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The basic problem

Given a quantum state, is it entangled?



Variants

How are we given the input state?

vs. ρ =


1/2 0 0 1/2

0 0 0 0
0 0 0 0

1/2 0 0 1/2





Variants

Is the input state pure or mixed?

|ψ〉 ?
= |ψ1〉 . . . |ψk〉 vs. ρ

?
=

∑
i pi|ψ

i
1〉〈ψi

1|⊗ · · · ⊗ |ψi
k〉〈ψ

i
k|

Is the input state bipartite or multipartite?

1 2 vs. 1 2 3 ... k



Variants

What level of accuracy do we demand?

SEP vs. SEPSEP

Separability testing up to accuracy ε: given ρ such that either
ρ ∈ SEP or minσ∈SEP ‖ρ− σ‖p > ε, decide which is the case.



Variants

Do we want to detect entanglement in all states, or just
some of them?

SEP vs.
SEP

ρ



Good news and bad news

Given a bipartite pure state |ψ〉 ∈ Cd ⊗ Cd as a
d2-dimensional vector, whether |ψ〉 is entangled can be
determined efficiently using the Schmidt decomposition.

Given a bipartite mixed state ρ ∈ B(Cd ⊗ Cd) as a
d2-dimensional square matrix, it’s NP-hard to determine
whether ρ is separable (up to accuracy 1/poly(d)).

This was shown by [Gurvits ’03] for accuracy 1/exp(d) via a
reduction from the NP-hard Clique problem.
Later improved to 1/poly(d) by [Gharibian ’10] (using
techniques of [Liu ’07]) and also (implicitly) by [Beigi ’08].

Stop press: There’s an exp(O(ε−2 log2 d)) algorithm for
testing separability up to accuracy ε in the 2-norm
[Brandão, Christandl, Yard ’10]!
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Main result

Theorem
Let |ψ〉 ∈ (Cd)⊗k be a pure k-partite state such that the nearest
product state to |ψ〉 is the state |φ1〉 . . . |φk〉, where
|〈ψ|φ1, . . . ,φk〉|2 = 1 − ε.

Then there is an efficient quantum test, called the product test,
that accepts with probability 1 −Θ(ε), given two copies of |ψ〉.

Some notes:

The bounds on acceptance probability don’t depend on
the local dimension d or the number of subsystems k.
This is similar to classical property testing algorithms.
The test can also be used to determine if a unitary
operator is a tensor product.
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The swap test

The product test uses the swap test as a subroutine.

Swap test [Buhrman et al ’01]

|0〉 H • H NM





ρ
SWAP

σ

This test takes two (possibly mixed) states ρ, σ as input,
returning 0 (“same”) with probability

1
2

+
1
2

tr(ρσ),

otherwise returning 1 (“different”).
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The product test

Product test
1 Prepare two copies of |ψ〉 ∈ (Cd)⊗k; call these |ψ1〉, |ψ2〉.
2 Perform the swap test on each of the k pairs of

corresponding subsystems of |ψ1〉, |ψ2〉.
3 If all of the tests returned “same”, accept. Otherwise,

reject.

1

1

swap
test

2

2

swap
test

3

3

swap
test

...

...

k

k

swap
test

|ψ1〉

|ψ2〉



Previous use of the product test

The product test has appeared before in the literature.

Originally introduced by [Mintert, Kuś, Buchleitner ’05] as one
of a family of tests for generalisations of the concurrence
entanglement measure.

Implemented experimentally for bipartite states by
[Walborn et al ’06].

Proposed by [AM, Osborne ’08] as a means of determining
whether a unitary operator is product.

Our contribution: to prove correctness of the test for all k.
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Analysing the product test

Lemma
Let Ptest(ρ) be the probability that the product test passes on
input ρ. Then

Ptest(ρ) =
1
2k

∑
S⊆[k]

tr ρ2
S.

Thus the product test measures the average purity of ρ
across bipartitions.

It’s immediate that Ptest(ρ) = 1 if and only if ρ is a pure
product state.

Our main result says: if the average entanglement across
bipartitions of |ψ〉 is low, |ψ〉 must in fact be close to a
product state.
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Details of main result

Theorem
Let the nearest product state to |ψ〉 be |φ1〉 . . . |φk〉, and set
|〈ψ|φ1, . . . ,φk〉|2 = 1 − ε. Then

1 − 2ε+ ε2 6 Ptest(|ψ〉〈ψ|) 6 1 − ε+ ε3/2 + ε2.

Furthermore, if ε > 11/32, Ptest(|ψ〉〈ψ|) 6 501/512.

ε
0

1

0 1

Upper bound on Ptest(|ψ〉〈ψ|)

Lower bound on Ptest(|ψ〉〈ψ|)



Optimality of the product test

Can we do better than the product test?

Theorem
No “non-trivial” test can use only one copy of |ψ〉.
The product test is “optimal” among all tests that use two
copies of |ψ〉 and accept product states with certainty.

How bad is our analysis of the product test?

Theorem
The leading order constants cannot be improved.
There is a state |ψ〉 which is arbitrarily far from product
and has Ptest(|ψ〉〈ψ|) ≈ 1/2.

So (informally) these results can’t be improved too much
without adding dependence on k or d.
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Aside: the depolarising channel
Consider the depolarising channel with noise rate 1 − δ, i.e.

Dδ(ρ) = (1 − δ)(tr ρ)
I
d

+ δ ρ.

This channel’s maximum output purity is multiplicative, i.e.

Pmax(δ) := max
ρ

tr(D⊗k
δ (ρ))2

is achieved by product state inputs [Amosov, Holevo, Werner ’00].

It
turns out that

tr(D⊗k
δ (ρ))2 ∝

∑
S⊆[k]

γ|S| tr ρ2
S,

for some constant γ depending on δ and d. We have

Theorem

For small enough δ, if tr(D⊗k
δ |ψ〉〈ψ|)2 > (1 − ε)Pmax(δ), there is

a product state |φ1, . . . ,φk〉 with |〈ψ|φ1, . . . ,φk〉|2 > 1 − O(ε).

This is a stability result for this channel.
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Quantum Merlin-Arthur games

The complexity class QMA is the quantum analogue of NP.

Merlin

Arthur

|ψ〉

Arthur has some decision problem of size n to solve, and
Merlin wants to convince him that the answer is “yes”.

Merlin sends him a quantum state |ψ〉 of poly(n) qubits.
Arthur runs some polynomial-time quantum algorithm A

on |ψ〉 and his input and outputs “yes” if the algorithm
says “accept”.



Quantum Merlin-Arthur games

We say that the language L (where L is the set of bit strings we
want to accept) is in QMA if there is an A such that, for all x:

Completeness: If x ∈ L, there exists a witness |ψ〉, a state
of poly(n) qubits, such that A outputs “accept” with
probability at least 2/3 on input |x〉 |ψ〉.

Soundness: If x /∈ L, then A outputs “accept” with
probability at most 1/3 on input |x〉 |ψ〉, for all states |ψ〉.

The constants 1/3 and 2/3 can be amplified to be exponentially
close to 0 and 1, respectively, using (e.g.) parallel repetition.



Quantum Merlin-Arthur games

QMA(k) is a variant where Arthur has access to k unentangled
Merlins.

Merlin1 Merlin2 ... Merlink

Arthur

|ψ1〉

|ψ2〉

|ψk〉

This might be more powerful than QMA because the lack of
entanglement helps Arthur tell when the Merlins are cheating.



Quantum Merlin-Arthur games

A language L is in QMA(k)s,c if there’s an A such that, for all x:

Completeness: If x ∈ L, there exist k witnesses
|ψ1〉 , . . . , |ψk〉, each a state of poly(n) qubits, such that A

outputs “accept” with probability at least c on input
|x〉 |ψ1〉 . . . |ψk〉.

Soundness: If x /∈ L, then A outputs “accept” with
probability at most s on input |x〉 |ψ1〉 . . . |ψk〉, for all states
|ψ1〉 , . . . , |ψk〉.

Also define QMAm(k)s,c to indicate that |ψ1〉 , . . . , |ψk〉 each
involve m qubits, and write QMA(k) to denote s = 1/3, c = 2/3.

We need this definition because straightforward parallel
repetition of QMA(k) protocols does not work!



QMA(k) as an optimisation problem

Closely related to QMAm(k)s,c

Given a 2km-dimensional matrix M with 0 6 M 6 I, determine
whether

max
|ψ〉=|ψ1〉⊗···⊗|ψk〉

〈ψ| M |ψ〉

is > c or 6 s.

For k = 1, this is an eigenvalue problem with an
exp(m)-time algorithm.
For k = 2, we need to compute

max
ρ∈SEP

tr Mρ.

No exp(m) time algorithm is known, and even QMAlog(2)

is not known to be in BQP.
Compare QMAlog = BQP [Marriott, Watrous ’05].
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A potted history of QMA(k)

2003 Kobayashi, Matsumoto and Yamakami define
QMA(k).

2006 Liu, Christandl and Verstraete give a problem in
QMA(2) not known to be in QMA.

2007 Blier and Tapp show that graph 3-colourability can
be verified by a QMA(2) protocol with messages of
length O(log n), perfect completeness, and
soundness 1 − 1/poly(n).

2008 Aaronson et al show that 3-SAT on n clauses is in
QMAO(log n)(

√
n polylog(n))Ω(1),1.

2008 Beigi improves gap in Blier-Tapp result to Ω(1/n3).



Replacing k Merlins with 2 Merlins

Proof1 Proof2 Proof3 ... Proofk

We would like to combine these k proofs into one proof.



Replacing k Merlins with 2 Merlins

Proof1

Proof2

Proof3
...

Proofk

Problem: Merlin can cheat by using entanglement across
proofs.



Replacing k Merlins with 2 Merlins

Proof1

Proof2

Proof3
...

Proofk

Proof1

Proof2

Proof3
...

Proofk

Idea: Given two copies of the proofs, we can ensure they are
product states using the product test!

Then we just run the original verification algorithm on one
copy.



Replacing k Merlins with 2 Merlins

Proof1

Proof2

Proof3
...

Proofk

Proof1

Proof2

Proof3
...

Proofk

This implies that k Merlins can be simulated by 2 Merlins, up
to constant soundness.



Amplification of QMA(k) protocols

In fact, our protocol gives us something more: it turns out
that the “accept” measurement operator of the new
QMA(2) protocol we have produced is separable!

This means that getting “accept” outcomes cannot induce
entanglement between residual proofs.

And this means that we can amplify the soundness error
to become exponentially small simply by parallel
repetition of the QMA(2) protocol.

Thus, for any k > 2, and any c, s such that
c − s > 1/poly(n), QMA(k)s,c = QMA(2)exp(−n),1−exp(−n).

In particular, for any k > 2, QMA(k) = QMA(2).
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From QMA(2) to hardness results

Theorem [Aaronson et al ’08]

3-SAT ∈ QMAlog(
√

n polylog(n))Ω(1),1.

Our results show that satisfiability of 3-SAT formulae with
n clauses can be verified by a quantum algorithm with
constant success probability, given two unentangled
proofs of length O(

√
n polylog(n)) qubits each.

So imagine we could estimate the success probability of a
QMA(2) protocol that uses proofs of dimension d, up to a
constant, in time poly(d).

Then this would give a subexponential-time
(2O(

√
n polylog(n))) algorithm for 3-SAT!

So we can show hardness results for QMA(2), based on the
assumption that this isn’t possible.
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Example hardness results

Problem OPT
Given a matrix M ∈ B(Cd ⊗ Cd) with 0 6 M 6 I, estimate

max
ρ∈SEP

tr Mρ

up to additive error δ.

There is a constant δ > 0 such that, if 3-SAT on n clauses can’t
be solved in:

...time exp(
√

n polylog(n)), there is no poly(d)-time
algorithm for OPT.

...time exp(o(n)), there is no dO(log1−ε d)-time algorithm for
OPT, for any ε > 0.
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Problems at least as hard as OPT

Estimating minimum output entropies of quantum
channels
For a quantum channel N, determine

Smin(N) := min
ρ

S(N(ρ))

up to a constant, where S(ρ) = − tr ρ log ρ. Also holds for
estimating all Rényi entropies.

Estimating capacities of quantum channels [Beigi, Shor ’08]

Estimate the Holevo capacity of N, defined as

χ(N) := max
pi,ρi

S
(∑

i

pi N(ρi)
)

−
∑

i

pi S(N(ρi)).



Problems at least as hard as OPT
Estimating ground state energies of mean-field
Hamiltonians [Fannes, Vandenplas ’06]

For M ∈ B(Cd ⊗ Cd) with 0 6 M 6 I, define H ∈ B((Cd)⊗n) by

H =
1

n(n − 1)

∑
16i 6=j6n

I − M(i,j).

Estimate the ground state energy of H (≈ 1 − maxρ∈SEP tr Mρ).

Determining membership in convex sets that
approximate the set of separable states
Let S be a convex set approximating SEP up to Hausdorff
distance δ, i.e.

max{sup
ρ∈S

inf
σ∈SEP

‖ρ− σ‖1, sup
ρ∈SEP

inf
σ∈S
‖ρ− σ‖1} 6 δ.

Determine membership in S.



Conclusions

The product test is an efficient test for pure product states
of n quantum systems.

Testing pure-state entanglement is easy, so testing
mixed-state entanglement is hard.

2 Merlins are “as good as” k Merlins: QMA(k) = QMA(2)

for k > 2.

Quantum information theory and quantum computation
are intimately linked.



Open problems

Improve the best known bounds on QMA(2). Currently
all we know is QMA ⊆ QMA(2) ⊆ NEXP!

What is the power of QMA(k) where the verifier is
restricted to LOCC measurements?

Brandão, Christandl and Yard: QMALOCC(k) = QMA for
constant k, but...
...Chen and Drucker: QMALOCC(Õ(

√
n)) has efficient

proofs for 3-SAT.

Remove the convexity requirement in our “hardness of
separability testing” result.

Tighten our analysis of the product test.

Prove stability for other channels and other Rényi
entropies.

Find other quantum property testers.
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There is a 2-year post-doctoral research position
available at the Centre for Quantum
Information and Foundations at the University
of Cambridge, UK.

The position is available now (start date
flexible) and is funded by the EC FP7 project
QCS (“Quantum Computer Science”).

Would suit someone with research interests in
the theory of quantum computation.

For further details, contact Prof. Richard Jozsa
(rj310@cam.ac.uk).

rj310@cam.ac.uk


The upper bound

The map of the first part of the proof:

Let |0n〉 be the closest product state to |ψ〉.

Write |ψ〉 =
√

1 − ε |0n〉+
√
ε |φ〉 for some |φ〉.

This allows us to calculate
∑

S trψ2
S explicitly in terms of

ε, |φ〉.

Writing |φ〉 =
∑

x αx |x〉, can upper bound
∑

S trψ2
S in

terms of how much weight |φ〉 has on low Hamming
weight basis states.

Showing that there can be no weight on states of
Hamming weight 1 completes the proof.



The second part of the proof

The first part of the proof ends up showing

Ptest(|ψ〉〈ψ|) 6 1 − ε+ ε3/2 + ε2.

This bound is greater than 1 for large ε!

We fix up the proof by showing (roughly):

Ptest(|ψ〉〈ψ|) is upper bounded by the probability that the
product test across any partition into k parties passes.
If |ψ〉 is far from product across the n subsystems, one can
find a k-partition such that the distance from the closest
product state (wrt this partition) falls into the regime
where the first part of the proof works.

This leads to the result that, if ε > 11/32,
Ptest(|ψ〉〈ψ|) 6 501/512.

These constants can clearly be improved somewhat...
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