s algorithm always accepts satisfiable formulae (perfect
completeness) and rejects unsatisfiable formulae with constant
probability (constant soundness).

In complexity-theoretic language:

SAT ⊆ QMAlog(
√

n polylog(n))Ω(1),1
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Replacing k Merlins with 2 Merlins

Our results imply that QMA(k) = QMA(2) (that is, k
Merlins can be replaced with 2 Merlins), up to a constant
loss of soundness.

The idea: given two (unentangled) copies of the k proofs,
Arthur can use the product test to certify that the proofs
are actually unentangled.

So we go from having k proofs of m qubits each to having
2 proofs of km qubits each.

Use of the product test seems to limit us to constant
soundness (as even highly entangled states can be
accepted with constant probability).



Replacing k Merlins with 2 Merlins

Our results imply that QMA(k) = QMA(2) (that is, k
Merlins can be replaced with 2 Merlins), up to a constant
loss of soundness.

The idea: given two (unentangled) copies of the k proofs,
Arthur can use the product test to certify that the proofs
are actually unentangled.

So we go from having k proofs of m qubits each to having
2 proofs of km qubits each.

Use of the product test seems to limit us to constant
soundness (as even highly entangled states can be
accepted with constant probability).



Replacing k Merlins with 2 Merlins

Our results imply that QMA(k) = QMA(2) (that is, k
Merlins can be replaced with 2 Merlins), up to a constant
loss of soundness.

The idea: given two (unentangled) copies of the k proofs,
Arthur can use the product test to certify that the proofs
are actually unentangled.

So we go from having k proofs of m qubits each to having
2 proofs of km qubits each.

Use of the product test seems to limit us to constant
soundness (as even highly entangled states can be
accepted with constant probability).



Replacing k Merlins with 2 Merlins

Imagine Arthur’s QMA(k) verification algorithm is A, and the
original proofs are |ψ1〉 , . . . , |ψk〉. Then the QMA(2) protocol
is:

1 Each of the two Merlins sends |ψ1〉 ⊗ . . .⊗ |ψk〉 to Arthur.

2 Arthur runs the product test with the two states as input.

3 If the test fails, Arthur rejects. Otherwise, Arthur runs the
algorithm A on one of the two states, picked uniformly at
random, and outputs the result.

Intuitively: if the product test passes with high probability, the
states were close to product, so the QMA(k) algorithm works.



Replacing k Merlins with 2 Merlins

Imagine Arthur’s QMA(k) verification algorithm is A, and the
original proofs are |ψ1〉 , . . . , |ψk〉. Then the QMA(2) protocol
is:

1 Each of the two Merlins sends |ψ1〉 ⊗ . . .⊗ |ψk〉 to Arthur.

2 Arthur runs the product test with the two states as input.

3 If the test fails, Arthur rejects. Otherwise, Arthur runs the
algorithm A on one of the two states, picked uniformly at
random, and outputs the result.

Intuitively: if the product test passes with high probability, the
states were close to product, so the QMA(k) algorithm works.



From QMA(2) to hardness results

Our results show that satisfiability of CNF formulae can
be verified by a quantum algorithm with constant
probability, given two unentangled proofs of length
O(
√

n polylog(n)) qubits each.

We can turn this round and obtain hardness results for
problems relating to QMA(2).

Imagine we could (classically) estimate the success
probability of a QMA(2) protocol that uses witnesses of
dimension d, up to a constant, in time poly(d).

Then this would give a subexponential-time
(2O(

√
n polylog(n))) algorithm for SAT!

We show hardness results, based on the assumption that this
isn’t possible (the Exponential Time Hypothesis (ETH)).
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Hardness of estimating minimum output
entropy

Let N be a quantum channel (CPTP map). Then the maximum
output p-norm of N is

‖N‖p = max
ρ
‖N(ρ)‖p,

where
‖ρ‖p = (tr ρp)1/p.

The minimum output Rényi α-entropy is

Sα(N) =
α

1 − α
log ‖N‖α.

As α→ 1, we obtain the minimum output von Neumann
entropy, which is closely related to channel capacity.



Hardness of estimating minimum output
entropy

The maximum acceptance probability of a QMA(2)

protocol is precisely ‖N‖∞ for some quantum channel N!

This implies that there is some constant c such that, given
a channel N, there is no polynomial-time algorithm to
distinguish between Sα(N) = 0 and Sα(N) > c, assuming
(ETH).

This improves a result by [Beigi, Shor ’07], who proved this
for accuracy 1/poly(d) (but with weaker complexity
assumptions).

This also implies that certain approaches for proving
“weak” additivity theorems won’t work...
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Hardness of separability testing

Recall that it’s NP-hard to distinguish between bipartite
d× d mixed states that are separable, and those that are
1/poly(d) far from separable.

Our results imply that it’s hard to estimate the set SEP of
separable d× d states by a convex set within constant trace
distance of SEP, assuming (ETH).

Why? Because (roughly) if we can detect membership in
this set, we can optimise over it, so we can approximate
the success probability of a QMA(2) protocol.

So easy detection of pure state entanglement implies
hardness of detecting mixed state entanglement!
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Conclusions

The product test is an efficient test for pure product states
of n quantum systems.

The product test ties together many concepts in quantum
information theory and proves computational hardness of
several information-theoretic tasks.

Quantum information theory and quantum computation
are intimately linked.



Open questions

Can QMA(2) protocols be amplified to exponentially
small error?

Can stability of other output entropies be proven for the
depolarising channel – or for all channels where
additivity holds?

Can the constants in our proof be improved? (Yes.)

Further reading: arXiv:1001.0017

Thanks for your time!
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The upper bound

The map of the first part of the proof:

Let |0n〉 be the closest product state to |ψ〉.

Write |ψ〉 =
√

1 − ε |0n〉+
√
ε |φ〉 for some |φ〉.

This allows us to calculate
∑

S trψ2
S explicitly in terms of

ε, |φ〉.

Writing |φ〉 =
∑

x αx |x〉, can upper bound
∑

S trψ2
S in

terms of how much weight |φ〉 has on low Hamming
weight basis states.

Showing that there can be no weight on states of
Hamming weight 1 completes the proof.
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The second part of the proof

The first part of the proof ends up showing

Ptest(|ψ〉〈ψ|) 6 1 − ε+ ε3/2 + ε2.

This bound is greater than 1 for large ε!

We fix up the proof by showing (roughly):

Ptest(|ψ〉〈ψ|) is upper bounded by the probability that the
product test across any partition into k parties passes.
If |ψ〉 is far from product across the n subsystems, one can
find a k-partition such that the distance from the closest
product state (wrt this partition) falls into the regime
where the first part of the proof works.
This leads to the result that, if ε > 11/32,
Ptest(|ψ〉〈ψ|) 6 501/512.

These constants can clearly be improved somewhat...
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The depolarising channel

Consider the qudit depolarising channel with noise rate 1 − δ,
i.e.

Dδ(ρ) = (1 − δ)(tr ρ)
I
d

+ δ ρ.

It turns out that

tr(D⊗n
δ (ρ))2 ∝

∑
S⊆[n]

γ|S| tr ρ2
S,

for some constant γ depending on δ and d.
An interpretation of (a generalisation of) our main result is:

For small enough δ...
...if tr(D⊗n

δ |ψ〉〈ψ|)2 > (1 − ε)Pprod(δ)...
...there is a product state |φ1, . . . ,φn〉 such that
|〈ψ|φ1, . . . ,φn〉|2 > 1 − O(ε).

This is a stability result for this channel.
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Correctness and amplification

It’s immediate that, if the Merlins don’t cheat, Arthur will
accept with the same probability as the QMA(k) protocol
does.

One can show that the Merlins can’t increase their success
probability by sending different states.

If the product test accepts, the state must be close to
product, so correctness of the QMA(k) protocol implies
correctness of the QMA(2) protocol.

This also implies that QMA(2) protocols can be amplified
up to constant soundness by taking k unentangled copies
of the proofs.

Whether they can be amplified to exponentially small
soundness remains an open question...
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