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Quantum computing

A quantum computer is a machine designed to use quantum
mechanics to outperform any “standard” computer based only
on classical physics.

Known applications of quantum computers include:

Simulation of quantum-mechanical systems;
Integer factorisation, hence breaking the RSA
cryptosystem;
Unstructured search and optimisation;
. . .

For many more, see the Quantum Algorithm Zoo
(math.nist.gov/quantum/zoo/), which currently cites 361
papers on quantum algorithms. . .

math.nist.gov/quantum/zoo/
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This talk

In this talk I will discuss two connections between the theory
of boolean functions and the theory of quantum computation:

How low-degree polynomials over F2 can be used to
understand quantum circuits;
How quantum algorithms naturally give rise to a
quantum generalisation of boolean functions.

A general principle
Although no large-scale general-purpose quantum computer
has yet been built, quantum computation can already be used
as a theoretical tool to study other areas of science and
mathematics, without the need for an actual quantum
computer.
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Quantum computation

An exceptionally brief introduction:

In a quantum algorithm, we start in some initial state,
perform some quantum evolution, then measure and see
some outcome (probabilistically).

Associate each bit-string x ∈ {0, 1}n with an orthogonal
basis vector in C2n

. This corresponds to a system of n
qubits (quantum bits).

Then a quantum algorithm corresponds to a 2n × 2n

unitary matrix U, i.e. UU† = I.

If we apply U to a system initially in state x ∈ {0, 1}n and
then measure, the probability we see measurement
outcome y ∈ {0, 1}n is precisely |Uyx|

2.
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The quantum circuit model

Quantum algorithms are implemented as quantum circuits
made up of elementary operations known as quantum gates.

H
U

V
X

Each gate is a small unitary matrix itself, extended to acting on
the whole space via the tensor (Kronecker) product with the
identity matrix; e.g. the above circuit corresponds to the matrix

(I ⊗ V)(U ⊗ I)(H ⊗ I ⊗ X)

Fundamental problem

For C in a given class of quantum circuits, compute |Cyx|
2.
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Quantum circuits

The class of quantum circuits discussed today: those whose
gates are picked from the set

{H,Z,CZ,CCZ}

where:

H =
1√
2

(
1 1
1 −1

)
(aka “Hadamard”)

Z =

(
1

−1

)
, CZ =


1

1
1

−1

 , CCZ =


1

1
. . .

−1


and CCZ is an 8× 8 matrix.

Fact: This set of gates is universal for quantum computation.
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Understanding this class of circuits

We will show that, if C is picked from this class of circuits, the
amplitudes Cyx of the corresponding unitary matrix can be
written in a very concise form.

First assume that C begins and ends with a column of
Hadamard gates:

H

C ′

H

H H

H H

for some circuit C ′.

This is without loss of generality, as we can always add pairs
of Hadamards to the beginning or end of each line (H2 = I).
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From a circuit to a polynomial

Now consider the internal part C ′, e.g.:

H • • H

• H •

H • •

where we use the notation

Z = • , CZ = •
•

, CCZ = •
•
•



From a circuit to a polynomial

Form a polynomial over F2 from the circuit as follows:

Attach a variable to the left of each wire, and to the right
of each Hadamard gate.

Add a term multiplying together variables connected by a
gate (of any kind).

For example:
x1

H
x2
• • H

x3

x4
• H

x5
•

x6
H

x7
• •

corresponds to the polynomial

x1x2 + x2x3 + x4x5 + x6x7 + x2x4 + x2x5x7 + x7.
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From a circuit to a polynomial

Assume C acts on ` qubits and contains h internal Hadamard
gates.

Let fC be the polynomial corresponding to C. Then fC is a
function of n = h + ` variables.

Write

gap(fC) :=
∑

x∈{0,1}n

(−1)fC(x) = |{x : fC(x) = 0}|− |{x : fC(x) = 1}|.

Claim

C0n0n =
gap(fC)
2h/2+`

.

(All other amplitudes can be obtained too:
Cyx = gap(fC + Lx,y)/2h/2+` for some linear function Lx,y.)
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Proof idea
The special case where C ′ only contains Z, CZ, CCZ gates, e.g.:

• • •
• • •
• • •

Let superscripts of Z, CZ, CCZ denote the qubits on which
they act. Then, for any x ∈ {0, 1}`,

Zi
xx = (−1)xi , CZij

xx = (−1)xixj , CCZijk
xx = (−1)xixjxk .

As these gates are diagonal, we can obtain C ′xx by multiplying
these expressions for different gates in C.

Each gate corresponds to a term in fC as defined above. So
C ′xx = (−1)fC(x), and hence

(H⊗`C ′H⊗`)0`0` =
1
2`

∑
x∈{0,1}`

C ′xx =
1
2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.
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Some easy observations

What can we say about this connection between circuits and
polynomials?

Every degree-3 polynomial f : Fn
2 → F2 with no constant

term has at least one corresponding quantum circuit, by
considering the case where C ′ contains no Hadamard
gates . . .

. . . and this circuit is usually not unique, as e.g. x1x2 can
be obtained from either a CZ or Hadamard gate.

If fC corresponds to a circuit C on ` qubits with h
Hadamard gates, then

|gap(fC)| 6 2h/2+`

because |C0`0` |
2 6 1.
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Consequences for simulating q. circuits

Quantum computers can be simulated by counting zeroes of
degree-3 polynomials over F2!

. . . actually not so surprising: this problem was already
known to be #P-complete [Ehrenfeucht and Karpinski ’90].
So this may not be a useful way of simulating general
quantum circuits.

But we can simulate some special kinds of quantum circuits
this way, e.g.:

Those with no CCZ gates (as gap(f ) can be computed
efficiently for degree-2 polynomials f ) – this also follows
from the Gottesman-Knill theorem.
Those where there exists a transformation L ∈ GLn(F2)
such that fC ◦ L depends on only O(log n) variables.
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A quantum version of boolean functions?

How can we generalise the concept of a boolean function
f : {0, 1}n → {0, 1} in a “quantum” way?

First, change to considering f : {0, 1}n → {±1}.

Then write such a function as a diagonal matrix, e.g. for n = 2:
f (00)

f (01)
f (10)

f (11)


This naturally suggests a generalisation:

Definition
A quantum boolean function is a 2n × 2n unitary matrix whose
eigenvalues are in the set {±1}.
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A quantum version of boolean functions

Is this a nontrivial definition?

We can obtain quantum boolean functions from:

Standard methods for implementing functions
f : {0, 1}n → {±1} on a quantum computer;
Quantum algorithms solving decision problems;
Quantum error-correcting codes;
. . . in fact, any subspace of C2n

.

For any quantum boolean function F, UFU† is also a quantum
boolean function for any unitary matrix U.
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A quantum version of boolean functions

We can also generalise some techniques used in the analysis of
classical boolean functions, e.g. the Fourier (aka
Walsh-Hadamard) transform.

If f is a quantum boolean function, then we can write

f =
∑

s∈{I,X,Y,Z}n

f̂ (s)χs

where
χs = s1 ⊗ s2 ⊗ · · · ⊗ sn

and I, X, Y, Z are the Pauli matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(Classical boolean functions are the same, but only use I & Z.)
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A quantum version of boolean functions

Is this an interesting definition?

Using the Pauli expansion, we can prove some analogous
results to those in the theory of classical boolean functions,
e.g.:

Testing linearity (= being a Pauli matrix);
Learning an unknown quantum boolean function;
The Friedgut-Kalai-Naor (FKN) theorem
(“dictator-vs-constant”).

. . . but many “combinatorial” results are harder to prove (e.g.
because there are uncountably many quantum boolean
functions!).
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degree-3 polynomials to find new simulation techniques
for quantum algorithms?
Do interesting classes of polynomials correspond to
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