
Quantum algorithms for shifted subset
problems

Ashley Montanaro1

1Department of Computer Science
University of Bristol

Bristol, UK

21st August 2008

Introduction

The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

A known abelian group G
An unknown subgroup H 6 G
An oracle function f : G → S.

Promise:

f is constant on cosets of H in G
f is distinct on each coset.

Task: Determine H.

G = Z6 × Z6,
H = Z2 × Z3.

Introduction

The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

A known abelian group G

An unknown subgroup H 6 G
An oracle function f : G → S.

Promise:

f is constant on cosets of H in G
f is distinct on each coset.

Task: Determine H.

G = Z6 × Z6,
H = Z2 × Z3.

Introduction

The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

A known abelian group G
An unknown subgroup H 6 G

An oracle function f : G → S.

Promise:

f is constant on cosets of H in G
f is distinct on each coset.

Task: Determine H.

G = Z6 × Z6,
H = Z2 × Z3.

Introduction

The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

A known abelian group G
An unknown subgroup H 6 G
An oracle function f : G → S.

Promise:

f is constant on cosets of H in G
f is distinct on each coset.

Task: Determine H.

G = Z6 × Z6,
H = Z2 × Z3.

Introduction

The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

A known abelian group G
An unknown subgroup H 6 G
An oracle function f : G → S.

Promise:

f is constant on cosets of H in G
f is distinct on each coset.

Task: Determine H.

G = Z6 × Z6,
H = Z2 × Z3.

Introduction

The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

A known abelian group G
An unknown subgroup H 6 G
An oracle function f : G → S.

Promise:

f is constant on cosets of H in G
f is distinct on each coset.

Task: Determine H.

G = Z6 × Z6,
H = Z2 × Z3.

Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP
are:

1 Query f on a superposition of all
elements in G, giving

∑
g∈G |g〉|f (g)〉.

2 Measure the second register, leaving

|ψ〉 =
∑

g∈G,f(g)=f0

|g〉 =
∑
g∈H

|g + x〉

for some random x.

The algorithm then identifies H by applying the QFT to |ψ〉
and measuring.

Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP
are:

1 Query f on a superposition of all
elements in G, giving

∑
g∈G |g〉|f (g)〉.

2 Measure the second register, leaving

|ψ〉 =
∑

g∈G,f(g)=f0

|g〉 =
∑
g∈H

|g + x〉

for some random x.

The algorithm then identifies H by applying the QFT to |ψ〉
and measuring.

Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP
are:

1 Query f on a superposition of all
elements in G, giving

∑
g∈G |g〉|f (g)〉.

2 Measure the second register, leaving

|ψ〉 =
∑

g∈G,f(g)=f0

|g〉 =
∑
g∈H

|g + x〉

for some random x.

The algorithm then identifies H by applying the QFT to |ψ〉
and measuring.

The shifted subset problem
This can be generalised to the following [Childs et al. ’07]:

Shifted Subset Problem
Input:

A known abelian group G
An unknown subset S ⊆ G
picked from some known
family of subsets
An oracle producing quantum
states of the form

|S + x〉 =
∑
s∈S

|s + x〉,

for some arbitrary shift x.
Task: Determine S.

The shifted subset problem
This can be generalised to the following [Childs et al. ’07]:

Shifted Subset Problem
Input:

A known abelian group G

An unknown subset S ⊆ G
picked from some known
family of subsets
An oracle producing quantum
states of the form

|S + x〉 =
∑
s∈S

|s + x〉,

for some arbitrary shift x.
Task: Determine S.

The shifted subset problem
This can be generalised to the following [Childs et al. ’07]:

Shifted Subset Problem
Input:

A known abelian group G
An unknown subset S ⊆ G
picked from some known
family of subsets

An oracle producing quantum
states of the form

|S + x〉 =
∑
s∈S

|s + x〉,

for some arbitrary shift x.
Task: Determine S.

The shifted subset problem
This can be generalised to the following [Childs et al. ’07]:

Shifted Subset Problem
Input:

A known abelian group G
An unknown subset S ⊆ G
picked from some known
family of subsets
An oracle producing quantum
states of the form

|S + x〉 =
∑
s∈S

|s + x〉,

for some arbitrary shift x.
Task: Determine S.

The shifted subset problem
This can be generalised to the following [Childs et al. ’07]:

Shifted Subset Problem
Input:

A known abelian group G
An unknown subset S ⊆ G
picked from some known
family of subsets
An oracle producing quantum
states of the form

|S + x〉 =
∑
s∈S

|s + x〉,

for some arbitrary shift x.
Task: Determine S.

The shifted subset problem
This can be generalised to the following [Childs et al. ’07]:

Shifted Subset Problem
Input:

A known abelian group G
An unknown subset S ⊆ G
picked from some known
family of subsets
An oracle producing quantum
states of the form

|S + x〉 =
∑
s∈S

|s + x〉,

for some arbitrary shift x.
Task: Determine S.

The shifted subset problem

Childs et al considered subsets of the additive group of Fn
q for

constant n.

In particular, hidden spheres in Fn
q (x = (x1, ..., xn) is on

the sphere in Fn
q with radius r ∈ Fq centred at the origin if∑

i x2
i = r).

Found a poly(log q) quantum algorithm to determine the
quadratic character of the radius of a hidden sphere when
n is odd.

Here, we consider the boolean cube Zn
2 .

Goal: quantum algorithms to find subsets of Zn
2 in time

poly(n).

This is a natural generalisation of Simon’s problem.

The shifted subset problem

Childs et al considered subsets of the additive group of Fn
q for

constant n.

In particular, hidden spheres in Fn
q (x = (x1, ..., xn) is on

the sphere in Fn
q with radius r ∈ Fq centred at the origin if∑

i x2
i = r).

Found a poly(log q) quantum algorithm to determine the
quadratic character of the radius of a hidden sphere when
n is odd.

Here, we consider the boolean cube Zn
2 .

Goal: quantum algorithms to find subsets of Zn
2 in time

poly(n).

This is a natural generalisation of Simon’s problem.

The shifted sphere problem

Definition. Let |x| be the Hamming weight of the bit-string x.
The sphere of radius r in the cube Zn

2 is the set Sr = {x : |x| = r}.

Shifted Sphere Problem
Input:

An unknown radius r,
0 6 r 6 n/2
An oracle producing quantum
states of the form

|Sr + x〉 =
1√(n

r

) ∑
s∈Sr

|s + x〉,

for some arbitrary shift x.
Task: Determine r.

S1 ⊂ Z3
2

The shifted sphere problem

Definition. Let |x| be the Hamming weight of the bit-string x.
The sphere of radius r in the cube Zn

2 is the set Sr = {x : |x| = r}.

Shifted Sphere Problem
Input:

An unknown radius r,
0 6 r 6 n/2

An oracle producing quantum
states of the form

|Sr + x〉 =
1√(n

r

) ∑
s∈Sr

|s + x〉,

for some arbitrary shift x.
Task: Determine r.

S1 ⊂ Z3
2

The shifted sphere problem

Definition. Let |x| be the Hamming weight of the bit-string x.
The sphere of radius r in the cube Zn

2 is the set Sr = {x : |x| = r}.

Shifted Sphere Problem
Input:

An unknown radius r,
0 6 r 6 n/2
An oracle producing quantum
states of the form

|Sr + x〉 =
1√(n

r

) ∑
s∈Sr

|s + x〉,

for some arbitrary shift x.
Task: Determine r.

S1 ⊂ Z3
2

Main results

1 A polynomial-time quantum algorithm for the hidden
sphere problem.

2 Polynomial-time quantum algorithms for some other
classes of subsets.

3 An exponential black-box separation from classical
computation for any shifted subset problem that has a
polynomial-time quantum algorithm.

Main results

1 A polynomial-time quantum algorithm for the hidden
sphere problem.

2 Polynomial-time quantum algorithms for some other
classes of subsets.

3 An exponential black-box separation from classical
computation for any shifted subset problem that has a
polynomial-time quantum algorithm.

Main results

1 A polynomial-time quantum algorithm for the hidden
sphere problem.

2 Polynomial-time quantum algorithms for some other
classes of subsets.

3 An exponential black-box separation from classical
computation for any shifted subset problem that has a
polynomial-time quantum algorithm.

Algorithm outline

Quantum component is the same for any subset S ⊆ Zn
2 .

1 Given 1√
|S|

∑
s∈S |s + x〉, remove unknown shift by

applying Hadamards on each qubit:

H⊗n|S + x〉 =
1√
|S|2n

∑
y∈S

∑
z∈{0,1}n

(−1)z·(y+x)|z〉

=
1√
|S|2n

∑
z∈{0,1}n

(−1)x·z
∑
y∈S

(−1)y·z|z〉.

Algorithm outline

Quantum component is the same for any subset S ⊆ Zn
2 .

1 Given 1√
|S|

∑
s∈S |s + x〉, remove unknown shift by

applying Hadamards on each qubit:

H⊗n|S + x〉 =
1√
|S|2n

∑
y∈S

∑
z∈{0,1}n

(−1)z·(y+x)|z〉

=
1√
|S|2n

∑
z∈{0,1}n

(−1)x·z
∑
y∈S

(−1)y·z|z〉.

Algorithm outline

Quantum component is the same for any subset S ⊆ Zn
2 .

1 Given 1√
|S|

∑
s∈S |s + x〉, remove unknown shift by

applying Hadamards on each qubit:

H⊗n|S + x〉 =
1√
|S|2n

∑
y∈S

∑
z∈{0,1}n

(−1)z·(y+x)|z〉

=
1√
|S|2n

∑
z∈{0,1}n

(−1)x·z
∑
y∈S

(−1)y·z|z〉.

Algorithm outline

Quantum component is the same for any subset S ⊆ Zn
2 .

1 Given 1√
|S|

∑
s∈S |s + x〉, remove unknown shift by

applying Hadamards on each qubit:

H⊗n|S + x〉 =
1√
|S|2n

∑
y∈S

∑
z∈{0,1}n

(−1)z·(y+x)|z〉

=
1√
|S|2n

∑
z∈{0,1}n

(−1)x·z
∑
y∈S

(−1)y·z|z〉.

Algorithm outline (2)

2 Measure this state, giving rise to the following probability
distribution.

πS(z) =
1

|S|2n

∑
y∈S

(−1)y·z

2

3 Use samples from this distribution to infer S.

What does this distribution look like for the shifted sphere
problem?

Algorithm outline (2)

2 Measure this state, giving rise to the following probability
distribution.

πS(z) =
1

|S|2n

∑
y∈S

(−1)y·z

2

3 Use samples from this distribution to infer S.

What does this distribution look like for the shifted sphere
problem?

Shifted spheres
We have

πSr(z) =
1(n

r

)
2n

 ∑
|y|=r

(−1)y·z

2

which only depends on r, |z|.

The sum in red is an example of a Krawtchouk polynomial,
which have been much studied in coding theory. What do
these probability distributions look like?

|z|

r

Shifted spheres
We have

πSr(z) =
1(n

r

)
2n

 ∑
|y|=r

(−1)y·z

2

which only depends on r, |z|.
The sum in red is an example of a Krawtchouk polynomial,
which have been much studied in coding theory. What do
these probability distributions look like?

|z|

r

Shifted spheres
We have

πSr(z) =
1(n

r

)
2n

 ∑
|y|=r

(−1)y·z

2

which only depends on r, |z|.
The sum in red is an example of a Krawtchouk polynomial,
which have been much studied in coding theory. What do
these probability distributions look like?

|z|

r

Shifted spheres (2)

It turns out that:
For any r, this probability distribution has a lot of weight
at |z| ≈ n/2.

We can calculate an exact expression for the Krawtchouk
polynomial at |z| = n/2 (n even) and |z| = (n − 1)/2 (n odd).

Algorithm sketch:

Sample from πSr some number of times. Count the
number of occurrences of outcomes z with |z| = n/2 (or
(n − 1)/2).
Use this count to estimate r.

Shifted spheres (2)

It turns out that:
For any r, this probability distribution has a lot of weight
at |z| ≈ n/2.
We can calculate an exact expression for the Krawtchouk
polynomial at |z| = n/2 (n even) and |z| = (n − 1)/2 (n odd).

Algorithm sketch:

Sample from πSr some number of times. Count the
number of occurrences of outcomes z with |z| = n/2 (or
(n − 1)/2).
Use this count to estimate r.

Shifted spheres (2)

It turns out that:
For any r, this probability distribution has a lot of weight
at |z| ≈ n/2.
We can calculate an exact expression for the Krawtchouk
polynomial at |z| = n/2 (n even) and |z| = (n − 1)/2 (n odd).

Algorithm sketch:

Sample from πSr some number of times. Count the
number of occurrences of outcomes z with |z| = n/2 (or
(n − 1)/2).

Use this count to estimate r.

Shifted spheres (2)

It turns out that:
For any r, this probability distribution has a lot of weight
at |z| ≈ n/2.
We can calculate an exact expression for the Krawtchouk
polynomial at |z| = n/2 (n even) and |z| = (n − 1)/2 (n odd).

Algorithm sketch:

Sample from πSr some number of times. Count the
number of occurrences of outcomes z with |z| = n/2 (or
(n − 1)/2).
Use this count to estimate r.

Shifted spheres (3)

Set πr(x) =
∑

|z|=x πSr(z). For even n, one can show that:

If r is odd, πr(n/2) = 0. If r is even, πr(n/2) = Ω(1/n).

For r even and r 6= s, |πr(n/2) − πs(n/2)| = Ω(n−3).
For r odd and r 6= s, |πr(n/2 − 1) − πs(n/2 − 1)| = Ω(n−3).

Implies that O(n6) samples are sufficient to estimate r with a
bounded probability of error.

Bonus: O(n) samples are enough to identify whether r is odd
or even.

n odd: O(n4) samples are sufficient to estimate r.

Shifted spheres (3)

Set πr(x) =
∑

|z|=x πSr(z). For even n, one can show that:

If r is odd, πr(n/2) = 0. If r is even, πr(n/2) = Ω(1/n).
For r even and r 6= s, |πr(n/2) − πs(n/2)| = Ω(n−3).

For r odd and r 6= s, |πr(n/2 − 1) − πs(n/2 − 1)| = Ω(n−3).

Implies that O(n6) samples are sufficient to estimate r with a
bounded probability of error.

Bonus: O(n) samples are enough to identify whether r is odd
or even.

n odd: O(n4) samples are sufficient to estimate r.

Shifted spheres (3)

Set πr(x) =
∑

|z|=x πSr(z). For even n, one can show that:

If r is odd, πr(n/2) = 0. If r is even, πr(n/2) = Ω(1/n).
For r even and r 6= s, |πr(n/2) − πs(n/2)| = Ω(n−3).
For r odd and r 6= s, |πr(n/2 − 1) − πs(n/2 − 1)| = Ω(n−3).

Implies that O(n6) samples are sufficient to estimate r with a
bounded probability of error.

Bonus: O(n) samples are enough to identify whether r is odd
or even.

n odd: O(n4) samples are sufficient to estimate r.

Shifted spheres (3)

Set πr(x) =
∑

|z|=x πSr(z). For even n, one can show that:

If r is odd, πr(n/2) = 0. If r is even, πr(n/2) = Ω(1/n).
For r even and r 6= s, |πr(n/2) − πs(n/2)| = Ω(n−3).
For r odd and r 6= s, |πr(n/2 − 1) − πs(n/2 − 1)| = Ω(n−3).

Implies that O(n6) samples are sufficient to estimate r with a
bounded probability of error.

Bonus: O(n) samples are enough to identify whether r is odd
or even.

n odd: O(n4) samples are sufficient to estimate r.

Summary

We’ve introduced shifted subset problems on the cube Zn
2

– a natural generalisation of the abelian hidden subgroup
problem.

We’ve seen a polynomial-time quantum algorithm for the
shifted sphere problem.

This gives an exponential separation from classical
computation.

Possible extensions:

Improve the time complexity of the algorithm to
something reasonable.
Find other interesting families of subsets to distinguish.
Consider the group Zn

k , where k is constant.

Applications?

Summary

We’ve introduced shifted subset problems on the cube Zn
2

– a natural generalisation of the abelian hidden subgroup
problem.

We’ve seen a polynomial-time quantum algorithm for the
shifted sphere problem.

This gives an exponential separation from classical
computation.

Possible extensions:

Improve the time complexity of the algorithm to
something reasonable.
Find other interesting families of subsets to distinguish.
Consider the group Zn

k , where k is constant.

Applications?

Summary

We’ve introduced shifted subset problems on the cube Zn
2

– a natural generalisation of the abelian hidden subgroup
problem.

We’ve seen a polynomial-time quantum algorithm for the
shifted sphere problem.

This gives an exponential separation from classical
computation.

Possible extensions:

Improve the time complexity of the algorithm to
something reasonable.
Find other interesting families of subsets to distinguish.
Consider the group Zn

k , where k is constant.

Applications?

The end

Further reading: arXiv:0806.3362.

Thanks for your time!

arXiv:0806.3362

Other shifted subsets

We can also give polynomial-time quantum algorithms for
some other classes of subsets:

Hamming balls, i.e. sets {x : |x| 6 r}. Reduces to the
shifted sphere problem.

Subsets whose sizes are very different. Follows from the
fact that the probability of getting outcome 0 is
proportional to the size of the subset.

Juntas. Sets whose characteristic functions each depend
on a constant number of variables.

Parity functions. Sets whose characteristic functions are
parity functions.

Other shifted subsets

We can also give polynomial-time quantum algorithms for
some other classes of subsets:

Hamming balls, i.e. sets {x : |x| 6 r}. Reduces to the
shifted sphere problem.

Subsets whose sizes are very different. Follows from the
fact that the probability of getting outcome 0 is
proportional to the size of the subset.

Juntas. Sets whose characteristic functions each depend
on a constant number of variables.

Parity functions. Sets whose characteristic functions are
parity functions.

Other shifted subsets

We can also give polynomial-time quantum algorithms for
some other classes of subsets:

Hamming balls, i.e. sets {x : |x| 6 r}. Reduces to the
shifted sphere problem.

Subsets whose sizes are very different. Follows from the
fact that the probability of getting outcome 0 is
proportional to the size of the subset.

Juntas. Sets whose characteristic functions each depend
on a constant number of variables.

Parity functions. Sets whose characteristic functions are
parity functions.

Other shifted subsets

We can also give polynomial-time quantum algorithms for
some other classes of subsets:

Hamming balls, i.e. sets {x : |x| 6 r}. Reduces to the
shifted sphere problem.

Subsets whose sizes are very different. Follows from the
fact that the probability of getting outcome 0 is
proportional to the size of the subset.

Juntas. Sets whose characteristic functions each depend
on a constant number of variables.

Parity functions. Sets whose characteristic functions are
parity functions.

Other shifted subsets

We can also give polynomial-time quantum algorithms for
some other classes of subsets:

Hamming balls, i.e. sets {x : |x| 6 r}. Reduces to the
shifted sphere problem.

Subsets whose sizes are very different. Follows from the
fact that the probability of getting outcome 0 is
proportional to the size of the subset.

Juntas. Sets whose characteristic functions each depend
on a constant number of variables.

Parity functions. Sets whose characteristic functions are
parity functions.

Exponential separation from classical
computation

We define a black-box (oracular) problem to show a separation
from classical computation. It uses three oracle functions:

A colouring operator c : {0, 1}2n → [22n].
[gives each point a colour; |S| points have each colour]

A shifting operator s : {0, 1}2n × [22n] → {0, 1}n.
[converts (point, colour) to (shifted point); depends on S]

An uncolouring operator c−1 : [22n]× {0, 1}n → {0, 1}2n.
[uncomputes the colour]

Goal: use these operators to find S. Can show that any
classical algorithm must make Ω(2n/2) queries to c to get any
information about S.

Exponential separation from classical
computation

We define a black-box (oracular) problem to show a separation
from classical computation. It uses three oracle functions:

A colouring operator c : {0, 1}2n → [22n].
[gives each point a colour; |S| points have each colour]

A shifting operator s : {0, 1}2n × [22n] → {0, 1}n.
[converts (point, colour) to (shifted point); depends on S]

An uncolouring operator c−1 : [22n]× {0, 1}n → {0, 1}2n.
[uncomputes the colour]

Goal: use these operators to find S. Can show that any
classical algorithm must make Ω(2n/2) queries to c to get any
information about S.

Exponential separation from classical
computation

We define a black-box (oracular) problem to show a separation
from classical computation. It uses three oracle functions:

A colouring operator c : {0, 1}2n → [22n].
[gives each point a colour; |S| points have each colour]

A shifting operator s : {0, 1}2n × [22n] → {0, 1}n.
[converts (point, colour) to (shifted point); depends on S]

An uncolouring operator c−1 : [22n]× {0, 1}n → {0, 1}2n.
[uncomputes the colour]

Goal: use these operators to find S. Can show that any
classical algorithm must make Ω(2n/2) queries to c to get any
information about S.

Exponential separation from classical
computation

We define a black-box (oracular) problem to show a separation
from classical computation. It uses three oracle functions:

A colouring operator c : {0, 1}2n → [22n].
[gives each point a colour; |S| points have each colour]

A shifting operator s : {0, 1}2n × [22n] → {0, 1}n.
[converts (point, colour) to (shifted point); depends on S]

An uncolouring operator c−1 : [22n]× {0, 1}n → {0, 1}2n.
[uncomputes the colour]

Goal: use these operators to find S. Can show that any
classical algorithm must make Ω(2n/2) queries to c to get any
information about S.

