
Boolean functions in quantum computation

Ashley Montanaro

School of Mathematics,
University of Bristol

7 July 2017

arXiv:1607.08473 and arXiv:0810.2435
Journal of Physics A, vol. 50, no. 8, 084002, 2017

Chicago Journal of Theoretical Computer Science 2010

Quantum computing

A quantum computer is a machine designed to use quantum
mechanics to outperform any “standard” computer based only
on classical physics.

Known applications of quantum computers include:

Simulation of quantum-mechanical systems;
Integer factorisation, hence breaking the RSA
cryptosystem;
Unstructured search and optimisation;
. . .

For many more, see the Quantum Algorithm Zoo
(math.nist.gov/quantum/zoo/), which currently cites 361
papers on quantum algorithms. . .

math.nist.gov/quantum/zoo/

Quantum computing

A quantum computer is a machine designed to use quantum
mechanics to outperform any “standard” computer based only
on classical physics.

Known applications of quantum computers include:

Simulation of quantum-mechanical systems;
Integer factorisation, hence breaking the RSA
cryptosystem;
Unstructured search and optimisation;
. . .

For many more, see the Quantum Algorithm Zoo
(math.nist.gov/quantum/zoo/), which currently cites 361
papers on quantum algorithms. . .

math.nist.gov/quantum/zoo/

Quantum computing

A quantum computer is a machine designed to use quantum
mechanics to outperform any “standard” computer based only
on classical physics.

Known applications of quantum computers include:

Simulation of quantum-mechanical systems;
Integer factorisation, hence breaking the RSA
cryptosystem;
Unstructured search and optimisation;
. . .

For many more, see the Quantum Algorithm Zoo
(math.nist.gov/quantum/zoo/), which currently cites 361
papers on quantum algorithms. . .

math.nist.gov/quantum/zoo/

Quantum computers

University of Bristol UCSB / Google

IBM University of Oxford

This talk

In this talk I will discuss two connections between the theory
of boolean functions and the theory of quantum computation:

How low-degree polynomials over F2 can be used to
understand quantum circuits;
How quantum algorithms naturally give rise to a
quantum generalisation of boolean functions.

A general principle
Although no large-scale general-purpose quantum computer
has yet been built, quantum computation can already be used
as a theoretical tool to study other areas of science and
mathematics, without the need for an actual quantum
computer.

This talk

In this talk I will discuss two connections between the theory
of boolean functions and the theory of quantum computation:

How low-degree polynomials over F2 can be used to
understand quantum circuits;

How quantum algorithms naturally give rise to a
quantum generalisation of boolean functions.

A general principle
Although no large-scale general-purpose quantum computer
has yet been built, quantum computation can already be used
as a theoretical tool to study other areas of science and
mathematics, without the need for an actual quantum
computer.

This talk

In this talk I will discuss two connections between the theory
of boolean functions and the theory of quantum computation:

How low-degree polynomials over F2 can be used to
understand quantum circuits;
How quantum algorithms naturally give rise to a
quantum generalisation of boolean functions.

A general principle
Although no large-scale general-purpose quantum computer
has yet been built, quantum computation can already be used
as a theoretical tool to study other areas of science and
mathematics, without the need for an actual quantum
computer.

This talk

In this talk I will discuss two connections between the theory
of boolean functions and the theory of quantum computation:

How low-degree polynomials over F2 can be used to
understand quantum circuits;
How quantum algorithms naturally give rise to a
quantum generalisation of boolean functions.

A general principle
Although no large-scale general-purpose quantum computer
has yet been built, quantum computation can already be used
as a theoretical tool to study other areas of science and
mathematics, without the need for an actual quantum
computer.

Quantum computation

An exceptionally brief introduction:

In a quantum algorithm, we start in some initial state,
perform some quantum evolution, then measure and see
some outcome (probabilistically).

Associate each bit-string x ∈ {0, 1}n with an orthogonal
basis vector in C2n

. This corresponds to a system of n
qubits (quantum bits).

Then a quantum algorithm corresponds to a 2n × 2n

unitary matrix U, i.e. UU† = I.

If we apply U to a system initially in state x ∈ {0, 1}n and
then measure, the probability we see measurement
outcome y ∈ {0, 1}n is precisely |Uyx|

2.

Quantum computation

An exceptionally brief introduction:

In a quantum algorithm, we start in some initial state,
perform some quantum evolution, then measure and see
some outcome (probabilistically).

Associate each bit-string x ∈ {0, 1}n with an orthogonal
basis vector in C2n

. This corresponds to a system of n
qubits (quantum bits).

Then a quantum algorithm corresponds to a 2n × 2n

unitary matrix U, i.e. UU† = I.

If we apply U to a system initially in state x ∈ {0, 1}n and
then measure, the probability we see measurement
outcome y ∈ {0, 1}n is precisely |Uyx|

2.

Quantum computation

An exceptionally brief introduction:

In a quantum algorithm, we start in some initial state,
perform some quantum evolution, then measure and see
some outcome (probabilistically).

Associate each bit-string x ∈ {0, 1}n with an orthogonal
basis vector in C2n

. This corresponds to a system of n
qubits (quantum bits).

Then a quantum algorithm corresponds to a 2n × 2n

unitary matrix U, i.e. UU† = I.

If we apply U to a system initially in state x ∈ {0, 1}n and
then measure, the probability we see measurement
outcome y ∈ {0, 1}n is precisely |Uyx|

2.

Quantum computation

An exceptionally brief introduction:

In a quantum algorithm, we start in some initial state,
perform some quantum evolution, then measure and see
some outcome (probabilistically).

Associate each bit-string x ∈ {0, 1}n with an orthogonal
basis vector in C2n

. This corresponds to a system of n
qubits (quantum bits).

Then a quantum algorithm corresponds to a 2n × 2n

unitary matrix U, i.e. UU† = I.

If we apply U to a system initially in state x ∈ {0, 1}n and
then measure, the probability we see measurement
outcome y ∈ {0, 1}n is precisely |Uyx|

2.

The quantum circuit model

Quantum algorithms are implemented as quantum circuits
made up of elementary operations known as quantum gates.

H
U

V
X

Each gate is a small unitary matrix itself, extended to acting on
the whole space via the tensor (Kronecker) product with the
identity matrix; e.g. the above circuit corresponds to the matrix

(I ⊗ V)(U ⊗ I)(H ⊗ I ⊗ X)

Fundamental problem

For C in a given class of quantum circuits, compute |Cyx|
2.

The quantum circuit model

Quantum algorithms are implemented as quantum circuits
made up of elementary operations known as quantum gates.

H
U

V
X

Each gate is a small unitary matrix itself, extended to acting on
the whole space via the tensor (Kronecker) product with the
identity matrix; e.g. the above circuit corresponds to the matrix

(I ⊗ V)(U ⊗ I)(H ⊗ I ⊗ X)

Fundamental problem

For C in a given class of quantum circuits, compute |Cyx|
2.

The quantum circuit model

Quantum algorithms are implemented as quantum circuits
made up of elementary operations known as quantum gates.

H
U

V
X

Each gate is a small unitary matrix itself, extended to acting on
the whole space via the tensor (Kronecker) product with the
identity matrix; e.g. the above circuit corresponds to the matrix

(I ⊗ V)(U ⊗ I)(H ⊗ I ⊗ X)

Fundamental problem

For C in a given class of quantum circuits, compute |Cyx|
2.

Quantum circuits

The class of quantum circuits discussed today: those whose
gates are picked from the set

{H,Z,CZ,CCZ}

where:

H =
1√
2

(
1 1
1 −1

)
(aka “Hadamard”)

Z =

(
1

−1

)
, CZ =


1

1
1

−1

 , CCZ =


1

1
. . .

−1


and CCZ is an 8× 8 matrix.

Fact: This set of gates is universal for quantum computation.

Quantum circuits

The class of quantum circuits discussed today: those whose
gates are picked from the set

{H,Z,CZ,CCZ}

where:

H =
1√
2

(
1 1
1 −1

)
(aka “Hadamard”)

Z =

(
1

−1

)
, CZ =


1

1
1

−1

 , CCZ =


1

1
. . .

−1


and CCZ is an 8× 8 matrix.

Fact: This set of gates is universal for quantum computation.

Quantum circuits

The class of quantum circuits discussed today: those whose
gates are picked from the set

{H,Z,CZ,CCZ}

where:

H =
1√
2

(
1 1
1 −1

)
(aka “Hadamard”)

Z =

(
1

−1

)
, CZ =


1

1
1

−1

 , CCZ =


1

1
. . .

−1


and CCZ is an 8× 8 matrix.

Fact: This set of gates is universal for quantum computation.

Understanding this class of circuits

We will show that, if C is picked from this class of circuits, the
amplitudes Cyx of the corresponding unitary matrix can be
written in a very concise form.

First assume that C begins and ends with a column of
Hadamard gates:

H

C ′

H

H H

H H

for some circuit C ′.

This is without loss of generality, as we can always add pairs
of Hadamards to the beginning or end of each line (H2 = I).

Understanding this class of circuits

We will show that, if C is picked from this class of circuits, the
amplitudes Cyx of the corresponding unitary matrix can be
written in a very concise form.

First assume that C begins and ends with a column of
Hadamard gates:

H

C ′

H

H H

H H

for some circuit C ′.

This is without loss of generality, as we can always add pairs
of Hadamards to the beginning or end of each line (H2 = I).

Understanding this class of circuits

We will show that, if C is picked from this class of circuits, the
amplitudes Cyx of the corresponding unitary matrix can be
written in a very concise form.

First assume that C begins and ends with a column of
Hadamard gates:

H

C ′

H

H H

H H

for some circuit C ′.

This is without loss of generality, as we can always add pairs
of Hadamards to the beginning or end of each line (H2 = I).

From a circuit to a polynomial

Now consider the internal part C ′, e.g.:

H • • H

• H •

H • •

where we use the notation

Z = • , CZ = •
•

, CCZ = •
•
•

From a circuit to a polynomial

Form a polynomial over F2 from the circuit as follows:

Attach a variable to the left of each wire, and to the right
of each Hadamard gate.

Add a term multiplying together variables connected by a
gate (of any kind).

For example:
x1

H
x2
• • H

x3

x4
• H

x5
•

x6
H

x7
• •

corresponds to the polynomial

x1x2 + x2x3 + x4x5 + x6x7 + x2x4 + x2x5x7 + x7.

From a circuit to a polynomial

Form a polynomial over F2 from the circuit as follows:

Attach a variable to the left of each wire, and to the right
of each Hadamard gate.
Add a term multiplying together variables connected by a
gate (of any kind).

For example:
x1

H
x2
• • H

x3

x4
• H

x5
•

x6
H

x7
• •

corresponds to the polynomial

x1x2 + x2x3 + x4x5 + x6x7 + x2x4 + x2x5x7 + x7.

From a circuit to a polynomial

Form a polynomial over F2 from the circuit as follows:

Attach a variable to the left of each wire, and to the right
of each Hadamard gate.
Add a term multiplying together variables connected by a
gate (of any kind).

For example:
x1

H
x2
• • H

x3

x4
• H

x5
•

x6
H

x7
• •

corresponds to the polynomial

x1x2 + x2x3 + x4x5 + x6x7 + x2x4 + x2x5x7 + x7.

From a circuit to a polynomial

Assume C acts on ` qubits and contains h internal Hadamard
gates.

Let fC be the polynomial corresponding to C. Then fC is a
function of n = h + ` variables.

Write

gap(fC) :=
∑

x∈{0,1}n

(−1)fC(x) = |{x : fC(x) = 0}|− |{x : fC(x) = 1}|.

Claim

C0n0n =
gap(fC)
2h/2+`

.

(All other amplitudes can be obtained too:
Cyx = gap(fC + Lx,y)/2h/2+` for some linear function Lx,y.)

From a circuit to a polynomial

Assume C acts on ` qubits and contains h internal Hadamard
gates.

Let fC be the polynomial corresponding to C. Then fC is a
function of n = h + ` variables.

Write

gap(fC) :=
∑

x∈{0,1}n

(−1)fC(x) = |{x : fC(x) = 0}|− |{x : fC(x) = 1}|.

Claim

C0n0n =
gap(fC)
2h/2+`

.

(All other amplitudes can be obtained too:
Cyx = gap(fC + Lx,y)/2h/2+` for some linear function Lx,y.)

From a circuit to a polynomial

Assume C acts on ` qubits and contains h internal Hadamard
gates.

Let fC be the polynomial corresponding to C. Then fC is a
function of n = h + ` variables.

Write

gap(fC) :=
∑

x∈{0,1}n

(−1)fC(x) = |{x : fC(x) = 0}|− |{x : fC(x) = 1}|.

Claim

C0n0n =
gap(fC)
2h/2+`

.

(All other amplitudes can be obtained too:
Cyx = gap(fC + Lx,y)/2h/2+` for some linear function Lx,y.)

From a circuit to a polynomial

Assume C acts on ` qubits and contains h internal Hadamard
gates.

Let fC be the polynomial corresponding to C. Then fC is a
function of n = h + ` variables.

Write

gap(fC) :=
∑

x∈{0,1}n

(−1)fC(x) = |{x : fC(x) = 0}|− |{x : fC(x) = 1}|.

Claim

C0n0n =
gap(fC)
2h/2+`

.

(All other amplitudes can be obtained too:
Cyx = gap(fC + Lx,y)/2h/2+` for some linear function Lx,y.)

Proof idea
The special case where C ′ only contains Z, CZ, CCZ gates, e.g.:

• • •
• • •
• • •

Let superscripts of Z, CZ, CCZ denote the qubits on which
they act. Then, for any x ∈ {0, 1}`,

Zi
xx = (−1)xi , CZij

xx = (−1)xixj , CCZijk
xx = (−1)xixjxk .

As these gates are diagonal, we can obtain C ′xx by multiplying
these expressions for different gates in C.

Each gate corresponds to a term in fC as defined above. So
C ′xx = (−1)fC(x), and hence

(H⊗`C ′H⊗`)0`0` =
1
2`

∑
x∈{0,1}`

C ′xx =
1
2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.

Proof idea
The special case where C ′ only contains Z, CZ, CCZ gates, e.g.:

• • •
• • •
• • •

Let superscripts of Z, CZ, CCZ denote the qubits on which
they act. Then, for any x ∈ {0, 1}`,

Zi
xx = (−1)xi , CZij

xx = (−1)xixj , CCZijk
xx = (−1)xixjxk .

As these gates are diagonal, we can obtain C ′xx by multiplying
these expressions for different gates in C.

Each gate corresponds to a term in fC as defined above. So
C ′xx = (−1)fC(x), and hence

(H⊗`C ′H⊗`)0`0` =
1
2`

∑
x∈{0,1}`

C ′xx =
1
2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.

Proof idea
The special case where C ′ only contains Z, CZ, CCZ gates, e.g.:

• • •
• • •
• • •

Let superscripts of Z, CZ, CCZ denote the qubits on which
they act. Then, for any x ∈ {0, 1}`,

Zi
xx = (−1)xi , CZij

xx = (−1)xixj , CCZijk
xx = (−1)xixjxk .

As these gates are diagonal, we can obtain C ′xx by multiplying
these expressions for different gates in C.

Each gate corresponds to a term in fC as defined above. So
C ′xx = (−1)fC(x), and hence

(H⊗`C ′H⊗`)0`0` =
1
2`

∑
x∈{0,1}`

C ′xx =
1
2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.

Proof idea
The special case where C ′ only contains Z, CZ, CCZ gates, e.g.:

• • •
• • •
• • •

Let superscripts of Z, CZ, CCZ denote the qubits on which
they act. Then, for any x ∈ {0, 1}`,

Zi
xx = (−1)xi , CZij

xx = (−1)xixj , CCZijk
xx = (−1)xixjxk .

As these gates are diagonal, we can obtain C ′xx by multiplying
these expressions for different gates in C.

Each gate corresponds to a term in fC as defined above. So
C ′xx = (−1)fC(x), and hence

(H⊗`C ′H⊗`)0`0` =
1
2`

∑
x∈{0,1}`

C ′xx =
1
2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.

Proof idea
The special case where C ′ only contains Z, CZ, CCZ gates, e.g.:

• • •
• • •
• • •

Let superscripts of Z, CZ, CCZ denote the qubits on which
they act. Then, for any x ∈ {0, 1}`,

Zi
xx = (−1)xi , CZij

xx = (−1)xixj , CCZijk
xx = (−1)xixjxk .

As these gates are diagonal, we can obtain C ′xx by multiplying
these expressions for different gates in C.

Each gate corresponds to a term in fC as defined above. So
C ′xx = (−1)fC(x), and hence

(H⊗`C ′H⊗`)0`0` =
1
2`

∑
x∈{0,1}`

C ′xx =
1
2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.

Some easy observations

What can we say about this connection between circuits and
polynomials?

Every degree-3 polynomial f : Fn
2 → F2 with no constant

term has at least one corresponding quantum circuit, by
considering the case where C ′ contains no Hadamard
gates . . .

. . . and this circuit is usually not unique, as e.g. x1x2 can
be obtained from either a CZ or Hadamard gate.

If fC corresponds to a circuit C on ` qubits with h
Hadamard gates, then

|gap(fC)| 6 2h/2+`

because |C0`0` |
2 6 1.

Some easy observations

What can we say about this connection between circuits and
polynomials?

Every degree-3 polynomial f : Fn
2 → F2 with no constant

term has at least one corresponding quantum circuit, by
considering the case where C ′ contains no Hadamard
gates . . .

. . . and this circuit is usually not unique, as e.g. x1x2 can
be obtained from either a CZ or Hadamard gate.

If fC corresponds to a circuit C on ` qubits with h
Hadamard gates, then

|gap(fC)| 6 2h/2+`

because |C0`0` |
2 6 1.

Some easy observations

What can we say about this connection between circuits and
polynomials?

Every degree-3 polynomial f : Fn
2 → F2 with no constant

term has at least one corresponding quantum circuit, by
considering the case where C ′ contains no Hadamard
gates . . .

. . . and this circuit is usually not unique, as e.g. x1x2 can
be obtained from either a CZ or Hadamard gate.

If fC corresponds to a circuit C on ` qubits with h
Hadamard gates, then

|gap(fC)| 6 2h/2+`

because |C0`0` |
2 6 1.

Some easy observations

What can we say about this connection between circuits and
polynomials?

Every degree-3 polynomial f : Fn
2 → F2 with no constant

term has at least one corresponding quantum circuit, by
considering the case where C ′ contains no Hadamard
gates . . .

. . . and this circuit is usually not unique, as e.g. x1x2 can
be obtained from either a CZ or Hadamard gate.

If fC corresponds to a circuit C on ` qubits with h
Hadamard gates, then

|gap(fC)| 6 2h/2+`

because |C0`0` |
2 6 1.

Consequences for simulating q. circuits

Quantum computers can be simulated by counting zeroes of
degree-3 polynomials over F2!

. . . actually not so surprising: this problem was already
known to be #P-complete [Ehrenfeucht and Karpinski ’90].
So this may not be a useful way of simulating general
quantum circuits.

But we can simulate some special kinds of quantum circuits
this way, e.g.:

Those with no CCZ gates (as gap(f) can be computed
efficiently for degree-2 polynomials f) – this also follows
from the Gottesman-Knill theorem.
Those where there exists a transformation L ∈ GLn(F2)
such that fC ◦ L depends on only O(log n) variables.

Consequences for simulating q. circuits

Quantum computers can be simulated by counting zeroes of
degree-3 polynomials over F2!

. . . actually not so surprising: this problem was already
known to be #P-complete [Ehrenfeucht and Karpinski ’90].
So this may not be a useful way of simulating general
quantum circuits.

But we can simulate some special kinds of quantum circuits
this way, e.g.:

Those with no CCZ gates (as gap(f) can be computed
efficiently for degree-2 polynomials f) – this also follows
from the Gottesman-Knill theorem.
Those where there exists a transformation L ∈ GLn(F2)
such that fC ◦ L depends on only O(log n) variables.

Consequences for simulating q. circuits

Quantum computers can be simulated by counting zeroes of
degree-3 polynomials over F2!

. . . actually not so surprising: this problem was already
known to be #P-complete [Ehrenfeucht and Karpinski ’90].
So this may not be a useful way of simulating general
quantum circuits.

But we can simulate some special kinds of quantum circuits
this way, e.g.:

Those with no CCZ gates (as gap(f) can be computed
efficiently for degree-2 polynomials f) – this also follows
from the Gottesman-Knill theorem.
Those where there exists a transformation L ∈ GLn(F2)
such that fC ◦ L depends on only O(log n) variables.

A quantum version of boolean functions?

How can we generalise the concept of a boolean function
f : {0, 1}n → {0, 1} in a “quantum” way?

First, change to considering f : {0, 1}n → {±1}.

Then write such a function as a diagonal matrix, e.g. for n = 2:
f (00)

f (01)
f (10)

f (11)


This naturally suggests a generalisation:

Definition
A quantum boolean function is a 2n × 2n unitary matrix whose
eigenvalues are in the set {±1}.

A quantum version of boolean functions?

How can we generalise the concept of a boolean function
f : {0, 1}n → {0, 1} in a “quantum” way?

First, change to considering f : {0, 1}n → {±1}.

Then write such a function as a diagonal matrix, e.g. for n = 2:
f (00)

f (01)
f (10)

f (11)


This naturally suggests a generalisation:

Definition
A quantum boolean function is a 2n × 2n unitary matrix whose
eigenvalues are in the set {±1}.

A quantum version of boolean functions?

How can we generalise the concept of a boolean function
f : {0, 1}n → {0, 1} in a “quantum” way?

First, change to considering f : {0, 1}n → {±1}.

Then write such a function as a diagonal matrix, e.g. for n = 2:
f (00)

f (01)
f (10)

f (11)



This naturally suggests a generalisation:

Definition
A quantum boolean function is a 2n × 2n unitary matrix whose
eigenvalues are in the set {±1}.

A quantum version of boolean functions?

How can we generalise the concept of a boolean function
f : {0, 1}n → {0, 1} in a “quantum” way?

First, change to considering f : {0, 1}n → {±1}.

Then write such a function as a diagonal matrix, e.g. for n = 2:
f (00)

f (01)
f (10)

f (11)


This naturally suggests a generalisation:

Definition
A quantum boolean function is a 2n × 2n unitary matrix whose
eigenvalues are in the set {±1}.

A quantum version of boolean functions

Is this a nontrivial definition?

We can obtain quantum boolean functions from:

Standard methods for implementing functions
f : {0, 1}n → {±1} on a quantum computer;
Quantum algorithms solving decision problems;
Quantum error-correcting codes;
. . . in fact, any subspace of C2n

.

For any quantum boolean function F, UFU† is also a quantum
boolean function for any unitary matrix U.

A quantum version of boolean functions

Is this a nontrivial definition?

We can obtain quantum boolean functions from:

Standard methods for implementing functions
f : {0, 1}n → {±1} on a quantum computer;
Quantum algorithms solving decision problems;
Quantum error-correcting codes;
. . . in fact, any subspace of C2n

.

For any quantum boolean function F, UFU† is also a quantum
boolean function for any unitary matrix U.

A quantum version of boolean functions

Is this a nontrivial definition?

We can obtain quantum boolean functions from:

Standard methods for implementing functions
f : {0, 1}n → {±1} on a quantum computer;
Quantum algorithms solving decision problems;
Quantum error-correcting codes;
. . . in fact, any subspace of C2n

.

For any quantum boolean function F, UFU† is also a quantum
boolean function for any unitary matrix U.

A quantum version of boolean functions

We can also generalise some techniques used in the analysis of
classical boolean functions, e.g. the Fourier (aka
Walsh-Hadamard) transform.

If f is a quantum boolean function, then we can write

f =
∑

s∈{I,X,Y,Z}n

f̂ (s)χs

where
χs = s1 ⊗ s2 ⊗ · · · ⊗ sn

and I, X, Y, Z are the Pauli matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(Classical boolean functions are the same, but only use I & Z.)

A quantum version of boolean functions

We can also generalise some techniques used in the analysis of
classical boolean functions, e.g. the Fourier (aka
Walsh-Hadamard) transform.

If f is a quantum boolean function, then we can write

f =
∑

s∈{I,X,Y,Z}n

f̂ (s)χs

where
χs = s1 ⊗ s2 ⊗ · · · ⊗ sn

and I, X, Y, Z are the Pauli matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

(Classical boolean functions are the same, but only use I & Z.)

A quantum version of boolean functions

We can also generalise some techniques used in the analysis of
classical boolean functions, e.g. the Fourier (aka
Walsh-Hadamard) transform.

If f is a quantum boolean function, then we can write

f =
∑

s∈{I,X,Y,Z}n

f̂ (s)χs

where
χs = s1 ⊗ s2 ⊗ · · · ⊗ sn

and I, X, Y, Z are the Pauli matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(Classical boolean functions are the same, but only use I & Z.)

A quantum version of boolean functions

Is this an interesting definition?

Using the Pauli expansion, we can prove some analogous
results to those in the theory of classical boolean functions,
e.g.:

Testing linearity (= being a Pauli matrix);
Learning an unknown quantum boolean function;
The Friedgut-Kalai-Naor (FKN) theorem
(“dictator-vs-constant”).

. . . but many “combinatorial” results are harder to prove (e.g.
because there are uncountably many quantum boolean
functions!).

A quantum version of boolean functions

Is this an interesting definition?

Using the Pauli expansion, we can prove some analogous
results to those in the theory of classical boolean functions,
e.g.:

Testing linearity (= being a Pauli matrix);
Learning an unknown quantum boolean function;
The Friedgut-Kalai-Naor (FKN) theorem
(“dictator-vs-constant”).

. . . but many “combinatorial” results are harder to prove (e.g.
because there are uncountably many quantum boolean
functions!).

A quantum version of boolean functions

Is this an interesting definition?

Using the Pauli expansion, we can prove some analogous
results to those in the theory of classical boolean functions,
e.g.:

Testing linearity (= being a Pauli matrix);
Learning an unknown quantum boolean function;
The Friedgut-Kalai-Naor (FKN) theorem
(“dictator-vs-constant”).

. . . but many “combinatorial” results are harder to prove (e.g.
because there are uncountably many quantum boolean
functions!).

Conclusions and open problems

There are already some intriguing connections between the
theory of boolean functions and the theory of quantum
computation, with many more yet to be explored.

Some open problems:

Can we use the connection between quantum circuits and
degree-3 polynomials to find new simulation techniques
for quantum algorithms?
Do interesting classes of polynomials correspond to
interesting quantum circuits?
Can we prove a quantum analogue of the KKL theorem
(“every boolean function has an influential variable”)?

Thanks!

Conclusions and open problems

There are already some intriguing connections between the
theory of boolean functions and the theory of quantum
computation, with many more yet to be explored.

Some open problems:

Can we use the connection between quantum circuits and
degree-3 polynomials to find new simulation techniques
for quantum algorithms?

Do interesting classes of polynomials correspond to
interesting quantum circuits?
Can we prove a quantum analogue of the KKL theorem
(“every boolean function has an influential variable”)?

Thanks!

Conclusions and open problems

There are already some intriguing connections between the
theory of boolean functions and the theory of quantum
computation, with many more yet to be explored.

Some open problems:

Can we use the connection between quantum circuits and
degree-3 polynomials to find new simulation techniques
for quantum algorithms?
Do interesting classes of polynomials correspond to
interesting quantum circuits?

Can we prove a quantum analogue of the KKL theorem
(“every boolean function has an influential variable”)?

Thanks!

Conclusions and open problems

There are already some intriguing connections between the
theory of boolean functions and the theory of quantum
computation, with many more yet to be explored.

Some open problems:

Can we use the connection between quantum circuits and
degree-3 polynomials to find new simulation techniques
for quantum algorithms?
Do interesting classes of polynomials correspond to
interesting quantum circuits?
Can we prove a quantum analogue of the KKL theorem
(“every boolean function has an influential variable”)?

Thanks!

Conclusions and open problems

There are already some intriguing connections between the
theory of boolean functions and the theory of quantum
computation, with many more yet to be explored.

Some open problems:

Can we use the connection between quantum circuits and
degree-3 polynomials to find new simulation techniques
for quantum algorithms?
Do interesting classes of polynomials correspond to
interesting quantum circuits?
Can we prove a quantum analogue of the KKL theorem
(“every boolean function has an influential variable”)?

Thanks!

