
Quantum algorithms: an overview

Ashley Montanaro

School of Mathematics, University of Bristol

14 November 2019



Pic: Google



Quantum computers

Quantum computers are designed to do things that classical
computers cannot. But to achieve a quantum speedup requires
a quantum algorithm.

Most quantum algorithms can be divided into 5 categories:

Algorithm Speedup Example
Simulation of quantum systems Exponential Lloyd
Breaking cryptographic codes Exponential Shor
Optimisation / combinatorial search Square-root Grover
High-dimensional linear algebra Exponential? HHL
Quantum heuristics Unknown QAOA

The Quantum Algorithm Zoo currently lists 404 papers on
quantum algorithms.



Quantum computers

Quantum computers are designed to do things that classical
computers cannot. But to achieve a quantum speedup requires
a quantum algorithm.

Most quantum algorithms can be divided into 5 categories:

Algorithm Speedup Example
Simulation of quantum systems Exponential Lloyd
Breaking cryptographic codes Exponential Shor
Optimisation / combinatorial search Square-root Grover
High-dimensional linear algebra Exponential? HHL
Quantum heuristics Unknown QAOA

The Quantum Algorithm Zoo currently lists 404 papers on
quantum algorithms.



Quantum computers

Quantum computers are designed to do things that classical
computers cannot. But to achieve a quantum speedup requires
a quantum algorithm.

Most quantum algorithms can be divided into 5 categories:

Algorithm Speedup Example
Simulation of quantum systems Exponential Lloyd
Breaking cryptographic codes Exponential Shor
Optimisation / combinatorial search Square-root Grover
High-dimensional linear algebra Exponential? HHL
Quantum heuristics Unknown QAOA

The Quantum Algorithm Zoo currently lists 404 papers on
quantum algorithms.



Quantum simulation

The most important early application of quantum computers
is likely to be quantum simulation: modelling a
quantum-mechanical system on a quantum computer.

Applications include quantum chemistry, superconductivity,
metamaterials, high-energy physics, . . . [Georgescu et al 1308.6253]

Different variants of this task include:

Analogue vs. digital simulation
Static vs. dynamics simulation



Quantum simulation

The most important early application of quantum computers
is likely to be quantum simulation: modelling a
quantum-mechanical system on a quantum computer.

Applications include quantum chemistry, superconductivity,
metamaterials, high-energy physics, . . . [Georgescu et al 1308.6253]

Different variants of this task include:

Analogue vs. digital simulation
Static vs. dynamics simulation



Analogue simulation

Problem
Given a Hamiltonian H describing a physical system, find a
Hamiltonian H ′ that encodes H, and allows physically
meaningful (static or dynamic) information about H to be
determined.

H ′ should be “easier” to prepare in the lab than H.

Even very simple quantum systems can be universal
analogue quantum simulators [Cubitt, AM, Piddock, 1701.05182]

Analogue quantum simulators with > 50 qubits have been
implemented experimentally (e.g. [Zhang et al, 1708.01044])



Analogue simulation

Problem
Given a Hamiltonian H describing a physical system, find a
Hamiltonian H ′ that encodes H, and allows physically
meaningful (static or dynamic) information about H to be
determined.

H ′ should be “easier” to prepare in the lab than H.

Even very simple quantum systems can be universal
analogue quantum simulators [Cubitt, AM, Piddock, 1701.05182]

Analogue quantum simulators with > 50 qubits have been
implemented experimentally (e.g. [Zhang et al, 1708.01044])



Analogue simulation

Problem
Given a Hamiltonian H describing a physical system, find a
Hamiltonian H ′ that encodes H, and allows physically
meaningful (static or dynamic) information about H to be
determined.

H ′ should be “easier” to prepare in the lab than H.

Even very simple quantum systems can be universal
analogue quantum simulators [Cubitt, AM, Piddock, 1701.05182]

Analogue quantum simulators with > 50 qubits have been
implemented experimentally (e.g. [Zhang et al, 1708.01044])



Analogue simulation

Problem
Given a Hamiltonian H describing a physical system, find a
Hamiltonian H ′ that encodes H, and allows physically
meaningful (static or dynamic) information about H to be
determined.

H ′ should be “easier” to prepare in the lab than H.

Even very simple quantum systems can be universal
analogue quantum simulators [Cubitt, AM, Piddock, 1701.05182]

Analogue quantum simulators with > 50 qubits have been
implemented experimentally (e.g. [Zhang et al, 1708.01044])



Digital simulation

Dynamics simulation
Given a Hamiltonian H describing a physical system, and an
initial state |ψ0〉 of that system, produce the state

|ψt〉 = e−iHt|ψ0〉.

Given such an output state, measurements can be performed
to determine quantities of interest about the state.

No efficient classical algorithm is known for this task (in
full generality), but efficient quantum algorithms exist for
many physically reasonable cases.

A topic of very active research (e.g. [Childs et al 1711.10980])



Digital simulation

Dynamics simulation
Given a Hamiltonian H describing a physical system, and an
initial state |ψ0〉 of that system, produce the state

|ψt〉 = e−iHt|ψ0〉.

Given such an output state, measurements can be performed
to determine quantities of interest about the state.

No efficient classical algorithm is known for this task (in
full generality), but efficient quantum algorithms exist for
many physically reasonable cases.

A topic of very active research (e.g. [Childs et al 1711.10980])



Digital simulation

Static simulation (e.g.)
Given a Hamiltonian H describing a physical system, produce
the ground (lowest energy) state of H.

Given such a state, measurements can be performed to
determine quantities of interest about the state.

There is good evidence that producing the ground state is
hard (QMA-complete) in the worst case, but it may be
easy for physical systems of interest.

One approach: optimise over quantum circuits using a
variational algorithm [McClean et al 1509.04279].



Digital simulation

Static simulation (e.g.)
Given a Hamiltonian H describing a physical system, produce
the ground (lowest energy) state of H.

Given such a state, measurements can be performed to
determine quantities of interest about the state.

There is good evidence that producing the ground state is
hard (QMA-complete) in the worst case, but it may be
easy for physical systems of interest.

One approach: optimise over quantum circuits using a
variational algorithm [McClean et al 1509.04279].



Digital simulation

Static simulation (e.g.)
Given a Hamiltonian H describing a physical system, produce
the ground (lowest energy) state of H.

Given such a state, measurements can be performed to
determine quantities of interest about the state.

There is good evidence that producing the ground state is
hard (QMA-complete) in the worst case, but it may be
easy for physical systems of interest.

One approach: optimise over quantum circuits using a
variational algorithm [McClean et al 1509.04279].



Digital simulation

Static simulation (e.g.)
Given a Hamiltonian H describing a physical system, produce
the ground (lowest energy) state of H.

Given such a state, measurements can be performed to
determine quantities of interest about the state.

There is good evidence that producing the ground state is
hard (QMA-complete) in the worst case, but it may be
easy for physical systems of interest.

One approach: optimise over quantum circuits using a
variational algorithm [McClean et al 1509.04279].



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor quant-ph/9508027]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor quant-ph/9508027]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor quant-ph/9508027]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor quant-ph/9508027]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A 1MHz clock speed quantum computer in 11 days.

The fastest computer on the Top500 supercomputer list
(∼ 1017 operations per second) in ∼ 3× 1016 years.

(see e.g. [Gidney+Ekerå 1905.09749] for a more detailed analysis,
showing that a 2048-digit integer can be factorised in 8 hours
with 23 million physical qubits)



Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A 1MHz clock speed quantum computer in 11 days.

The fastest computer on the Top500 supercomputer list
(∼ 1017 operations per second) in ∼ 3× 1016 years.

(see e.g. [Gidney+Ekerå 1905.09749] for a more detailed analysis,
showing that a 2048-digit integer can be factorised in 8 hours
with 23 million physical qubits)



Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A 1MHz clock speed quantum computer in 11 days.

The fastest computer on the Top500 supercomputer list
(∼ 1017 operations per second) in ∼ 3× 1016 years.

(see e.g. [Gidney+Ekerå 1905.09749] for a more detailed analysis,
showing that a 2048-digit integer can be factorised in 8 hours
with 23 million physical qubits)



Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover quant-ph/9605043] can solve the
problem with O(

√
2n) queries to f (and bounded failure

probability).



Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover quant-ph/9605043] can solve the
problem with O(

√
2n) queries to f (and bounded failure

probability).



Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover quant-ph/9605043] can solve the
problem with O(

√
2n) queries to f (and bounded failure

probability).



Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover quant-ph/9605043] can solve the
problem with O(

√
2n) queries to f (and bounded failure

probability).



Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .



Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .



Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .



Applications of Grover’s algorithm

An important generalisation of Grover’s algorithm is known
as amplitude amplification.

Amplitude amplification [Brassard et al quant-ph/0005055]

Assume we are given access to a “checking” function f , and a
probabilistic algorithm A such that

Pr[A outputs w such that f (w) = 1] = ε.

Then we can find w such that f (w) = 1 with O(1/
√
ε) uses of f .

Gives a quadratic speed-up over classical algorithms which are
based on heuristics.



Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time
[Dürr+Høyer quant-ph/9607014]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al quant-ph/0401091]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al quant-ph/9705002]

. . .

They can also speed up Monte Carlo methods [AM 1504.06987,
Hamoudi+Magniez 1807.06456]:

The mean of a random variable with variance σ2 can be
approximated up to ε in time roughly O(σ/ε), as opposed
to the classical O(σ2/ε2).



Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time
[Dürr+Høyer quant-ph/9607014]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al quant-ph/0401091]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al quant-ph/9705002]

. . .

They can also speed up Monte Carlo methods [AM 1504.06987,
Hamoudi+Magniez 1807.06456]:

The mean of a random variable with variance σ2 can be
approximated up to ε in time roughly O(σ/ε), as opposed
to the classical O(σ2/ε2).



Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time
[Dürr+Høyer quant-ph/9607014]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al quant-ph/0401091]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al quant-ph/9705002]

. . .

They can also speed up Monte Carlo methods [AM 1504.06987,
Hamoudi+Magniez 1807.06456]:

The mean of a random variable with variance σ2 can be
approximated up to ε in time roughly O(σ/ε), as opposed
to the classical O(σ2/ε2).



Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time
[Dürr+Høyer quant-ph/9607014]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al quant-ph/0401091]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al quant-ph/9705002]

. . .

They can also speed up Monte Carlo methods [AM 1504.06987,
Hamoudi+Magniez 1807.06456]:

The mean of a random variable with variance σ2 can be
approximated up to ε in time roughly O(σ/ε), as opposed
to the classical O(σ2/ε2).



Quantum speedup of backtracking algorithms

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

A simple example: graph 3-colouring.

Backtracking algorithms solve CSPs by “trial and error”:
exploring a tree of partial solutions.



Quantum speedup of backtracking algorithms

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

A simple example: graph 3-colouring.

Backtracking algorithms solve CSPs by “trial and error”:
exploring a tree of partial solutions.



Quantum speedup of backtracking algorithms

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

A simple example: graph 3-colouring.

Backtracking algorithms solve CSPs by “trial and error”:
exploring a tree of partial solutions.



Quantum speedup of backtracking algorithms

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

A simple example: graph 3-colouring.

Backtracking algorithms solve CSPs by “trial and error”:
exploring a tree of partial solutions.



Quantum speedup of backtracking algorithms

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

A simple example: graph 3-colouring.

Backtracking algorithms solve CSPs by “trial and error”:
exploring a tree of partial solutions.



Quantum speedup of backtracking algorithms

Theorem [AM 1509.02374] (informal)
If there is a classical backtracking algorithm which solves a
CSP by exploring a tree of partial solutions of size T, there is a
quantum algorithm that solves the CSP in time O(

√
T poly(n)).

This is a near-quadratic speedup, assuming that T � poly(n).

Backtracking is one of the most useful classical algorithmic
techniques known in practice.

Some applications:
Quantum speedup of the Travelling Salesman Problem on
bounded-degree graphs [Moylett, Linden and AM 1612.06203]

Finding shortest vectors in lattices for cryptographic
applications [Alkim et al. ’15, del Pino et al. ’16]

Accelerating classical branch-and-bound algorithms for
optimisation problems [AM 1906.10375]



Quantum speedup of backtracking algorithms

Theorem [AM 1509.02374] (informal)
If there is a classical backtracking algorithm which solves a
CSP by exploring a tree of partial solutions of size T, there is a
quantum algorithm that solves the CSP in time O(

√
T poly(n)).

This is a near-quadratic speedup, assuming that T � poly(n).

Backtracking is one of the most useful classical algorithmic
techniques known in practice.

Some applications:
Quantum speedup of the Travelling Salesman Problem on
bounded-degree graphs [Moylett, Linden and AM 1612.06203]

Finding shortest vectors in lattices for cryptographic
applications [Alkim et al. ’15, del Pino et al. ’16]

Accelerating classical branch-and-bound algorithms for
optimisation problems [AM 1906.10375]



Quantum speedup of backtracking algorithms

Theorem [AM 1509.02374] (informal)
If there is a classical backtracking algorithm which solves a
CSP by exploring a tree of partial solutions of size T, there is a
quantum algorithm that solves the CSP in time O(

√
T poly(n)).

This is a near-quadratic speedup, assuming that T � poly(n).

Backtracking is one of the most useful classical algorithmic
techniques known in practice.

Some applications:
Quantum speedup of the Travelling Salesman Problem on
bounded-degree graphs [Moylett, Linden and AM 1612.06203]

Finding shortest vectors in lattices for cryptographic
applications [Alkim et al. ’15, del Pino et al. ’16]

Accelerating classical branch-and-bound algorithms for
optimisation problems [AM 1906.10375]



Quantum speedup of backtracking algorithms

Theorem [AM 1509.02374] (informal)
If there is a classical backtracking algorithm which solves a
CSP by exploring a tree of partial solutions of size T, there is a
quantum algorithm that solves the CSP in time O(

√
T poly(n)).

This is a near-quadratic speedup, assuming that T � poly(n).

Backtracking is one of the most useful classical algorithmic
techniques known in practice.

Some applications:
Quantum speedup of the Travelling Salesman Problem on
bounded-degree graphs [Moylett, Linden and AM 1612.06203]

Finding shortest vectors in lattices for cryptographic
applications [Alkim et al. ’15, del Pino et al. ’16]

Accelerating classical branch-and-bound algorithms for
optimisation problems [AM 1906.10375]



“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(logN, d,κ) [Harrow et al
0811.3171]



“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(logN, d,κ) [Harrow et al
0811.3171]



“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(logN, d, κ) [Harrow et al
0811.3171]



Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Electromagnetic scattering cross-sections using the finite
element method [Clader et al 1301.2340] [AM+Pallister 1512.05903]

“Solving” differential equations [Leyton+Osborne 0812.4423]
[Berry 1010.2745]

Recommendation systems and other problems in machine
learning (e.g. [Kerenidis+Prakash 1603.08675]) – but note
“quantum-inspired” competition [Tang 1807.04271]!



Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Electromagnetic scattering cross-sections using the finite
element method [Clader et al 1301.2340] [AM+Pallister 1512.05903]

“Solving” differential equations [Leyton+Osborne 0812.4423]
[Berry 1010.2745]

Recommendation systems and other problems in machine
learning (e.g. [Kerenidis+Prakash 1603.08675]) – but note
“quantum-inspired” competition [Tang 1807.04271]!



Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Electromagnetic scattering cross-sections using the finite
element method [Clader et al 1301.2340] [AM+Pallister 1512.05903]

“Solving” differential equations [Leyton+Osborne 0812.4423]
[Berry 1010.2745]

Recommendation systems and other problems in machine
learning (e.g. [Kerenidis+Prakash 1603.08675]) – but note
“quantum-inspired” competition [Tang 1807.04271]!



Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Electromagnetic scattering cross-sections using the finite
element method [Clader et al 1301.2340] [AM+Pallister 1512.05903]

“Solving” differential equations [Leyton+Osborne 0812.4423]
[Berry 1010.2745]

Recommendation systems and other problems in machine
learning (e.g. [Kerenidis+Prakash 1603.08675]) – but note
“quantum-inspired” competition [Tang 1807.04271]!



Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Electromagnetic scattering cross-sections using the finite
element method [Clader et al 1301.2340] [AM+Pallister 1512.05903]

“Solving” differential equations [Leyton+Osborne 0812.4423]
[Berry 1010.2745]

Recommendation systems and other problems in machine
learning (e.g. [Kerenidis+Prakash 1603.08675]) – but note
“quantum-inspired” competition [Tang 1807.04271]!



Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
all quantum computations could be simulated!

Some applications of this algorithm include:

Electromagnetic scattering cross-sections using the finite
element method [Clader et al 1301.2340] [AM+Pallister 1512.05903]

“Solving” differential equations [Leyton+Osborne 0812.4423]
[Berry 1010.2745]

Recommendation systems and other problems in machine
learning (e.g. [Kerenidis+Prakash 1603.08675]) – but note
“quantum-inspired” competition [Tang 1807.04271]!



Quantum heuristics

Some quantum optimisation algorithms might be more
efficient than our best classical algorithms, but we can’t prove
this rigorously. . .

Examples:
The adiabatic algorithm / quantum annealing [Farhi et al
quant-ph/0001106]

The Quantum Approximate Optimisation Algorithm
(QAOA) [Hogg+Portnov quant-ph/0006090, Farhi et al 1411.4028]

These algorithms try to find good solutions to hard
combinatorial optimisation problems (e.g. MAX-CUT).

Evidence that they outperform classical algorithms is mixed,
but we at least know they are probably hard to simulate
classically [Farhi+Harrow 1602.07674].



Quantum heuristics

Some quantum optimisation algorithms might be more
efficient than our best classical algorithms, but we can’t prove
this rigorously. . .

Examples:
The adiabatic algorithm / quantum annealing [Farhi et al
quant-ph/0001106]

The Quantum Approximate Optimisation Algorithm
(QAOA) [Hogg+Portnov quant-ph/0006090, Farhi et al 1411.4028]

These algorithms try to find good solutions to hard
combinatorial optimisation problems (e.g. MAX-CUT).

Evidence that they outperform classical algorithms is mixed,
but we at least know they are probably hard to simulate
classically [Farhi+Harrow 1602.07674].



Quantum heuristics

Some quantum optimisation algorithms might be more
efficient than our best classical algorithms, but we can’t prove
this rigorously. . .

Examples:
The adiabatic algorithm / quantum annealing [Farhi et al
quant-ph/0001106]

The Quantum Approximate Optimisation Algorithm
(QAOA) [Hogg+Portnov quant-ph/0006090, Farhi et al 1411.4028]

These algorithms try to find good solutions to hard
combinatorial optimisation problems (e.g. MAX-CUT).

Evidence that they outperform classical algorithms is mixed,
but we at least know they are probably hard to simulate
classically [Farhi+Harrow 1602.07674].



Quantum heuristics

Some quantum optimisation algorithms might be more
efficient than our best classical algorithms, but we can’t prove
this rigorously. . .

Examples:
The adiabatic algorithm / quantum annealing [Farhi et al
quant-ph/0001106]

The Quantum Approximate Optimisation Algorithm
(QAOA) [Hogg+Portnov quant-ph/0006090, Farhi et al 1411.4028]

These algorithms try to find good solutions to hard
combinatorial optimisation problems (e.g. MAX-CUT).

Evidence that they outperform classical algorithms is mixed,
but we at least know they are probably hard to simulate
classically [Farhi+Harrow 1602.07674].



Analysing real quantum algorithm complexity

Some fully worked-out applications with large speedups (for
quantum runtime ∼ 1 day) include:

Nitrogen fixation [Reiher et al 1605.03590]

Many-body localisation [Childs et al 1711.10980]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al 1805.03662]

Integer factorisation [Kutin quant-ph/0609001] [Gidney and Ekerå
1905.09749]

In constraint satisfaction the speedups are smaller and
quantum hardware requirements larger. . .

Graph colouring / boolean satisfiability: speedup factor
of ∼ 105 (ignoring cost of fault-tolerance processing) but
∼ 1012 physical qubits required [Campbell et al 1810.05582]



Analysing real quantum algorithm complexity

Some fully worked-out applications with large speedups (for
quantum runtime ∼ 1 day) include:

Nitrogen fixation [Reiher et al 1605.03590]

Many-body localisation [Childs et al 1711.10980]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al 1805.03662]

Integer factorisation [Kutin quant-ph/0609001] [Gidney and Ekerå
1905.09749]

In constraint satisfaction the speedups are smaller and
quantum hardware requirements larger. . .

Graph colouring / boolean satisfiability: speedup factor
of ∼ 105 (ignoring cost of fault-tolerance processing) but
∼ 1012 physical qubits required [Campbell et al 1810.05582]



Analysing real quantum algorithm complexity

Some fully worked-out applications with large speedups (for
quantum runtime ∼ 1 day) include:

Nitrogen fixation [Reiher et al 1605.03590]

Many-body localisation [Childs et al 1711.10980]

Other problems in quantum chemistry and
condensed-matter physics, e.g. [Babbush et al 1805.03662]

Integer factorisation [Kutin quant-ph/0609001] [Gidney and Ekerå
1905.09749]

In constraint satisfaction the speedups are smaller and
quantum hardware requirements larger. . .

Graph colouring / boolean satisfiability: speedup factor
of ∼ 105 (ignoring cost of fault-tolerance processing) but
∼ 1012 physical qubits required [Campbell et al 1810.05582]



Conclusions

There are many quantum algorithms, solving many different
problems, some of which achieve substantial speedups over
their classical counterparts.

Important future research directions include:
Finding more practical applications for these algorithms;
Analysing their complexity in detail;
New ideas for quantum algorithm design.

Further reading:

Quantum algorithms: an overview [AM, 1511.04206]

Thanks!



Conclusions

There are many quantum algorithms, solving many different
problems, some of which achieve substantial speedups over
their classical counterparts.

Important future research directions include:
Finding more practical applications for these algorithms;
Analysing their complexity in detail;
New ideas for quantum algorithm design.

Further reading:

Quantum algorithms: an overview [AM, 1511.04206]

Thanks!



Conclusions

There are many quantum algorithms, solving many different
problems, some of which achieve substantial speedups over
their classical counterparts.

Important future research directions include:
Finding more practical applications for these algorithms;
Analysing their complexity in detail;
New ideas for quantum algorithm design.

Further reading:

Quantum algorithms: an overview [AM, 1511.04206]

Thanks!


