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The abelian hidden subgroup problem is a major success of
quantum computation.

Abelian Hidden Subgroup Problem
Input:

@ A known abelian group G
@ An unknown subgroup H < G
@ An oracle functionf : G — S.

Promise:

e f is constant on cosets of H in G G =Ze X ZLs,

e f is distinct on each coset. H =75 X Zs.

Task: Determine H.
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Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP
are:

@ Query f on a superposition of all
elements in G, giving } .. 19)If(8))-

@ Measure the second register, leaving

W)= ) Ig=) lg+x

8€Gf(g)=f geH

for some random x.

The algorithm then identifies H by applying the QFT to hp)
and measuring.
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Shifted Subset Problem
Input: .

@ A known abelian group G

@ An unknown subset S C G
picked from some known
family of subsets

@ An oracle producing quantum
states of the form

|S—I—x>:Z|s+x>,

seS
for some arbitrary shift x. !.:::
Task: Determine S.




The shifted subset problem

Childs et al considered subsets of the additive group of Fy for
constant 7.

o In particular, hidden spheres in Fj (x = (x1, ..., x4) is on
the sphere in Fj with radius r € F, centred at the origin if

Y ix2=r).
e Found a poly(logg) quantum algorithm to determine the

quadratic character of the radius of a hidden sphere when
n is odd.



The shifted subset problem

Childs et al considered subsets of the additive group of Fy for
constant 7.

o In particular, hidden spheres in Fj (x = (x1, ..., x4) is on
the sphere in Fj with radius r € F, centred at the origin if

Y ix2=r).
e Found a poly(logg) quantum algorithm to determine the

quadratic character of the radius of a hidden sphere when
n is odd.

Here, we consider the boolean cube Z}.

Goal: quantum algorithms to find subsets of Z} in time
poly(n).

This is a natural generalisation of Simon’s problem.
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The shifted sphere problem

Definition. Let [x| be the Hamming weight of the bit-string x.
The sphere of radius r in the cube Zj is the set S, = {x : [x| = r}.

Shifted Sphere Problem

Input:

@ An unknown radius 7,
0<r<n/2

@ An oracle producing quantum
states of the form

s + x),
Tes"

for some arbitrary shift x.

ISy + x)

Task: Determine r.

SlCZg
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Main results

Q@ A polynomial-time quantum algorithm for the hidden
sphere problem.

@ Polynomial-time quantum algorithms for some other
classes of subsets.

@ An exponential black-box separation from classical
computation for any shifted subset problem that has a
polynomial-time quantum algorithm.
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Algorithm outline
Quantum component is the same for any subset S C ZJ.

© Given \/@ > sesls +x), remove unknown shift by
applying Hadamards on each qubit:

H®'S +x) = \S\Z”Z Z 2 (y+x)

y€eS ze{0,1}"

1

- o X U E 0.
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@ Measure this state, giving rise to the following probability

distribution.
2
1 .
s(2) = (Z(UW)

yes

© Use samples from this distribution to infer S.

What does this distribution look like for the shifted sphere
problem?
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2
s, (2) = (n)lzn ( Z (1)y-z)

lyl=r

We have

which only depends on 7, |z|.

The sum in red is an example of a Krawtchouk polynomial,
which have been much studied in coding theory. What do
these probability distributions look like?
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It turns out that:

e For any r, this probability distribution has a lot of weight
at |z| =~ n/2.

@ We can calculate an exact expression for the Krawtchouk
polynomial at |z| = n/2 (n even) and |z| = (n—1)/2 (n odd).

Algorithm sketch:

@ Sample from 75, some number of times. Count the
number of occurrences of outcomes z with |z| = n/2 (or

(n—1)/2).

@ Use this count to estimate 7.
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Shifted spheres (3)

Set 7, (x) = Z|Z|:x s, (z). For even n, one can show that:
o If ris odd, m,(n/2) =0. If ris even, mt,(n/2) = Q(1/n).
@ For reven and r # s, |, (n/2) — 1i5(n/2)| = Q(n3).
@ Forroddand r #s, |, (n/2 — 1) — ms(n/2 — 1) = Q(n3).

Implies that O(n®) samples are sufficient to estimate r with a
bounded probability of error.

Bonus: O(n) samples are enough to identify whether 7 is odd
or even.

n odd: O(n*) samples are sufficient to estimate r.
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Summary

@ We've introduced shifted subset problems on the cube Z}
- a natural generalisation of the abelian hidden subgroup
problem.

@ We've seen a polynomial-time quantum algorithm for the
shifted sphere problem.

e This gives an exponential separation from classical
computation.

Possible extensions:

@ Improve the time complexity of the algorithm to
something reasonable.
@ Find other interesting families of subsets to distinguish.

@ Consider the group Z}, where k is constant.

Applications?



The end

Further reading: arXiv:0806.3362.

Thanks for your time!


arXiv:0806.3362
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Other shifted subsets

We can also give polynomial-time quantum algorithms for
some other classes of subsets:

e Hamming balls, i.e. sets {x : [x| < r}. Reduces to the
shifted sphere problem.

@ Subsets whose sizes are very different. Follows from the
fact that the probability of getting outcome 0 is
proportional to the size of the subset.

@ Juntas. Sets whose characteristic functions each depend
on a constant number of variables.

@ Parity functions. Sets whose characteristic functions are
parity functions.
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Exponential separation from classical
computation

We define a black-box (oracular) problem to show a separation
from classical computation. It uses three oracle functions:

@ A colouring operator c : {0, 112n — [221].
[gives each point a colour; [S| points have each colour]

e A shifting operator s : {0, 1" x [22"] — {0, 1}".
[converts (point, colour) to (shifted point); depends on S]

e An uncolouring operator ¢! : [22"] x {0, 1}" — {0, 1}*".
[uncomputes the colour]

Goal: use these operators to find S. Can show that any
classical algorithm must make Q(2"/2) queries to c to get any
information about S.



