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Abstract

•We investigate the generalisation of quantum search of
unstructured and totally ordered sets to search of par-
tially ordered sets (posets).

• In two models, we show that quantum algorithms can
achieve at most a quadratic improvement in query com-
plexity over classical algorithms, up to logarithmic factors;
we also give quantum algorithms that almost achieve this
bound.

• In one model, we give an almost optimal quantum algo-
rithm for searching forest-like posets.

• In the other, we give an optimal O(
√

n) quantum algorithm
for searching posets derived from n × n arrays sorted
along rows and columns.

• This leads to an optimal O(
√

n) quantum algorithm for
finding the intersection of two sorted lists of n integers.

Partially ordered sets

• A partial order on a set S is a relation ≤ such that, for
a, b, c ∈ S, a ≤ a, (a ≤ b) ∧ (b ≤ a) ⇒ a = b, and
(a ≤ b) ∧ (b ≤ c) ⇒ a ≤ c.

• Posets can be expressed by Hasse diagrams:

Two models for search

In the abstract model [4]:
•We are searching for an unknown “marked” element a.

•Querying element x returns <, =, � depending on
whether a < x, a = x, or either a > x or a and x are
incomparable.
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In the concrete model [6]:
• Each element s ∈ S stores an unknown integer S[s].

• For any given integer a, we want to find the unique s such
that S[s] = a.
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General bounds

Theorem. Let S be an n-element poset, and let D(S),
QE(S) and Q2(S) be the number of queries required for an
exact classical, exact quantum, or bounded-error quantum
(respectively) algorithm to find the marked element in S.
Then, in the abstract model,

D(S) = O(Q2(S)2 log n)

Q2(S) = O(
√

D(S) log n
√

log log n)

and in the concrete model,

D(S) = O(Q2(S)2 log n)

QE(S) = O(
√

D(S) log n)

Proof idea (abstract model):

•Reduce poset search to an oracle identification prob-
lem (finding marked element ⇔ identifying an oracle).

• Lower bound: from a result of Servedio and Gortler [7].
Upper bound: from a result of Atici and Servedio [3].

Proof idea (concrete model):

• Lower bound: from the bound of Ambainis on inverting a
permutation [2].

•Upper bound: from Dilworth’s Theorem [5] giving a de-
composition of posets into chains (sets of comparable
elements). Perform binary search on each chain in quan-
tum parallel.

Recursive quantum search

Theorem. Let Pn be the problem of searching an abstract
database, parametrised by an abstract size n, for a known
element which may or may not be in the database. Let T (n)
be the time required for a bounded-error quantum algorithm
to solve Pn, i.e. to find the element, or output “not found”.
Let Pn satisfy the following conditions:
• If n ≤ n0 for some constant n0, then there exists an algo-

rithm to find the element, if it is contained in the database,
in time T (n) ≤ t0, for some constant t0.

• If n > n0, then the database can be divided into k sub-
databases of size at most dn/ke, for some constant k > 1.

• If the element is contained in the original database, then
it is contained in exactly one of these sub-databases.

• Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0.

Then T (n) = O(
√

n).

Proof idea:
• Based on a result of Aaronson and Ambainis [1] on quan-

tum search of spatial regions.

• Split the database some number of times and pick a sub-
database at random, then recurse.

• Perfom some number of iterations of amplitude amplifica-
tion at each recursive step...

• ...then use amplitude amplification on the whole algo-
rithm.

2-dimensional arrays

An interesting poset: an n× n array of distinct integers that
are increasing along rows and columns.
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•We give an optimal quantum algorithm which finds an in-
teger in such an array using O(

√
n) queries.

• Implies an optimal O(n(d−1)/2) algorithm to find an integer
in a d-dimensional n× n× · · · × n array.

• Also implies an optimal O(
√

n) algorithm to find the inter-
section of two sorted lists of n integers.

• The quantum algorithm is based on an asymptotically op-
timal O(n) recursive classical algorithm.

•We use the recursive quantum search theorem above
to convert this to an optimal quantum algorithm.

Sketch of the classical algorithm:

• Perform binary search on the central row (or column) of
the array.

•Can discard at least half the elements, leaving two rec-
tangular subarrays.

•Call this algorithm recursively on these subarrays.

Example: (where green: integer to search for, yellow: not
searched yet, blue: currently being searched, red: dis-
carded)

18 19 22 23 25
12 16 17 20 24
6 8 9 15 21
2 4 7 11 14
1 3 5 10 13

18 19 22 23 25
12 16 17 20 24
6 8 9 15 21
2 4 7 11 14
1 3 5 10 13

Conclusions

•We have given general upper and lower bounds on quan-
tum search of partially ordered sets, in two different mod-
els.

• The non-query transformations used by the algorithms
given here are efficiently implementable.

•Given a poset S to be searched, quantum circuits for
these algorithms can be produced in time polynomial in
the size of S.

Open questions:

• In the abstract model, is there a general lower bound of
Q2(S) = Ω(log n)?

•Can the logarithmic factors in the quantum upper bounds
in both models be improved, e.g. by being changed into
additive terms?

• In the concrete model, could the 2D search algorithm be
extended to arrays that may contain duplicate elements?
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