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Abstract

We study the quantum query complexity of Boolean functions
in an unbounded error scenario.

Main results:

The unbounded error quantum query complexity is
exactly half of its classical counterpart for any (partial or
total) Boolean function.

A known “black box” approach to convert quantum query
algorithms into communication protocols is optimal even
in the unbounded error setting.

In a related weakly unbounded error setting, there is a
tight multiplicative Θ(log n) separation between quantum
and classical query complexity for a partial Boolean
function.



Motivation

Many models in computational complexity have several
settings where different restrictions are placed on the
success probability to evaluate a Boolean function f .

For example, in the polynomial-time complexity model,
we have:

Model Complexity class
Exact computation P

Bounded error BPP
Unbounded error PP

Can we understand how the gap between quantum and
classical computation changes with different success
probability restrictions?



Query complexity (1)

The quantum/classical query complexity of a Boolean
function f : {0, 1}n → {0, 1} is the number of
quantum/classical queries to its input that are required to
compute f (with some error probability requirement).

We have the following definitions:

Quantity Model Success prob. required
D(f ) Deterministic 1
R(f ) Randomised 2/3

UC(f ) Randomised > 1/2
QE(f ) Quantum 1
Q2(f ) Quantum 2/3
UQ(f ) Quantum > 1/2



Query complexity (2)

There can be an exponential separation between R(f ) and
Q2(f ) for partial f [Simon ’97].
For total f , separation at most polynomial [Beals et al ’01].
The only separation known between D(f ) and QE(f ) for
total f is a factor of 2 [Beals et al ’01, Farhi et al ’98].

e.g. functions ORn(x) = 1 ⇔ ∃i, xi = 1, PARITYn(x) =
⊕

i xi:

Quantity OR PARITY
D(f ) n n
R(f ) Θ(n) n

UC(f ) 1 n
QE(f ) n n/2
Q2(f ) O(

√
n) Θ(n)

UQ(f ) 1 n/2



Sign-representing polynomials

A polynomial p(x) : {0, 1}n → R sign-represents f if
p(x) > 0 when f (x) = 1, and p(x) < 0 when f (x) = 0.

The minimum, over all polynomials p that sign-represent
f , of deg(p) is called sdeg(f ).

Lemma [Buhrman et al ’07]
An unbounded error randomised algorithm for f using d
queries is equivalent to a degree d polynomial p that
sign-represents f , i.e. UC(f ) = sdeg(f ).

Lemma [Beals et al ’01]
The amplitude of the final basis states of a quantum algorithm
using T queries can be written as a multilinear polynomial of
degree at most T.



Unbounded error: quantum vs. classical

Theorem
For any Boolean function f : X → {0, 1} such that X ⊆ {0, 1}n,

UQ(f ) =

⌈
UC(f )

2

⌉
=

⌈
sdeg(f )

2

⌉
.

Proof: [UQ(f ) > sdeg(f )/2]

Let A be an unbounded-error quantum algorithm for f
using UQ(f ) queries.
By the lemma of Beals et al, the acceptance probability of
A can be written as a multilinear polynomial of degree at
most 2UQ(f ).
Hence sdeg(f ) 6 2UQ(f ).



UQ(f) 6 dsdeg(f)/2e

Lemma [Beals et al ’01, Farhi et al ’98]
Let S ⊆ [n] be a set of indices of variables. Then there exists a
quantum algorithm that computes

⊕
i∈S xi using d|S|/2e

queries.

Proof sketch:

Write the sign-representing polynomial p as
p(x) =

∑
s∈{0,1}n p̂(s)(−1)x·s (Fourier representation).

Rewrite as normalised difference of 2 sums of +ve terms.
Quantum algorithm picks a term s with probability |p̂(s)|
and computes (−1)x·s.
Uses at most d|sdeg(f )|/2e queries and succeeds with
probability > 1/2.



Query algorithm 7→ communication protocol

Lemma [Buhrman et al ’98]
Let F : {0, 1}n → {0, 1}, and FL : {0, 1}n × {0, 1}n → {0, 1} denote
the distributed function of F induced by the bitwise function
L : {0, 1}× {0, 1} → {0, 1}. That is, FL(x, y) = F(z), where each bit
of z is zi = L(xi, yi).

If there is a quantum algorithm that computes F using T
queries, with success prob. p, then there is an O(T log n)-qubit
communication protocol for FL, with success prob. p.

So quantum query algorithms induce quantum
communication protocols, and quantum communication
lower bounds induce query lower bounds.
Gives (e.g.) an O(

√
n log n) quantum protocol for

disjointness [Buhrman et al ’98].



Optimality of the reduction

This reduction has Θ(log n) overhead... could we do better?

Theorem (1)
Let A be a procedure that, for any function f : {0, 1}n → {0, 1},
converts a nondeterministic (resp. exact) quantum algorithm
for f using T(n) queries into a nondeterministic (resp. exact)
quantum communication protocol for f⊕ using O(T(n)D(n))

qubits. Then D(n) = Ω(log(n/T(n))).

Theorem (2)
Let A be a procedure that, for any function f : {0, 1}n → {0, 1},
converts an unbounded error quantum algorithm for f using
T(n) queries into an unbounded error quantum
communication protocol for f ∧ which uses O(T(n)D(n))

qubits. Then D(n) = Ω(log(n/T(n))).



Proof idea

In both cases: find a function such that we can upper bound
the quantum query complexity, and lower bound the
communication complexity of the distributed variant.

1 Function used: a Fourier sampling problem [Bernstein
and Vazirani ’97]. Distributed variant gives rise to the
equality function, for which exact/nondeterministic lower
bounds are known.

2 Function used: ODD-MAX-BIT (evaluates to 1 if highest
index of a 1 bit is odd). Easy to solve with one classical
query. Distributed problem induces the INDEX problem,
which then induces a solution to PARITY.



The weakly unbounded error model

What happens if we trade off success probability and the
number of queries used?

The bias β of a quantum or classical query algorithm
which succeeds with probability p > 1/2 is p − 1/2.

The weakly unbounded error cost of the algorithm is
equal to the number of queries plus log 1/2β.

WUC(f ) is the minimum cost over all classical algorithms.

WUQ(f ) is the minimum cost over all quantum
algorithms.

Example:
WUC(ORn) = Θ(log n), WUQ(ORn) = Θ(log n).



Weakly unbounded error: lower bound

Lemma
For any function f : {0, 1}n → {0, 1}, WUC(f ) 6 2WUQ(f ) log n.

Proof based on the following lemma:

Lemma [Buhrman et al ’07]
Let p be a multilinear polynomial of degree d that
sign-represents f : {0, 1}n → {0, 1} with bias β. Define
N =

∑d
i=0

(n
i

)
. Then there also exists a multilinear polynomial

q(x) =
∑

S∈Sd
q̂(S)(−1)xS of the same degree and bias β/

√
N

that sign-represents f , such that
∑

S∈Sd
|q̂(S)| = 1.

(Proof sketch: by lemma of Beals et al, quantum algorithm ⇒
sign-representing polynomial. By this lemma,
sign-representing polynomial ⇒ classical algorithm.)



Weakly unbounded error: quantum-classical
separation

Idea: Find a function for which the quantum query complexity
is O(1), but the classical query complexity is Ω(log n).

We use the well-known Fourier Sampling problem of
[Bernstein and Vazirani ’97].

Definition: Fourier Sampling
For x, r ∈ {0, 1}m, let Fr be a bit string of length n = 2m whose
x-th bit is Fr

x =
∑

i xi · ri mod 2. Let g be another bit string of
length n.

Then the Fourier Sampling function is defined by FS(Fr, g) = gr.



Proof idea

Quantum upper bound is easy. Classical lower bound proof
idea:

Show that many queries are needed for any classical
algorithm to achieve a high bias for the FS problem.
Achieve this by picking the string g at random and using
a probabilistic method by counting the number of classical
algorithms that use a small number of queries.

We now have an additive O(1) vs. Ω(log n) separation.
Convert this to be a multiplicative separation by replacing
each input bit by the parity of T bits. We have:

Theorem
There is a partial function f : {0, 1}n → {0, 1} such that
WUC(f ) = Ω(WUQ(f ) log n).



Conclusions and conjectures

We exactly characterised unbounded error quantum
query complexity.
We have given a tight quantum-classical gap for weakly
unbounded error QC for partial functions.
We conjecture that for all total functions f , it holds that
WUC(f ) = O(WUQ(f )). We know:

Theorem
For the threshold function defined by THk(x) = 1 iff |x| > k,
WUC(THk) = WUQ(THk) = Θ(log n).

The factor of 2 separation between UQ and UC is the
same as the maximal known separation between the exact
quantum and classical QCs of total Boolean functions – is
this optimal?


