Unbounded error quantum query complexity

Ashley Montanaro¹, Harumichi Nishimura² and Rudy Raymond³

¹Department of Computer Science, University of Bristol, UK ²School of Science, Osaka Prefecture University, Japan ³Tokyo Research Laboratory, IBM Research, Japan

arXiv:0712.1446

Abstract

We study the quantum query complexity of Boolean functions in an **unbounded error** scenario.

Main results:

- The unbounded error quantum query complexity is exactly half of its classical counterpart for any (partial or total) Boolean function.
- A known "black box" approach to convert quantum query algorithms into communication protocols is optimal even in the unbounded error setting.
- In a related weakly unbounded error setting, there is a tight multiplicative Θ(log n) separation between quantum and classical query complexity for a partial Boolean function.

Motivation

- Many models in computational complexity have several settings where different restrictions are placed on the success probability to evaluate a Boolean function *f*.
- For example, in the polynomial-time complexity model, we have:

Model	Complexity class
Exact computation	Р
Bounded error	BPP
Unbounded error	PP

• Can we understand how the gap between quantum and classical computation changes with different success probability restrictions?

Query complexity (1)

- The quantum/classical query complexity of a Boolean function *f*: {0, 1}ⁿ → {0, 1} is the number of quantum/classical queries to its input that are required to compute *f* (with some error probability requirement).
- We have the following definitions:

Quantity	Model	Success prob. required
D(f)	Deterministic	1
R(f)	Randomised	2/3
UC(f)	Randomised	> 1/2
$Q_E(f)$	Quantum	1
$Q_2(f)$	Quantum	2/3
UQ(f)	Quantum	> 1/2

Query complexity (2)

- There can be an exponential separation between R(f) and $Q_2(f)$ for partial f [Simon '97].
- For total *f*, separation at most polynomial [Beals et al '01].
- The only separation known between *D*(*f*) and *Q*_{*E*}(*f*) for total *f* is a factor of 2 [Beals et al '01, Farhi et al '98].

e.g. functions
$$OR_n(x) = 1 \Leftrightarrow \exists i, x_i = 1, PARITY_n(x) = \bigoplus_i x_i$$
:

Quantity	OR	PARITY
D(f)	п	п
R(f)	$\Theta(n)$	п
UC(f)	1	п
$Q_E(f)$	п	<i>n</i> /2
$Q_2(f)$	$O(\sqrt{n})$	$\Theta(n)$
UQ(f)	1	<i>n</i> /2

Sign-representing polynomials

- A polynomial $p(x) : \{0, 1\}^n \to \mathbb{R}$ sign-represents f if p(x) > 0 when f(x) = 1, and p(x) < 0 when f(x) = 0.
- The minimum, over all polynomials *p* that sign-represent *f*, of *deg*(*p*) is called *sdeg*(*f*).

Lemma [Buhrman et al '07]

An unbounded error randomised algorithm for f using d queries is equivalent to a degree d polynomial p that sign-represents f, i.e. UC(f) = sdeg(f).

Lemma [Beals et al '01]

The amplitude of the final basis states of a quantum algorithm using T queries can be written as a multilinear polynomial of degree at most T.

Unbounded error: quantum vs. classical

Theorem

For any Boolean function $f : X \to \{0, 1\}$ such that $X \subseteq \{0, 1\}^n$,

$$UQ(f) = \left\lceil \frac{UC(f)}{2} \right\rceil = \left\lceil \frac{sdeg(f)}{2} \right\rceil.$$

Proof: $[UQ(f) \ge sdeg(f)/2]$

- Let *A* be an unbounded-error quantum algorithm for *f* using *UQ*(*f*) queries.
- By the lemma of Beals et al, the acceptance probability of A can be written as a multilinear polynomial of degree at most 2UQ(f).
- Hence $sdeg(f) \leq 2UQ(f)$.

$UQ(f) \leqslant \lceil sdeg(f)/2 \rceil$

Lemma [Beals et al '01, Farhi et al '98]

Let $S \subseteq [n]$ be a set of indices of variables. Then there exists a quantum algorithm that computes $\bigoplus_{i \in S} x_i$ using $\lceil |S|/2 \rceil$ queries.

Proof sketch:

- Write the sign-representing polynomial *p* as $p(x) = \sum_{s \in \{0,1\}^n} \hat{p}(s) (-1)^{x \cdot s}$ (Fourier representation).
- Rewrite as normalised difference of 2 sums of +ve terms.
- Quantum algorithm picks a term *s* with probability $|\hat{p}(s)|$ and computes $(-1)^{x \cdot s}$.
- Uses at most [|*sdeg*(*f*)|/2] queries and succeeds with probability > 1/2.

Query algorithm \mapsto **communication protocol**

Lemma [Buhrman et al '98]

Let $F : \{0, 1\}^n \to \{0, 1\}$, and $F^L : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$ denote the distributed function of *F* induced by the bitwise function $L : \{0, 1\} \times \{0, 1\} \to \{0, 1\}$. That is, $F^L(x, y) = F(z)$, where each bit of *z* is $z_i = L(x_i, y_i)$.

If there is a quantum algorithm that computes *F* using *T* queries, with success prob. *p*, then there is an $O(T \log n)$ -qubit communication protocol for F^L , with success prob. *p*.

- So quantum query algorithms induce quantum communication protocols, and quantum communication lower bounds induce query lower bounds.
- Gives (e.g.) an O(√n log n) quantum protocol for disjointness [Buhrman et al '98].

Optimality of the reduction

This reduction has $\Theta(\log n)$ overhead... could we do better?

Theorem (1)

Let \mathcal{A} be a procedure that, for any function $f : \{0, 1\}^n \to \{0, 1\}$, converts a nondeterministic (resp. exact) quantum algorithm for f using T(n) queries into a nondeterministic (resp. exact) quantum communication protocol for f^{\oplus} using O(T(n)D(n)) qubits. Then $D(n) = \Omega(\log(n/T(n)))$.

Theorem (2)

Let \mathcal{A} be a procedure that, for any function $f : \{0, 1\}^n \to \{0, 1\}$, converts an unbounded error quantum algorithm for f using T(n) queries into an unbounded error quantum communication protocol for f^{\wedge} which uses O(T(n)D(n)) qubits. Then $D(n) = \Omega(\log(n/T(n)))$.

Proof idea

In both cases: find a function such that we can upper bound the quantum query complexity, and lower bound the communication complexity of the distributed variant.

- Function used: a Fourier sampling problem [Bernstein and Vazirani '97]. Distributed variant gives rise to the equality function, for which exact/nondeterministic lower bounds are known.
- Function used: ODD-MAX-BIT (evaluates to 1 if highest index of a 1 bit is odd). Easy to solve with one classical query. Distributed problem induces the INDEX problem, which then induces a solution to PARITY.

The weakly unbounded error model

What happens if we trade off success probability and the number of queries used?

- The bias β of a quantum or classical query algorithm which succeeds with probability p > 1/2 is p 1/2.
- The weakly unbounded error cost of the algorithm is equal to the number of queries plus $\log 1/2\beta$.
- *WUC*(*f*) is the minimum cost over all classical algorithms.
- *WUQ*(*f*) is the minimum cost over all quantum algorithms.

Example:

• $WUC(OR_n) = \Theta(\log n), WUQ(OR_n) = \Theta(\log n).$

Weakly unbounded error: lower bound

Lemma

For any function $f : \{0, 1\}^n \to \{0, 1\}$, $WUC(f) \leq 2WUQ(f) \log n$.

Proof based on the following lemma:

Lemma [Buhrman et al '07]

Let *p* be a multilinear polynomial of degree *d* that sign-represents $f : \{0, 1\}^n \to \{0, 1\}$ with bias β . Define $N = \sum_{i=0}^{d} {n \choose i}$. Then there also exists a multilinear polynomial $q(x) = \sum_{S \in S_d} \hat{q}(S)(-1)^{x_S}$ of the same degree and bias β/\sqrt{N} that sign-represents *f*, such that $\sum_{S \in S_d} |\hat{q}(S)| = 1$.

(Proof sketch: by lemma of Beals et al, quantum algorithm \Rightarrow sign-representing polynomial. By this lemma, sign-representing polynomial \Rightarrow classical algorithm.)

Weakly unbounded error: quantum-classical separation

Idea: Find a function for which the quantum query complexity is O(1), but the classical query complexity is $\Omega(\log n)$.

We use the well-known Fourier Sampling problem of [Bernstein and Vazirani '97].

Definition: Fourier Sampling

For $x, r \in \{0, 1\}^m$, let F^r be a bit string of length $n = 2^m$ whose x-th bit is $F_x^r = \sum_i x_i \cdot r_i \mod 2$. Let g be another bit string of length n.

Then the *Fourier Sampling* function is defined by $FS(F^r, g) = g_r$.

Proof idea

Quantum upper bound is easy. Classical lower bound proof idea:

- Show that many queries are needed for any classical algorithm to achieve a high bias for the *FS* problem.
- Achieve this by picking the string *g* at random and using a probabilistic method by counting the number of classical algorithms that use a small number of queries.

We now have an additive O(1) vs. $\Omega(\log n)$ separation. Convert this to be a multiplicative separation by replacing each input bit by the parity of *T* bits. We have:

Theorem

There is a partial function $f : \{0, 1\}^n \to \{0, 1\}$ such that $WUC(f) = \Omega(WUQ(f) \log n)$.

Conclusions and conjectures

- We exactly characterised unbounded error quantum query complexity.
- We have given a tight quantum-classical gap for weakly unbounded error QC for partial functions.
- We conjecture that for all total functions *f*, it holds that WUC(f) = O(WUQ(f)). We know:

Theorem

For the threshold function defined by $TH_k(x) = 1$ iff |x| > k, $WUC(TH_k) = WUQ(TH_k) = \Theta(\log n)$.

• The factor of 2 separation between *UQ* and *UC* is the same as the maximal known separation between the exact quantum and classical QCs of total Boolean functions – is this optimal?