
The Power of Quantum Computation

Ashley Montanaro

Department of Computer Science,
University of Bristol

8 May 2014

Introduction

What can we do with our quantum computers?

This talk:
1 Applications to cryptography
2 Limitations of quantum computers
3 More recent developments in quantum algorithms

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 214 papers
on quantum algorithms alone, so this is necessarily a partial
view. . .

http://math.nist.gov/quantum/zoo/

Introduction

What can we do with our quantum computers?

This talk:
1 Applications to cryptography
2 Limitations of quantum computers
3 More recent developments in quantum algorithms

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 214 papers
on quantum algorithms alone, so this is necessarily a partial
view. . .

http://math.nist.gov/quantum/zoo/

Introduction

What can we do with our quantum computers?

This talk:
1 Applications to cryptography
2 Limitations of quantum computers
3 More recent developments in quantum algorithms

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 214 papers
on quantum algorithms alone, so this is necessarily a partial
view. . .

http://math.nist.gov/quantum/zoo/

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best classical algorithm we have for factorisation (the
number field sieve) runs in time

exp(O(n1/3(log n)2/3)).

The RSA cryptosystem is based around the hardness of
this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best classical algorithm we have for factorisation (the
number field sieve) runs in time

exp(O(n1/3(log n)2/3)).

The RSA cryptosystem is based around the hardness of
this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best classical algorithm we have for factorisation (the
number field sieve) runs in time

exp(O(n1/3(log n)2/3)).

The RSA cryptosystem is based around the hardness of
this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best classical algorithm we have for factorisation (the
number field sieve) runs in time

exp(O(n1/3(log n)2/3)).

The RSA cryptosystem is based around the hardness of
this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Quantum time complexity

How do we measure the complexity of algorithms which run
on a quantum computer?

We usually use the quantum circuit model: we imagine a
quantum computation as built from a sequence of
elementary operations (“quantum gates”), each acting on
a small number of qubits.

U =

A

B

C
D

E

F

Then the time complexity of the algorithm is (roughly)
modelled by the number of quantum gates used.

Sometimes it is reasonable to measure the complexity of
the algorithms by the number of queries to the input used.

Quantum time complexity

How do we measure the complexity of algorithms which run
on a quantum computer?

We usually use the quantum circuit model: we imagine a
quantum computation as built from a sequence of
elementary operations (“quantum gates”), each acting on
a small number of qubits.

U =

A

B

C
D

E

F

Then the time complexity of the algorithm is (roughly)
modelled by the number of quantum gates used.

Sometimes it is reasonable to measure the complexity of
the algorithms by the number of queries to the input used.

Quantum time complexity

How do we measure the complexity of algorithms which run
on a quantum computer?

We usually use the quantum circuit model: we imagine a
quantum computation as built from a sequence of
elementary operations (“quantum gates”), each acting on
a small number of qubits.

U =

A

B

C
D

E

F

Then the time complexity of the algorithm is (roughly)
modelled by the number of quantum gates used.

Sometimes it is reasonable to measure the complexity of
the algorithms by the number of queries to the input used.

Quantum time complexity

How do we measure the complexity of algorithms which run
on a quantum computer?

We usually use the quantum circuit model: we imagine a
quantum computation as built from a sequence of
elementary operations (“quantum gates”), each acting on
a small number of qubits.

U =

A

B

C
D

E

F

Then the time complexity of the algorithm is (roughly)
modelled by the number of quantum gates used.

Sometimes it is reasonable to measure the complexity of
the algorithms by the number of queries to the input used.

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer executing 109 instructions per
second (comparable to today’s desktop PCs) in 16
minutes.

The fastest computer on the Top500 supercomputer list
(∼ 3.4× 1016 operations per second) in ∼ 1.2× 1017 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer executing 109 instructions per
second (comparable to today’s desktop PCs) in 16
minutes.

The fastest computer on the Top500 supercomputer list
(∼ 3.4× 1016 operations per second) in ∼ 1.2× 1017 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer executing 109 instructions per
second (comparable to today’s desktop PCs) in 16
minutes.

The fastest computer on the Top500 supercomputer list
(∼ 3.4× 1016 operations per second) in ∼ 1.2× 1017 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

The abelian hidden subgroup problem

The underlying mathematical problem which Shor’s algorithm
solves is:

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

On a quantum computer, this problem can be solved
using O(log |G|) queries to f . The algorithm is also
time-efficient for all abelian groups G.

Integer factorisation reduces to the case G = ZM for some
integer M.

The abelian hidden subgroup problem

The underlying mathematical problem which Shor’s algorithm
solves is:

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

On a quantum computer, this problem can be solved
using O(log |G|) queries to f . The algorithm is also
time-efficient for all abelian groups G.

Integer factorisation reduces to the case G = ZM for some
integer M.

The discrete log problem
Other important special cases of the abelian hidden subgroup
problem:

Discrete log problem [Shor ’97]

Given g, x ∈ Z×p for some prime p, find y such that gy = x.

Can be reduced to the hidden subgroup problem on
Zp−1 × Zp−1.
Breaks Diffie-Hellman, ElGamal, DSA, . . .

Elliptic curves (e.g. [Proos and Zalka ’03])
There is a polynomial-time quantum algorithm for the discrete
log problem in the additive group of points on an elliptic
curve over a finite field.

Breaks ECDH, ECDSA, ECxxx, . . .

The discrete log problem
Other important special cases of the abelian hidden subgroup
problem:

Discrete log problem [Shor ’97]

Given g, x ∈ Z×p for some prime p, find y such that gy = x.

Can be reduced to the hidden subgroup problem on
Zp−1 × Zp−1.
Breaks Diffie-Hellman, ElGamal, DSA, . . .

Elliptic curves (e.g. [Proos and Zalka ’03])
There is a polynomial-time quantum algorithm for the discrete
log problem in the additive group of points on an elliptic
curve over a finite field.

Breaks ECDH, ECDSA, ECxxx, . . .

The Shifted Legendre Symbol problem

Shifted Legendre Symbol problem [van Dam et al ’00-’06]

Given access to the function f : Fp → Fp such that f (x) =
(

x+s
p

)
,

where
(

x
p

)
is the Legendre symbol x(p−1)/2 (mod p), find s.

There is a quantum algorithm which solves this problem
in time poly(log p), breaking a proposed secure
pseudorandom number generator [Damgård ’88].
Allows certain algebraically homomorphic cryptosystems
to be broken.
Assume that we have access to a deterministic encryption
function E : Fp → X such that, given the encryptions E(x),
E(y) of x, y ∈ Fp, we can construct E(x + y) and E(xy)
efficiently.
Then (modulo some technicalities) using this algorithm
we can find s efficiently given E(s).

The Shifted Legendre Symbol problem

Shifted Legendre Symbol problem [van Dam et al ’00-’06]

Given access to the function f : Fp → Fp such that f (x) =
(

x+s
p

)
,

where
(

x
p

)
is the Legendre symbol x(p−1)/2 (mod p), find s.

There is a quantum algorithm which solves this problem
in time poly(log p), breaking a proposed secure
pseudorandom number generator [Damgård ’88].

Allows certain algebraically homomorphic cryptosystems
to be broken.
Assume that we have access to a deterministic encryption
function E : Fp → X such that, given the encryptions E(x),
E(y) of x, y ∈ Fp, we can construct E(x + y) and E(xy)
efficiently.
Then (modulo some technicalities) using this algorithm
we can find s efficiently given E(s).

The Shifted Legendre Symbol problem

Shifted Legendre Symbol problem [van Dam et al ’00-’06]

Given access to the function f : Fp → Fp such that f (x) =
(

x+s
p

)
,

where
(

x
p

)
is the Legendre symbol x(p−1)/2 (mod p), find s.

There is a quantum algorithm which solves this problem
in time poly(log p), breaking a proposed secure
pseudorandom number generator [Damgård ’88].
Allows certain algebraically homomorphic cryptosystems
to be broken.
Assume that we have access to a deterministic encryption
function E : Fp → X such that, given the encryptions E(x),
E(y) of x, y ∈ Fp, we can construct E(x + y) and E(xy)
efficiently.
Then (modulo some technicalities) using this algorithm
we can find s efficiently given E(s).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded error).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded error).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded error).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded error).

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in NP, i.e. where we can verify the
solution efficiently.

For example, in the Circuit SAT problem we would like
to find an input to a circuit on n bits such that the output
is 1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in NP, i.e. where we can verify the
solution efficiently.

For example, in the Circuit SAT problem we would like
to find an input to a circuit on n bits such that the output
is 1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in NP, i.e. where we can verify the
solution efficiently.

For example, in the Circuit SAT problem we would like
to find an input to a circuit on n bits such that the output
is 1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

An important generalisation: amplitude amplification.

Amplitude amplification [Brassard et al ’00]

Assume we are given access to a “checking” function f , and a
probabilistic algorithm A such that

Pr[A outputs w such that f (w) = 1] = ε.

Then we can find w such that f (w) = 1 with O(1/
√
ε) uses of f .

Gives a quadratic speed-up over classical algorithms
based on the use of f as a black box.

These primitives can be used to obtain many speedups
over classical algorithms, e.g. finding a collision in a 2-1
function f : [N]→ [N] with O(N1/3) queries [Brassard et al
’98] (but note controversy [Bernstein ’09])

Applications of Grover’s algorithm

An important generalisation: amplitude amplification.

Amplitude amplification [Brassard et al ’00]

Assume we are given access to a “checking” function f , and a
probabilistic algorithm A such that

Pr[A outputs w such that f (w) = 1] = ε.

Then we can find w such that f (w) = 1 with O(1/
√
ε) uses of f .

Gives a quadratic speed-up over classical algorithms
based on the use of f as a black box.

These primitives can be used to obtain many speedups
over classical algorithms, e.g. finding a collision in a 2-1
function f : [N]→ [N] with O(N1/3) queries [Brassard et al
’98] (but note controversy [Bernstein ’09])

What quantum computers can’t do

A number of bounds on the power of quantum computation
are known.

Most results are in the query complexity model where we
assume the algorithm wants to solve some problem given only
access to an oracle as a black box. For example:

Any quantum algorithm solving the unstructured search
problem must use Ω(2n/2) queries [Bennett et al ’97].

Any quantum algorithm finding a collision in a 2-1
function f : [N]→ [N] must use Ω(N1/3) queries to the
function [Aaronson and Shi ’04].

What quantum computers can’t do (yet)

Hidden subgroup problem
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

Solving the HSP for the dihedral group (in a certain way)
gives a quantum algorithm for the shortest vector problem
(SVP) in lattices [Regev ’04].
Solving the HSP for the symmetric group gives a
quantum algorithm for graph isomorphism.

There is no known efficient quantum algorithm (i.e. running in
time poly(log |G|)) for all nonabelian groups G.

In particular, the best known algorithm for the dihedral
group is subexponential-time: 2O(

√
|G|) [Kuperberg ’05].

What quantum computers can’t do (yet)

Hidden subgroup problem
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

Solving the HSP for the dihedral group (in a certain way)
gives a quantum algorithm for the shortest vector problem
(SVP) in lattices [Regev ’04].

Solving the HSP for the symmetric group gives a
quantum algorithm for graph isomorphism.

There is no known efficient quantum algorithm (i.e. running in
time poly(log |G|)) for all nonabelian groups G.

In particular, the best known algorithm for the dihedral
group is subexponential-time: 2O(

√
|G|) [Kuperberg ’05].

What quantum computers can’t do (yet)

Hidden subgroup problem
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

Solving the HSP for the dihedral group (in a certain way)
gives a quantum algorithm for the shortest vector problem
(SVP) in lattices [Regev ’04].
Solving the HSP for the symmetric group gives a
quantum algorithm for graph isomorphism.

There is no known efficient quantum algorithm (i.e. running in
time poly(log |G|)) for all nonabelian groups G.

In particular, the best known algorithm for the dihedral
group is subexponential-time: 2O(

√
|G|) [Kuperberg ’05].

What quantum computers can’t do (yet)

Hidden subgroup problem
Let G be a group. Given access to a function f : G→ X such
that f is constant on the cosets of some subgroup H 6 G, and
distinct on each coset, identify H.

Solving the HSP for the dihedral group (in a certain way)
gives a quantum algorithm for the shortest vector problem
(SVP) in lattices [Regev ’04].
Solving the HSP for the symmetric group gives a
quantum algorithm for graph isomorphism.

There is no known efficient quantum algorithm (i.e. running in
time poly(log |G|)) for all nonabelian groups G.

In particular, the best known algorithm for the dihedral
group is subexponential-time: 2O(

√
|G|) [Kuperberg ’05].

McEliece cryptosystem

The McEliece cryptosystem is (roughly) based on the hardness
of finding transformations between equivalent linear codes.

The McEliece cryptosystem
Let C be an (n, k) linear code which can correct t errors. Let G
be the n× k generator matrix for C, let S be a random k× k
invertible matrix, and let P be a random n× n permutation.
Then the public key is G ′ = SGP.

There can be no efficient attack on this cryptosystem
based on Fourier sampling (the key ingredient in Shor’s
algorithm) [Dinh et al ’10]. . .

. . . however, Grover’s algorithm improves the runtime of
the best known classical algorithms by a square root
[Bernstein ’10].

McEliece cryptosystem

The McEliece cryptosystem is (roughly) based on the hardness
of finding transformations between equivalent linear codes.

The McEliece cryptosystem
Let C be an (n, k) linear code which can correct t errors. Let G
be the n× k generator matrix for C, let S be a random k× k
invertible matrix, and let P be a random n× n permutation.
Then the public key is G ′ = SGP.

There can be no efficient attack on this cryptosystem
based on Fourier sampling (the key ingredient in Shor’s
algorithm) [Dinh et al ’10]. . .

. . . however, Grover’s algorithm improves the runtime of
the best known classical algorithms by a square root
[Bernstein ’10].

McEliece cryptosystem

The McEliece cryptosystem is (roughly) based on the hardness
of finding transformations between equivalent linear codes.

The McEliece cryptosystem
Let C be an (n, k) linear code which can correct t errors. Let G
be the n× k generator matrix for C, let S be a random k× k
invertible matrix, and let P be a random n× n permutation.
Then the public key is G ′ = SGP.

There can be no efficient attack on this cryptosystem
based on Fourier sampling (the key ingredient in Shor’s
algorithm) [Dinh et al ’10]. . .

. . . however, Grover’s algorithm improves the runtime of
the best known classical algorithms by a square root
[Bernstein ’10].

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis ’10].

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis ’10].

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis ’10].

“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis ’10].

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
BPP = BQP!

More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’10]

Data fitting [Wiebe et al ’12]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
BPP = BQP!

More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’10]

Data fitting [Wiebe et al ’12]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
BPP = BQP!

More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’10]

Data fitting [Wiebe et al ’12]

Space-efficient matrix inversion [Ta-Shma ’13]

Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
BPP = BQP!

More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’10]

Data fitting [Wiebe et al ’12]

Space-efficient matrix inversion [Ta-Shma ’13]

Quantum walks
A quantum walk on a graph is a quantum generalisation of a
classical random walk. They have many applications, such as
the element distinctness problem.

Problem
Given a set of n integers, are they all distinct?

Classically, we need to look at all n integers.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis ’03]

Element Distinctness can be solved using O(n2/3) queries.

The algorithm is based on discrete-time quantum walks.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.

Quantum walks
A quantum walk on a graph is a quantum generalisation of a
classical random walk. They have many applications, such as
the element distinctness problem.

Problem
Given a set of n integers, are they all distinct?

Classically, we need to look at all n integers.

Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis ’03]

Element Distinctness can be solved using O(n2/3) queries.

The algorithm is based on discrete-time quantum walks.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.

Quantum walks
A quantum walk on a graph is a quantum generalisation of a
classical random walk. They have many applications, such as
the element distinctness problem.

Problem
Given a set of n integers, are they all distinct?

Classically, we need to look at all n integers.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis ’03]

Element Distinctness can be solved using O(n2/3) queries.

The algorithm is based on discrete-time quantum walks.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.

Quantum walks
A quantum walk on a graph is a quantum generalisation of a
classical random walk. They have many applications, such as
the element distinctness problem.

Problem
Given a set of n integers, are they all distinct?

Classically, we need to look at all n integers.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis ’03]

Element Distinctness can be solved using O(n2/3) queries.

The algorithm is based on discrete-time quantum walks.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.

Quantum walks
A quantum walk on a graph is a quantum generalisation of a
classical random walk. They have many applications, such as
the element distinctness problem.

Problem
Given a set of n integers, are they all distinct?

Classically, we need to look at all n integers.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis ’03]

Element Distinctness can be solved using O(n2/3) queries.

The algorithm is based on discrete-time quantum walks.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.

Some examples
The same quantum walk framework lends itself to many
different search problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al ’03] [Jeffery et al ’12]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5



Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak ’05]

Some examples
The same quantum walk framework lends itself to many
different search problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al ’03] [Jeffery et al ’12]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5



Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak ’05]

Some examples
The same quantum walk framework lends itself to many
different search problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al ’03] [Jeffery et al ’12]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5



Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak ’05]

Some examples
The same quantum walk framework lends itself to many
different search problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al ’03] [Jeffery et al ’12]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5



Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak ’05]

Some examples
The same quantum walk framework lends itself to many
different search problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al ’03] [Jeffery et al ’12]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5


Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak ’05]

Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

However, we now also have many lower bounds in the
black-box model of query complexity, which map out the
power of quantum computation and show its limitations.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!

Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

However, we now also have many lower bounds in the
black-box model of query complexity, which map out the
power of quantum computation and show its limitations.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!

Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

However, we now also have many lower bounds in the
black-box model of query complexity, which map out the
power of quantum computation and show its limitations.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!

Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

However, we now also have many lower bounds in the
black-box model of query complexity, which map out the
power of quantum computation and show its limitations.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!

