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Introduction

Perhaps the most fundamental object in computer science is
the boolean function:

f : {0, 1}n→ {0, 1}

Many interpretations:

Truth table
Subset of [2n] = {1, . . . , 2n}

Family of subsets of [n]

Colouring of the n-cube
Voting system
Decision tree
...



Introduction

Perhaps the most fundamental object in computer science is
the boolean function:

f : {0, 1}n→ {0, 1}

Many interpretations:

Truth table
Subset of [2n] = {1, . . . , 2n}

Family of subsets of [n]

Colouring of the n-cube
Voting system
Decision tree
...



Analysis of boolean functions

Questions we might want to ask about boolean functions:

Which functions are extremal in some sense?
e.g. least noise-sensitive, “fairest”, ...

How complex is some specific (class of) function?
e.g. circuit complexity, decision tree complexity, learning
complexity, ...

The field of analysis of boolean functions aims to answer such
questions.

Ryan O’Donnell:
“By analysis of boolean functions, roughly speaking we mean
deriving information about boolean functions by looking at
their ‘Fourier expansion’.”

(See http://www.cs.cmu.edu/∼odonnell/boolean-analysis/
for an entire course on the subject.)

http://www.cs.cmu.edu/~odonnell/boolean-analysis/
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Fourier analysis of boolean functions

For an n-bit boolean function, we need to do Fourier analysis
over the group Zn

2 . This involves expanding functions

f : {0, 1}n → R

in terms of the characters of Zn
2 . These characters are the parity

functions
χS(x) = (−1)

∑
i∈S xi .

One can show that any f has the expansion

f =
∑

S⊆[n]

f̂SχS.

for some {f̂S} – the Fourier coefficients of f . How do we find
them? By carrying out the Fourier transform over Zn

2 – i.e. a
(renormalised) Hadamard transform!
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Fourier analysis of boolean functions (2)

Think of f and f̂ as 2n-dimensional vectors; then

f̂ =
1
2n

(
1 1
1 −1

)⊗n

f .

The Fourier expansion gives us a notion of complexity of
functions. The degree of a function f is defined as

deg(f ) = max
S, f̂S 6=0

|S|.

Intuition: f has high degree⇔ f is complex.

So what can we do with Fourier analysis?
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Property testing of boolean functions

Say two boolean functions f , g are ε-close if
Prx[f (x) 6= g(x)] = ε.

Problem
Given oracle access to a boolean function f , find a test T that:

1 uses f a constant number of times
2 outputs True with certainty if f has property P
3 outputs False with probability at least δ if f is δ-close to

having property P.

Example properties we might consider:
Linearity (f (x + y) = f (x) + f (y) for all x, y)
Dictatorship (f (x) = xi for some i)
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Structural/analytic properties of boolean
functions

Problem
What can we say about the Fourier coefficients (or other
“structural” property) of a boolean function?

One principle: “Boolean functions have heavy tails”: e.g.

1 The FKN (Friedgut-Kalai-Naor) theorem: If
∑

|S|>1 f̂ 2
S < ε,

then f is O(ε)-close to depending on 1 variable (being a
dictator).

2 Bourgain’s theorem: If
∑

|S|>k f̂ 2
S < k−1/2−o(1), then f is

close to depending on k variables (being a k-junta).

These results have been useful in social choice theory and
hardness of approximation.
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Learning boolean functions

Problem
Given oracle access to a boolean function f promised to be in
some class (e.g. low degree, “sparse”,...), output a function f̃
such that f̃ ≈ f .

Would usually expect that this would need ∼ 2n queries to f .

Idea: If we can approximate f̂ , then we can approximate f .
We can estimate an individual Fourier coefficient
efficiently...
...so if there aren’t too many we can estimate f efficiently!

Important extension: the Goldreich-Levin algorithm, which
outputs a list of the “large” Fourier coefficients of f
“efficiently”.



Learning boolean functions

Problem
Given oracle access to a boolean function f promised to be in
some class (e.g. low degree, “sparse”,...), output a function f̃
such that f̃ ≈ f .

Would usually expect that this would need ∼ 2n queries to f .

Idea: If we can approximate f̂ , then we can approximate f .
We can estimate an individual Fourier coefficient
efficiently...
...so if there aren’t too many we can estimate f efficiently!

Important extension: the Goldreich-Levin algorithm, which
outputs a list of the “large” Fourier coefficients of f
“efficiently”.



Learning boolean functions

Problem
Given oracle access to a boolean function f promised to be in
some class (e.g. low degree, “sparse”,...), output a function f̃
such that f̃ ≈ f .

Would usually expect that this would need ∼ 2n queries to f .

Idea: If we can approximate f̂ , then we can approximate f .

We can estimate an individual Fourier coefficient
efficiently...
...so if there aren’t too many we can estimate f efficiently!

Important extension: the Goldreich-Levin algorithm, which
outputs a list of the “large” Fourier coefficients of f
“efficiently”.



Learning boolean functions

Problem
Given oracle access to a boolean function f promised to be in
some class (e.g. low degree, “sparse”,...), output a function f̃
such that f̃ ≈ f .

Would usually expect that this would need ∼ 2n queries to f .

Idea: If we can approximate f̂ , then we can approximate f .
We can estimate an individual Fourier coefficient
efficiently...

...so if there aren’t too many we can estimate f efficiently!

Important extension: the Goldreich-Levin algorithm, which
outputs a list of the “large” Fourier coefficients of f
“efficiently”.



Learning boolean functions

Problem
Given oracle access to a boolean function f promised to be in
some class (e.g. low degree, “sparse”,...), output a function f̃
such that f̃ ≈ f .

Would usually expect that this would need ∼ 2n queries to f .

Idea: If we can approximate f̂ , then we can approximate f .
We can estimate an individual Fourier coefficient
efficiently...
...so if there aren’t too many we can estimate f efficiently!

Important extension: the Goldreich-Levin algorithm, which
outputs a list of the “large” Fourier coefficients of f
“efficiently”.



Learning boolean functions

Problem
Given oracle access to a boolean function f promised to be in
some class (e.g. low degree, “sparse”,...), output a function f̃
such that f̃ ≈ f .

Would usually expect that this would need ∼ 2n queries to f .

Idea: If we can approximate f̂ , then we can approximate f .
We can estimate an individual Fourier coefficient
efficiently...
...so if there aren’t too many we can estimate f efficiently!

Important extension: the Goldreich-Levin algorithm, which
outputs a list of the “large” Fourier coefficients of f
“efficiently”.



Quantum boolean functions

We’d like to generalise this body of work to the quantum
regime. So we need to define the concept of a quantum
boolean function.

Definition
A quantum boolean function (QBF) of n qubits is an operator f
on n qubits such that f 2 = I.

The remainder of this talk:

Basic consequences of this definition (why it’s the right
definition)
Generalisations of classical results to QBFs (why it’s an
interesting definition)
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Sanity checks of this definition

Sanity check 1: Can any QBF f be expressed as a quantum
circuit?

Yes: f is a unitary operator.
(In fact, f ’s eigenvalues are all ±1, so f is also Hermitian).

Sanity check 2: Is the concept of QBF a generalisation of
classical boolean functions?
Yes: Given any classical boolean function f : {0, 1}n → {0, 1},
there are two natural ways of implementing f on a quantum
computer:

The bit oracle |x〉|y〉 7→ |x〉|y + f (x)〉,
The phase oracle |x〉 7→ (−1)f(x)|x〉.

...and both of these give QBFs!
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Other examples of QBFs

A projector P onto any subspace gives rise to a QBF: take
f = I − 2P. Thus:

Any quantum algorithm solving a decision problem gives
rise to a QBF.
Any quantum error correcting code gives rise to a QBF.

There are uncountably many QBFs, even on one qubit: for any
real θ, consider

f =

(
cos θ sin θ
sin θ − cos θ

)
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Norms and inner products

Some definitions we’ll need later:

The (normalised) Schatten p-norm: for any d-dimensional

operator f , ‖f‖p ≡
(

1
d
∑d

j=1 σ
p
j

) 1
p
, where {σj} are the

singular values of f .

If f is quantum boolean, then ‖f‖p = 1 for all p.

Note that ‖f‖p is not a submultiplicative matrix norm
(except at p = ∞), and that p > q⇒ ‖f‖p > ‖f‖q.

We’ll also use a (normalised) inner product on
d-dimensional operators: 〈f , g〉 = 1

d tr(f †g).

Note Hölder’s inequality: for 1/p + 1/q = 1,
|〈f , g〉| 6 ‖f‖p‖g‖q.
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Note Hölder’s inequality: for 1/p + 1/q = 1,
|〈f , g〉| 6 ‖f‖p‖g‖q.



“Fourier analysis” for QBFs

We want to find an analogue of Fourier analysis over Zn
2 for

QBFs.

The natural analogue of the characters of Z2 are the Pauli
matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

The Pauli matrices are all QBFs.

We write a tensor product of Paulis (a stabiliser operator) as
χs ≡ σs1 ⊗ σs2 ⊗ · · · ⊗ σsn , where sj ∈ {0, 1, 2, 3}.

We use the notation σj
i for the dictator which acts as σj at the

i’th position, and trivially elsewhere.
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“Fourier analysis” for QBFs (2)

The {χs} operators form an orthonormal basis for the space of
operators on n qubits, implying

any n qubit Hermitian operator f has an expansion

f =
∑

s∈{0,1,2,3}n

f̂sχs,

where f̂s = 〈f ,χs〉 ∈ R. This is our analogue of the Fourier
expansion of a function f : {0, 1}n → R.

Plancherel’s theorem and Parseval’s equality: If f and g
are Hermitian operators on n qubits, 〈f , g〉 =

∑
s f̂sĝs.

Moreover, ‖f‖2
2 =

∑
s f̂ 2

s .

Thus, if f is quantum boolean,
∑

s f̂ 2
s = 1.
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Moreover, ‖f‖2
2 =

∑
s f̂ 2

s .

Thus, if f is quantum boolean,
∑

s f̂ 2
s = 1.



“Fourier analysis” for QBFs (2)

The {χs} operators form an orthonormal basis for the space of
operators on n qubits, implying

any n qubit Hermitian operator f has an expansion

f =
∑

s∈{0,1,2,3}n

f̂sχs,

where f̂s = 〈f ,χs〉 ∈ R. This is our analogue of the Fourier
expansion of a function f : {0, 1}n → R.

Plancherel’s theorem and Parseval’s equality: If f and g
are Hermitian operators on n qubits, 〈f , g〉 =

∑
s f̂sĝs.
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Generalising classical results to QBFs

Now we have our quantum analogue of a Fourier expansion,
we can try to generalise classical results that depend on
Fourier analysis. We find:

Quantum property testers that determine with a small
number of uses of an unknown QBF whether it is close to
having some property.

Quantum analogues of computational learning results: an
algorithm that outputs the large Fourier coefficients of an
unknown QBF, accessed as an oracle.

A quantum analogue of the FKN theorem regarding
Fourier expansion of QBFs.

In order to get this last result, we prove a quantum
hypercontractive inequality which may be of independent
interest.
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Quantum property testing

We want to solve problems of the following kind.

Quantum property testing
Given access to a QBF f that is promised to either have some
property, or to be “far” from having some property, determine
which is the case, using a small number of uses of f .

We first need to define a notion of closeness for QBFs.

Closeness
Let f and g be two QBFs. Then we say that f and g are ε-close
if 〈f , g〉 > 1 − 2ε (equivalently, ‖f − g‖2

2 6 4ε).

Note that the use of the 2-norm gives an average-case, rather
than worst-case, notion of closeness.
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Quantum property testing

Consider the following representative example:

Stabiliser testing
Given oracle access to an unknown operator f on n qubits,
determine whether f is a stabiliser operator χs for some s.

This problem is a generalisation of classical linearity testing.

We give a test (the quantum stabiliser test) that has the
following property.

Proposition
Suppose that a QBF f passes the quantum stabiliser test with
probability 1 − ε. Then f is ε-close to a stabiliser operator χs.

The test uses 2 queries (best known classical test uses 3).
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Quantum stabiliser testing

Algorithm (sketch):

1 Apply f to the halves of n maximally entangled states
|Φ〉⊗n resulting in a quantum state |f 〉 = f ⊗ I|Φ〉⊗n.

2 If f is a stabiliser then |f 〉 should be an n-fold product of
one of four possible states (corresponding to Paulis).

3 Create two copies of |f 〉.

4 Perform a joint measurement on the two copies for each
of the n qubits to see if they’re both produced by the same
Pauli operator.

5 Accept if all measurements say “yes”.
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Quantum stabiliser testing: proof of
correctness

We can calculate the probability of saying “yes” using Fourier
analysis. It turns out that for the stabiliser test

Pr[test accepts] =
∑

s

f̂ 4
s .

Now, thanks to Parseval’s relation, we have
∑

s f̂ 2
s = 1, and,

given that the test passes with probability 1 − ε, we thus have

1 − ε 6
∑

s

f̂ 4
s 6

(
max

s
f̂ 2
s

)∑
s

f̂ 2
s = max

s
f̂ 2
s .

So there is exactly one term f̂ 2
s which is greater than 1 − ε, and

the rest are each smaller than ε. Thus f is ε-close to a stabiliser
operator (〈f ,χs〉 >

√
1 − ε).
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Other quantum property testers

Another obvious property we might want to test: locality.

Locality testing
Given oracle access to an unknown operator f on n qubits,
determine whether f is a local operator U1 ⊗U2 ⊗ · · · ⊗Un.

We have a test conjectured to solve this problem, but haven’t
been able to analyse its probability of success.

Conjecture

Let ρ be a quantum state on n qubits such that 1
2n

∑
S⊆[n] tr ρ2

S
is “high”. Then ρ is “close” to a product state.

Can also define two versions of classical dictator testing: we
have a test for one variant (stabiliser dictator testing), but not
the other.
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Hypercontractivity and noise

An essential component in many results in classical analysis of
boolean functions is the hypercontractive inequality of
Bonami, Gross and Beckner1.

For example, the inequality allows us to prove:

Every balanced boolean function has an influential
variable.
Boolean functions that are not juntas have heavy “Fourier
tails”.

This inequality is most easily defined in terms of a noise
operator which performs local smoothing.

1See Lecture 16 of Ryan O’Donnell’s notes (qv.) for bibliographic info.
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Hypercontractivity and noise

For a bit-string x ∈ {0, 1}n, define the distribution y ∼ε x:
yi = xi with probability 1/2 + ε/2
yi = 1 − xi with probability 1/2 − ε/2

Then the noise operator with rate −1 6 ε 6 1, written Tε, is
defined via

(Tεf )(x) = Ey∼εx[f (y)].

Equivalently, Tε may be defined by its action on Fourier
coefficients, as

Tεf =
∑

S⊆[n]

ε|S| f̂SχS.
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Hypercontractivity

Bonami-Gross-Beckner inequality
Let f be a function f : {0, 1}n → R and assume that
1 6 p 6 q 6 ∞. Then, provided that

ε 6

√
p − 1
q − 1

,

we have
‖Tεf‖q 6 ‖f‖p.

Intuition behind this inequality:
For p 6 q, it always holds that ‖f‖p 6 ‖f‖q.
This inequality says that, if we smooth f enough, then the
inequality holds in the other direction too.
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A quantum noise operator

We can immediately find a quantum version of the
Fourier-theoretic definition of the noise operator.

Noise superoperator
The noise superoperator with rate −1/3 6 ε 6 1, written Tε, is
defined as

Tεf =
∑

s∈{0,1,2,3}n

ε|s| f̂sχs.

Turns out that this has an equivalent definition in terms of the
qubit depolarising channel!

Noise superoperator (2)

Tεf = D⊗n
ε f , where Dε is the qubit depolarising channel with

noise rate ε, i.e. Dε(f ) =
(1−ε)

2 tr(f )I + εf .

(This connection is well-known, see e.g. [Kempe et al ’08].)
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Quantum hypercontractivity

It turns out that the naive generalisation of the classical
hypercontractive inequality to a quantum hypercontractive
inequality works!

Quantum hypercontractive inequality
Let f be a Hermitian operator on n qubits and assume that
1 6 p 6 2 6 q 6 ∞. Then, provided that

ε 6

√
p − 1
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,

we have
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Proof sketch

The proof is by induction on n. The case n = 1 follows
immediately from the classical proof.

For n > 1, expand f as f = I⊗ a + σ1 ⊗ b + σ2 ⊗ c + σ3 ⊗ d,
and write it as a block matrix.

Using a non-commutative Hanner’s inequality for block
matrices2, can bound ‖Tεf‖q in terms of the norm of a
2× 2 matrix whose entries are the norms of the blocks of
Tεf .

Bound the norms of these blocks using the inductive
hypothesis.

The hypercontractive inequality for the base case n = 1
then gives an upper bound for this 2× 2 matrix norm.

2C. King, “Inequalities for trace norms of 2x2 block matrices”, 2003
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then gives an upper bound for this 2× 2 matrix norm.

2C. King, “Inequalities for trace norms of 2x2 block matrices”, 2003
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Corollaries

There are some interesting corollaries of this result. We only
mention one, about the degree of operators.

By analogy with the classical notion of degree, we define

deg(f ) = max
s, f̂s 6=0

|s|

for n-qubit operators f .

Then:

Different norms of low-degree operators are close
Let f be a Hermitian operator on n qubits with degree at most
d. Then, for any q > 2, ‖f‖q 6 (q − 1)d/2‖f‖2.
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A quantum FKN theorem

Once the hypercontractive inequality is established, the proof
of the classical Friedgut-Kalai-Naor theorem goes through
fairly straightforwardly (with one or two caveats).

Quantum FKN theorem
Let f be a QBF. If ∑

|s|>1

f̂ 2
s < ε,

then there is a constant K such that f is Kε-close to being a
dictator or constant.

This result is the first stab at understanding the structure
of the Fourier expansion of QBFs.
Applications? “Quantum voting”?
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Computational learning of QBFs

What does it mean to approximately learn a quantum boolean
function f ?

Given some number of uses of f ...
...output (a classical description of) an approximation f̃ ...

...such that f̃ is ε-close to f .

Examples:

The Bernstein-Vazirani algorithm learns the class of
classical parity functions χS exactly with one query.
Can easily be extended to learn the class of stabilisers χs.
Robust against perturbation: if f is close to a stabiliser
operator χs, we can find s.
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Quantum Goldreich-Levin algorithm

It turns out to be possible to estimate individual Fourier
coefficients efficiently.

Lemma

For any s ∈ {0, 1, 2, 3}n it is possible to estimate f̂s to within ±η
with probability 1 − δ with O

(
1
η2 log

( 1
δ

))
uses of f .

We can use this result to give the following algorithm for
listing the “large” Fourier coefficients of a QBF.

Quantum Goldreich-Levin algorithm
Given oracle access to a quantum boolean function f , and
given γ, δ > 0, there is a poly

(
n, 1
γ

)
log
( 1
δ

)
-time algorithm

which outputs a list L = {s1, s2, . . . , sm} such that with prob.
1 − δ: (1) if |̂fs| > γ, then s ∈ L; and (2) if s ∈ L, |̂fs| > γ/2.
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Learning quantum dynamics

This is sufficient, in some cases, to learn quantum dynamics.
What does this mean?

Given a Hamiltonian H, define the unitary operator
U = eitH.

We say that we have (γ, ε)-learned the dynamics of a
Hermitian operator M if:

given γ uses of U...

...we can calculate an approximation Ũ†MU...

...such that ‖Ũ†MU − U†MU‖2
2 6 ε.

This means that we can approximately predict the
outcome of measurement M.
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Example: a 1D spin chain

Consider a Hamiltonian which can be written

H =

n−1∑
j=1

hj

with hj Hermitian, ‖hj‖∞ = O(1), and supp(hj) ⊂ {j, j + 1} for
j 6 n − 1.

Theorem
Let t = O(log(n)). Then, with probability 1 − δ we can
(γ, ε)-learn the quantum boolean functions σs

j (t) ≡ e−itHσs
j e

itH

with γ = poly(n, 1/ε, log(1/δ)) uses of eitH.

What does this mean? We can predict the outcome of
measuring σs on site j after a short time well on average over
all input states.
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Conclusions

Summary:
We’ve defined a quantum generalisation of the concept of
a boolean function.
Many classical results from the theory of boolean
functions have quantum analogues.

We still have many open conjectures...

For a QBF f acting non-trivially on n qubits, does it hold
that deg(f ) = Ω(log n)?
Further property testers: locality, dictatorship, ...
Does every QBF have an influential qubit?
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The end

Further reading:

Our paper: arXiv:0810.2435.

Survey paper by Ronald de Wolf:
http://theoryofcomputing.org/articles/gs001/gs001.pdf

Lecture course by Ryan O’Donnell:
http://www.cs.cmu.edu/∼odonnell/boolean-analysis/

Thanks for your time!
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