
Mathematical Challenges in Quantum
Algorithms

Ashley Montanaro

Department of Computer Science,
University of Bristol

18 September 2014

Introduction

There are many things we can do with our quantum
computers. For example:

Factorise large integers and hence break RSA;
Efficiently simulate quantum-mechanical systems;
Solve certain search and optimisation problems faster
than possible classically;
. . .

See the Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) for 214 219
papers on quantum algorithms.

http://math.nist.gov/quantum/zoo/

Introduction

Nevertheless, many embarrassingly fundamental open
problems remain in the study of quantum computing:

What we can do;
What we can’t do;
Why we can do what we can.

In this talk I will discuss a personal selection of a few of these
open problems. Notably, they (mostly) rest on purely classical
mathematical questions!

Introduction

Nevertheless, many embarrassingly fundamental open
problems remain in the study of quantum computing:

What we can do;
What we can’t do;
Why we can do what we can.

In this talk I will discuss a personal selection of a few of these
open problems. Notably, they (mostly) rest on purely classical
mathematical questions!

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

Integer factorisation reduces to the case G = ZM for some
integer M. This is the problem of determining the period of a
periodic function:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].
Classically, some groups require Ω(

√
|G|) queries [Simon ’97].

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

Integer factorisation reduces to the case G = ZM for some
integer M. This is the problem of determining the period of a
periodic function:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].
Classically, some groups require Ω(

√
|G|) queries [Simon ’97].

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

Integer factorisation reduces to the case G = ZM for some
integer M. This is the problem of determining the period of a
periodic function:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].
Classically, some groups require Ω(

√
|G|) queries [Simon ’97].

Hidden subgroup problems

Open problem
For which groups G can the HSP be solved efficiently?

The HSP is related to many other problems and cryptosystems:

Problem Group Complexity Cryptosystem
Factorisation ZN Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Shortest lattice vector Dihedral grp Subexp.4 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Hidden subgroup problems

Open problem
For which groups G can the HSP be solved efficiently?

The HSP is related to many other problems and cryptosystems:

Problem Group Complexity Cryptosystem
Factorisation ZN Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Shortest lattice vector Dihedral grp Subexp.4 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Hidden subgroup problems

Open problem
For which groups G can the HSP be solved efficiently?

The HSP is related to many other problems and cryptosystems:

Problem Group Complexity Cryptosystem
Factorisation ZN Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Shortest lattice vector Dihedral grp Subexp.4 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(
√

log N) [Kuperberg ’05] . . . can this be improved?

A poly(log N)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(
√

log N) [Kuperberg ’05] . . . can this be improved?

A poly(log N)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(
√

log N) [Kuperberg ’05] . . . can this be improved?

A poly(log N)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

The dihedral hidden subgroup problem
The dihedral HSP turns out to be equivalent to a hidden shift
problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

Implies applications to pattern matching problems in strings.

The best known algorithm for the dihedral HSP uses time
2O(
√

log N) [Kuperberg ’05] . . . can this be improved?

A poly(log N)-time algorithm would give an efficient
quantum algorithm for the shortest vector problem in
lattices [Regev ’04].

Solving the HSP via the Kuperberg sieve

One approach to solving the dihedral HSP starts by
producing many quantum states of the form

|ψx〉 := |0〉+ e2πisx/N |1〉,

where x ∈ {0, . . . ,N − 1} is uniformly random.

We would like to make the state
∣∣ψN/2

〉
= |0〉+ (−1)s|1〉,

which is sufficient to determine one bit of s.

One way to do this is via the following combination
operation:

C(|ψx〉,
∣∣ψy
〉
) =

{∣∣ψx+y
〉

with prob. 1/2∣∣ψx−y
〉

with prob. 1/2

Solving the HSP via the Kuperberg sieve

One approach to solving the dihedral HSP starts by
producing many quantum states of the form

|ψx〉 := |0〉+ e2πisx/N |1〉,

where x ∈ {0, . . . ,N − 1} is uniformly random.

We would like to make the state
∣∣ψN/2

〉
= |0〉+ (−1)s|1〉,

which is sufficient to determine one bit of s.

One way to do this is via the following combination
operation:

C(|ψx〉,
∣∣ψy
〉
) =

{∣∣ψx+y
〉

with prob. 1/2∣∣ψx−y
〉

with prob. 1/2

Solving the HSP via the Kuperberg sieve

One approach to solving the dihedral HSP starts by
producing many quantum states of the form

|ψx〉 := |0〉+ e2πisx/N |1〉,

where x ∈ {0, . . . ,N − 1} is uniformly random.

We would like to make the state
∣∣ψN/2

〉
= |0〉+ (−1)s|1〉,

which is sufficient to determine one bit of s.

One way to do this is via the following combination
operation:

C(|ψx〉,
∣∣ψy
〉
) =

{∣∣ψx+y
〉

with prob. 1/2∣∣ψx−y
〉

with prob. 1/2

Solving the HSP via the Kuperberg sieve

Theorem [Kuperberg ’05, AM ’14]

It is sufficient to start with 21.781...
√

log2 N poly(log N) random
states |ψx〉 to be able to produce a state of the form

∣∣ψN/2
〉

with high probability using combination operations.

This gives us a subexponential-time, but
superpolynomial-time, algorithm.

Open problem
Can this be improved?

Solving certain average-case subset sum problems
efficiently would also give us an efficient solution to this
problem [Regev ’04].

Solving the HSP via the Kuperberg sieve

Theorem [Kuperberg ’05, AM ’14]

It is sufficient to start with 21.781...
√

log2 N poly(log N) random
states |ψx〉 to be able to produce a state of the form

∣∣ψN/2
〉

with high probability using combination operations.

This gives us a subexponential-time, but
superpolynomial-time, algorithm.

Open problem
Can this be improved?

Solving certain average-case subset sum problems
efficiently would also give us an efficient solution to this
problem [Regev ’04].

Quantum query complexity

The query complexity of a boolean function
f : {0, 1}n → {0, 1} is the number of queries to its input bits
that are required to compute it (e.g. with bounded error).

For example, the ORn function (f (x) = 0⇔ x = 0n) has
classical query complexity Θ(n), and quantum query
complexity Θ(

√
n) [Grover ’97].

For problems where there is a promise on the input (like
the HSP), the separation between quantum and classical
query complexity can be exponential.

Open problem
What is the largest possible separation between quantum and
classical query complexity for a total function?

Quantum query complexity

The query complexity of a boolean function
f : {0, 1}n → {0, 1} is the number of queries to its input bits
that are required to compute it (e.g. with bounded error).

For example, the ORn function (f (x) = 0⇔ x = 0n) has
classical query complexity Θ(n), and quantum query
complexity Θ(

√
n) [Grover ’97].

For problems where there is a promise on the input (like
the HSP), the separation between quantum and classical
query complexity can be exponential.

Open problem
What is the largest possible separation between quantum and
classical query complexity for a total function?

Quantum query complexity

The query complexity of a boolean function
f : {0, 1}n → {0, 1} is the number of queries to its input bits
that are required to compute it (e.g. with bounded error).

For example, the ORn function (f (x) = 0⇔ x = 0n) has
classical query complexity Θ(n), and quantum query
complexity Θ(

√
n) [Grover ’97].

For problems where there is a promise on the input (like
the HSP), the separation between quantum and classical
query complexity can be exponential.

Open problem
What is the largest possible separation between quantum and
classical query complexity for a total function?

Quantum query complexity

The query complexity of a boolean function
f : {0, 1}n → {0, 1} is the number of queries to its input bits
that are required to compute it (e.g. with bounded error).

For example, the ORn function (f (x) = 0⇔ x = 0n) has
classical query complexity Θ(n), and quantum query
complexity Θ(

√
n) [Grover ’97].

For problems where there is a promise on the input (like
the HSP), the separation between quantum and classical
query complexity can be exponential.

Open problem
What is the largest possible separation between quantum and
classical query complexity for a total function?

Quantum query complexity

If f : {0, 1}n → {0, 1} is a total function, the separation can
be at most a 6th power [Beals ’01].

Conjecture: The 6 can be
replaced with a 2.

To improve it to a 4, it would suffice to prove that

deg(f) = O(d̃eg(f))2.

What are these quantities?

deg(f) is the degree of f as an n-variate polynomial over R.

d̃eg(f) is the approximate degree: i.e. the smallest degree
of any polynomial f̃ such that |̃f (x) − f (x)| 6 1/3 for all x.

For example: deg(OR2) = 2 OR2(x) = x1 + x2 − x1x2

d̃eg(OR2) = 1 e.g. ÕR2(x) = (x1 + x2)/3

Quantum query complexity

If f : {0, 1}n → {0, 1} is a total function, the separation can
be at most a 6th power [Beals ’01]. Conjecture: The 6 can be
replaced with a 2.

To improve it to a 4, it would suffice to prove that

deg(f) = O(d̃eg(f))2.

What are these quantities?

deg(f) is the degree of f as an n-variate polynomial over R.

d̃eg(f) is the approximate degree: i.e. the smallest degree
of any polynomial f̃ such that |̃f (x) − f (x)| 6 1/3 for all x.

For example: deg(OR2) = 2 OR2(x) = x1 + x2 − x1x2

d̃eg(OR2) = 1 e.g. ÕR2(x) = (x1 + x2)/3

Quantum query complexity

If f : {0, 1}n → {0, 1} is a total function, the separation can
be at most a 6th power [Beals ’01]. Conjecture: The 6 can be
replaced with a 2.

To improve it to a 4, it would suffice to prove that

deg(f) = O(d̃eg(f))2.

What are these quantities?

deg(f) is the degree of f as an n-variate polynomial over R.

d̃eg(f) is the approximate degree: i.e. the smallest degree
of any polynomial f̃ such that |̃f (x) − f (x)| 6 1/3 for all x.

For example: deg(OR2) = 2 OR2(x) = x1 + x2 − x1x2

d̃eg(OR2) = 1 e.g. ÕR2(x) = (x1 + x2)/3

Quantum query complexity

If f : {0, 1}n → {0, 1} is a total function, the separation can
be at most a 6th power [Beals ’01]. Conjecture: The 6 can be
replaced with a 2.

To improve it to a 4, it would suffice to prove that

deg(f) = O(d̃eg(f))2.

What are these quantities?

deg(f) is the degree of f as an n-variate polynomial over R.

d̃eg(f) is the approximate degree: i.e. the smallest degree
of any polynomial f̃ such that |̃f (x) − f (x)| 6 1/3 for all x.

For example: deg(OR2) = 2 OR2(x) = x1 + x2 − x1x2

d̃eg(OR2) = 1 e.g. ÕR2(x) = (x1 + x2)/3

Quantum query complexity

If f : {0, 1}n → {0, 1} is a total function, the separation can
be at most a 6th power [Beals ’01]. Conjecture: The 6 can be
replaced with a 2.

To improve it to a 4, it would suffice to prove that

deg(f) = O(d̃eg(f))2.

What are these quantities?

deg(f) is the degree of f as an n-variate polynomial over R.

d̃eg(f) is the approximate degree: i.e. the smallest degree
of any polynomial f̃ such that |̃f (x) − f (x)| 6 1/3 for all x.

For example: deg(OR2) = 2 OR2(x) = x1 + x2 − x1x2

d̃eg(OR2) = 1 e.g. ÕR2(x) = (x1 + x2)/3

Degree and other complexity measures

How does this imply the claim about quantum query
complexity?

Let Q(f), D(f) denote the quantum and classical query
complexities of computing f . Then it’s known that:

Q(f) = Ω(d̃eg(f)) [Beals et al. ’01];
Q(f) = Ω(

√
bs(f)) [Bennett et al. ’97];

D(f) = O(deg(f) bs(f)) [Midrijānis ’05].

In the above bs(f) is the block sensitivity of f .

Hence we would have D(f) ?
= O(d̃eg(f)2 bs(f)) = O(Q(f)4).

Degree and other complexity measures

How does this imply the claim about quantum query
complexity?

Let Q(f), D(f) denote the quantum and classical query
complexities of computing f . Then it’s known that:

Q(f) = Ω(d̃eg(f)) [Beals et al. ’01];
Q(f) = Ω(

√
bs(f)) [Bennett et al. ’97];

D(f) = O(deg(f) bs(f)) [Midrijānis ’05].

In the above bs(f) is the block sensitivity of f .

Hence we would have D(f) ?
= O(d̃eg(f)2 bs(f)) = O(Q(f)4).

Degree and other complexity measures

How does this imply the claim about quantum query
complexity?

Let Q(f), D(f) denote the quantum and classical query
complexities of computing f . Then it’s known that:

Q(f) = Ω(d̃eg(f)) [Beals et al. ’01];
Q(f) = Ω(

√
bs(f)) [Bennett et al. ’97];

D(f) = O(deg(f) bs(f)) [Midrijānis ’05].

In the above bs(f) is the block sensitivity of f .

Hence we would have D(f) ?
= O(d̃eg(f)2 bs(f)) = O(Q(f)4).

Quantum property testing

The field of property testing works in a setting where we
would like to determine whether some very large object has a
property, or is far away from having that property, by making
very few queries to the object.

Property testing
Let X be a set of objects and d : X × X→ [0, 1] be a
distance measure on X.
A subset P ⊆ X is called a property.
An object x ∈ X is ε-far from P if d(x, y) > ε for all y ∈ P;
x is ε-close to P if there is a y ∈ P such that d(x, y) 6 ε.

An ε-property tester for P is an algorithm that receives as
input either an x ∈ P or an x that is ε-far from P, and that
distinguishes these two cases with success probability at
least 2/3.

Quantum property testing

The field of property testing works in a setting where we
would like to determine whether some very large object has a
property, or is far away from having that property, by making
very few queries to the object.

Property testing
Let X be a set of objects and d : X × X→ [0, 1] be a
distance measure on X.
A subset P ⊆ X is called a property.
An object x ∈ X is ε-far from P if d(x, y) > ε for all y ∈ P;
x is ε-close to P if there is a y ∈ P such that d(x, y) 6 ε.

An ε-property tester for P is an algorithm that receives as
input either an x ∈ P or an x that is ε-far from P, and that
distinguishes these two cases with success probability at
least 2/3.

Quantum property testing

The field of property testing works in a setting where we
would like to determine whether some very large object has a
property, or is far away from having that property, by making
very few queries to the object.

Property testing
Let X be a set of objects and d : X × X→ [0, 1] be a
distance measure on X.
A subset P ⊆ X is called a property.
An object x ∈ X is ε-far from P if d(x, y) > ε for all y ∈ P;
x is ε-close to P if there is a y ∈ P such that d(x, y) 6 ε.

An ε-property tester for P is an algorithm that receives as
input either an x ∈ P or an x that is ε-far from P, and that
distinguishes these two cases with success probability at
least 2/3.

Quantum property testing

In some cases, quantum property testers can significantly
outperform their classical counterparts. For example:

An exponential speedup for testing whether a sequence of
N integers is periodic (i.e. poly(log N) vs. Ω(N1/4)
queries) [Chakraborty et al. ’10];

Polynomial speedups for testing some properties of
graphs: e.g. bipartiteness, expansion (Õ(N1/3) vs. Ω(N1/2)
queries in both cases) [Ambainis et al. ’11];

. . .

However, most known quantum property-testing algorithms
are based around taking an existing quantum algorithm and
adapting it for the property-testing setting.

Quantum property testing

In some cases, quantum property testers can significantly
outperform their classical counterparts. For example:

An exponential speedup for testing whether a sequence of
N integers is periodic (i.e. poly(log N) vs. Ω(N1/4)
queries) [Chakraborty et al. ’10];

Polynomial speedups for testing some properties of
graphs: e.g. bipartiteness, expansion (Õ(N1/3) vs. Ω(N1/2)
queries in both cases) [Ambainis et al. ’11];

. . .

However, most known quantum property-testing algorithms
are based around taking an existing quantum algorithm and
adapting it for the property-testing setting.

Quantum property testing

Open problem
Could there be an exponential quantum speedup for testing a
graph property?

A graph property is simply a subset of the set of all
adjacency matrices which is invariant under relabelling
the graph vertices.

Examples include bipartiteness, planarity, 3-colourability,
connectivity . . .

No super-polynomial speedup is currently known.

Quantum property testing

Why is this interesting?

It is known that there can be no exponential quantum
speedup for computing functions that are “too
symmetric” [Aaronson and Ambainis ’11], i.e. that are invariant
under any permutation of their inputs.

Graph properties possess an intermediate level of
symmetry.

So it seems that proving that an exponential speedup can,
or cannot, exist would throw light on the role of
symmetry in quantum algorithms.

Also, classically the graph properties that are efficiently
testable have been completely characterised [Alon et al. ’09].
Can we use this characterisation quantumly?

Quantum property testing

Why is this interesting?

It is known that there can be no exponential quantum
speedup for computing functions that are “too
symmetric” [Aaronson and Ambainis ’11], i.e. that are invariant
under any permutation of their inputs.

Graph properties possess an intermediate level of
symmetry.

So it seems that proving that an exponential speedup can,
or cannot, exist would throw light on the role of
symmetry in quantum algorithms.

Also, classically the graph properties that are efficiently
testable have been completely characterised [Alon et al. ’09].
Can we use this characterisation quantumly?

Quantum property testing

Why is this interesting?

It is known that there can be no exponential quantum
speedup for computing functions that are “too
symmetric” [Aaronson and Ambainis ’11], i.e. that are invariant
under any permutation of their inputs.

Graph properties possess an intermediate level of
symmetry.

So it seems that proving that an exponential speedup can,
or cannot, exist would throw light on the role of
symmetry in quantum algorithms.

Also, classically the graph properties that are efficiently
testable have been completely characterised [Alon et al. ’09].
Can we use this characterisation quantumly?

Quantum property testing

Why is this interesting?

It is known that there can be no exponential quantum
speedup for computing functions that are “too
symmetric” [Aaronson and Ambainis ’11], i.e. that are invariant
under any permutation of their inputs.

Graph properties possess an intermediate level of
symmetry.

So it seems that proving that an exponential speedup can,
or cannot, exist would throw light on the role of
symmetry in quantum algorithms.

Also, classically the graph properties that are efficiently
testable have been completely characterised [Alon et al. ’09].
Can we use this characterisation quantumly?

Summary and further reading

Although there is much known about quantum algorithms
and quantum computational complexity, there are still many
tantalising open problems.

Some of these problems require very little background in
quantum computing itself to solve.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

“A survey of quantum property testing” [AM and de Wolf ’13]

Thanks!

Summary and further reading

Although there is much known about quantum algorithms
and quantum computational complexity, there are still many
tantalising open problems.

Some of these problems require very little background in
quantum computing itself to solve.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

“A survey of quantum property testing” [AM and de Wolf ’13]

Thanks!

Summary and further reading

Although there is much known about quantum algorithms
and quantum computational complexity, there are still many
tantalising open problems.

Some of these problems require very little background in
quantum computing itself to solve.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

“A survey of quantum property testing” [AM and de Wolf ’13]

Thanks!

Summary and further reading

Although there is much known about quantum algorithms
and quantum computational complexity, there are still many
tantalising open problems.

Some of these problems require very little background in
quantum computing itself to solve.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

“A survey of quantum property testing” [AM and de Wolf ’13]

Thanks!

Average-case simulation of quantum
algorithms

Conjecture A [Aaronson and Ambainis ’09, slightly modified]

Let Q be a quantum algorithm which makes T queries to x.
Then, for any ε > 0, there is a classical algorithm which makes
poly(T, 1/ε, 1/δ) queries to x, and approximates Q’s success
probability to within ±ε on a 1 − δ fraction of inputs.

Given known results, essentially the strongest conjecture
one could make about classical simulation of quantum
query algorithms.

Aaronson and Ambainis show that Conjecture A follows
from the following, more mathematical conjecture...

Average-case simulation of quantum
algorithms

Conjecture A [Aaronson and Ambainis ’09, slightly modified]

Let Q be a quantum algorithm which makes T queries to x.
Then, for any ε > 0, there is a classical algorithm which makes
poly(T, 1/ε, 1/δ) queries to x, and approximates Q’s success
probability to within ±ε on a 1 − δ fraction of inputs.

Given known results, essentially the strongest conjecture
one could make about classical simulation of quantum
query algorithms.

Aaronson and Ambainis show that Conjecture A follows
from the following, more mathematical conjecture...

Average-case simulation of quantum
algorithms

Conjecture A [Aaronson and Ambainis ’09, slightly modified]

Let Q be a quantum algorithm which makes T queries to x.
Then, for any ε > 0, there is a classical algorithm which makes
poly(T, 1/ε, 1/δ) queries to x, and approximates Q’s success
probability to within ±ε on a 1 − δ fraction of inputs.

Given known results, essentially the strongest conjecture
one could make about classical simulation of quantum
query algorithms.

Aaronson and Ambainis show that Conjecture A follows
from the following, more mathematical conjecture...

Influences of variables on low-degree
polynomials

Conjecture B [Aaronson and Ambainis ’09]

Let f : Rn → R be a degree d multivariate polynomial such that
0 6 f (x) 6 1 for all x ∈ {±1}n and Var(f) > ε. Then there exists
j ∈ {1, . . . ,n} such that

Infj(f) > poly(ε/d).

In this conjecture:

Var(f) = E[(f (x) − E[f])2] =
1
2n

∑
x∈{±1}n

f (x) −
1
2n

∑
y∈{±1}n

f (x)

2

Infj(f) =
1

2n+2

∑
x∈{±1}n

(f (x) − f (xj))2

Influences of variables on low-degree
polynomials

Conjecture B [Aaronson and Ambainis ’09]

Let f : Rn → R be a degree d multivariate polynomial such that
0 6 f (x) 6 1 for all x ∈ {±1}n and Var(f) > ε. Then there exists
j ∈ {1, . . . ,n} such that

Infj(f) > poly(ε/d).

In this conjecture:

Var(f) = E[(f (x) − E[f])2] =
1
2n

∑
x∈{±1}n

f (x) −
1
2n

∑
y∈{±1}n

f (x)

2

Infj(f) =
1

2n+2

∑
x∈{±1}n

(f (x) − f (xj))2

Influences of variables on low-degree
polynomials

This conjecture has been proven in a couple of special cases:

If f is symmetric under permutations of the input bits
[Bačkurs ’12];
If f is a multilinear form whose coefficients are equal in
absolute value [AM ’12].

The general case remains open.

