
Quantum search of partially ordered sets

Ashley Montanaro1

1Department of Computer Science
University of Bristol

Bristol, UK

13th March 2008



Introduction

One of the most significant quantum algorithms developed so
far is Grover’s algorithm for unstructured search [Grover ’97].

? ? ? ? ? ? ?



Introduction

One of the most significant quantum algorithms developed so
far is Grover’s algorithm for unstructured search [Grover ’97].

0 0 0 0 0 1 0



Introduction

One of the most significant quantum algorithms developed so
far is Grover’s algorithm for unstructured search [Grover ’97].

0 0 0 0 0 1 0

Given an arbitrary non-zero function f : [n] 7→ {0, 1},
Grover’s quantum algorithm finds an x such that f (x) = 1,
with constant probability, using only O(

√
n) queries to f .

Important extension to amplitude amplification: given a
probabilistic algorithm A that succeeds with probability p,
and the ability recognise a correct solution, can output a
correct solution with probability O(1) using only O(1/

√p)

uses of A [Brassard et al ’00].



More complicated search

Grover’s algorithm is already a useful primitive to speed up
more complicated classical algorithms. For example, we can:

Find the minimum element in a set of n integers in O(
√

n)

time [Dürr, Høyer ’96],
Find a collision in a 2 → 1 function f : [2n] 7→ [n] in
O(n1/3) time [Brassard et al ’97],
Find a spanning tree in an n-vertex graph in O(n3/2) time
(adjacency matrix model) [Dürr et al ’04],
...

All these applications work by finding a part of the problem in
question that’s essentially unstructured, and running Grover
search on this.



More structured search?

Could we speed up a search problem that has some kind of
recursive structure?

(NB: already known that quantum search of an ordered
n-element list requires Ω(log n) time [Høyer et al ’01])



More structured search?

Consider the problem of (classical) search of an abstract
“database” Dn, parametrised by a problem size n, with the
following characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.

If the element is in the original database, then it is in
exactly one of these sub-databases.

Each division into sub-databases uses time f (n), where
f (n) = O(n1−ε) for some ε > 0.

What is the time T(n) to find an element in Dn?



More structured search?

Consider the problem of (classical) search of an abstract
“database” Dn, parametrised by a problem size n, with the
following characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.

If the element is in the original database, then it is in
exactly one of these sub-databases.

Each division into sub-databases uses time f (n), where
f (n) = O(n1−ε) for some ε > 0.

What is the time T(n) to find an element in Dn?



More structured search?

Consider the problem of (classical) search of an abstract
“database” Dn, parametrised by a problem size n, with the
following characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.

If the element is in the original database, then it is in
exactly one of these sub-databases.

Each division into sub-databases uses time f (n), where
f (n) = O(n1−ε) for some ε > 0.

What is the time T(n) to find an element in Dn?



More structured search?

Consider the problem of (classical) search of an abstract
“database” Dn, parametrised by a problem size n, with the
following characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.

If the element is in the original database, then it is in
exactly one of these sub-databases.

Each division into sub-databases uses time f (n), where
f (n) = O(n1−ε) for some ε > 0.

What is the time T(n) to find an element in Dn?



Recursive quantum search?

This is easy to solve by the recurrence

T(n) = k T(n/k) + O(n1−ε)

= O(n)

We would like to find a quantum version of this recurrence.
Can we get a speed-up by searching the sub-databases in
quantum parallel?



Recursive quantum search?

This is easy to solve by the recurrence

T(n) = k T(n/k) + O(n1−ε) = O(n)

We would like to find a quantum version of this recurrence.
Can we get a speed-up by searching the sub-databases in
quantum parallel?



Recursive quantum search theorem

Consider the problem of searching an abstract “database” Dn,
parametrised by a problem size n, with the following
characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.
If the element is in the original database, then it is in
exactly one of these sub-databases.
Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0.

Then there is a quantum algorithm that finds an element in Dn
with constant probability in time T(n) = O(

√
n).



Recursive quantum search theorem

Consider the problem of searching an abstract “database” Dn,
parametrised by a problem size n, with the following
characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.
If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.

If the element is in the original database, then it is in
exactly one of these sub-databases.
Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0.

Then there is a quantum algorithm that finds an element in Dn
with constant probability in time T(n) = O(

√
n).



Recursive quantum search theorem

Consider the problem of searching an abstract “database” Dn,
parametrised by a problem size n, with the following
characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.
If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.
If the element is in the original database, then it is in
exactly one of these sub-databases.

Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0.

Then there is a quantum algorithm that finds an element in Dn
with constant probability in time T(n) = O(

√
n).



Recursive quantum search theorem

Consider the problem of searching an abstract “database” Dn,
parametrised by a problem size n, with the following
characteristics:

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0.
If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1.
If the element is in the original database, then it is in
exactly one of these sub-databases.
Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0.

Then there is a quantum algorithm that finds an element in Dn
with constant probability in time T(n) = O(

√
n).



Finding the intersection of two sorted lists

Problem
Given monotone functions f : [n] 7→ Z, g : [n] 7→ Z, output a y
such that f (x) = g(x ′) = y for some x, x ′, if one exists.

1 2 4 4 8 9 10

3 4 5 6 6 7 8

Obvious classical lower bound is 2n queries (have to read
all the input in)
“Obvious” quantum algorithm uses O(

√
n log n) queries

[Buhrman et al ’05] gave an ingenious O(
√

nclog∗ n)

algorithm
Lower bound is Ω(

√
n) queries

We give an algorithm matching this lower bound.



Finding the intersection of two sorted lists

Problem
Given monotone functions f : [n] 7→ Z, g : [n] 7→ Z, output a y
such that f (x) = g(x ′) = y for some x, x ′, if one exists.

1 2 4 4 8 9 10

3 4 5 6 6 7 8

Obvious classical lower bound is 2n queries (have to read
all the input in)
“Obvious” quantum algorithm uses O(

√
n log n) queries

[Buhrman et al ’05] gave an ingenious O(
√

nclog∗ n)

algorithm
Lower bound is Ω(

√
n) queries

We give an algorithm matching this lower bound.



A recursive classical algorithm

Idea: reduce the problem to searching in a 2d array sorted
along rows and columns.

Consider a notional n × n array T where
T(x, y) = f (x) − g(n + 1 − y).
Then finding a zero in T finds a match in the two lists.

10 2 3 4 4 5 6 7
9 1 2 3 3 4 5 6
8 0 1 2 2 3 4 5
4 -4 -3 -2 -2 -1 0 1
4 -4 -3 -2 -2 -1 0 1
2 -6 -5 -4 -4 -3 -2 -1
1 -7 -6 -5 -5 -4 -3 -2

8 7 6 6 5 4 3



A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical
algorithm for this task, then use the recursive quantum search
theorem.

Given an n × n array A:
1 Perform binary search on the middle row/column of A.
2 After binary search, can eliminate two subarrays of A

containing about half the elements in A.
3 We’re left with two subarrays which might contain the

target element: recurse on these subarrays.

Can show T(n) 6 O(log n) + 2T(n/2) = O(n).

(a different optimal classical algorithm was already known
[Linial, Saks ’85], but seems harder to “make quantum”)



A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical
algorithm for this task, then use the recursive quantum search
theorem.

Given an n × n array A:
1 Perform binary search on the middle row/column of A.
2 After binary search, can eliminate two subarrays of A

containing about half the elements in A.
3 We’re left with two subarrays which might contain the

target element: recurse on these subarrays.

Can show T(n) 6 O(log n) + 2T(n/2) = O(n).

(a different optimal classical algorithm was already known
[Linial, Saks ’85], but seems harder to “make quantum”)



A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical
algorithm for this task, then use the recursive quantum search
theorem.

Given an n × n array A:
1 Perform binary search on the middle row/column of A.
2 After binary search, can eliminate two subarrays of A

containing about half the elements in A.
3 We’re left with two subarrays which might contain the

target element: recurse on these subarrays.

Can show T(n) 6 O(log n) + 2T(n/2) = O(n).

(a different optimal classical algorithm was already known
[Linial, Saks ’85], but seems harder to “make quantum”)



Example

18 19 22 23 25

12 16 17 20 24

6 8 9 15 21

2 4 7 11 14

1 3 5 10 13

(green: integer to search for, yellow: not searched yet, blue:
currently being searched, red: discarded)



Example

18 19 22 23 25

12 16 17 20 24

6 8 9 15 21

2 4 7 11 14

1 3 5 10 13

(green: integer to search for, yellow: not searched yet, blue:
currently being searched, red: discarded)



Example

18 19 22 23 25

12 16 17 20 24

6 8 9 15 21

2 4 7 11 14

1 3 5 10 13

(green: integer to search for, yellow: not searched yet, blue:
currently being searched, red: discarded)



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0. 3

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1. 3

Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0. 3

If the element is in the original database, then it is in
exactly one of these sub-databases. 8

We might have more than one zero in the array.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0. 3

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1. 3

Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0. 3

If the element is in the original database, then it is in
exactly one of these sub-databases. 8

We might have more than one zero in the array.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0. 3

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1. 3

Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0. 3

If the element is in the original database, then it is in
exactly one of these sub-databases. 8

We might have more than one zero in the array.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0. 3

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1. 3

Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0. 3

If the element is in the original database, then it is in
exactly one of these sub-databases. 8

We might have more than one zero in the array.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

If n 6 n0 for some constant n0: can find the element in
time T(n) 6 t0, for some constant t0. 3

If n > n0: the database can be divided into k sub-databases
of size at most dn/ke, for some constant k > 1. 3

Each division into sub-databases uses time f (n), where
f (n) = O(n1/2−ε) for some ε > 0. 3

If the element is in the original database, then it is in
exactly one of these sub-databases. 8

We might have more than one zero in the array.



Finishing off the algorithm

Problem: The recursive quantum search algorithm can only
cope with at most one marked element.

Solution:

Note that the zeroes only occur in rectangular blocks,
with at most one block per row and column
If there’s only one such “zero block”, can modify the
search algorithm to pretend that the block contains one
element
If not, to reduce to the single-block case, repeatedly throw
away random rows and columns over several rounds
Can show that with constant probability, one round will
have only one zero block remaining
Can also show that the asymptotic query complexity isn’t
hurt by doing this



Proof idea of the recursive quantum search theorem

Idea: perform the recursive search of the k sub-databases
in quantum parallel.
Want to end up with a recurrence like
T(n) 6 O(n1/2−ε) +

√
k T(n/k) = O(

√
n).

Immediate from amplitude amplification?

Not so fast!
What happens if we perform l levels of recursion then use
amplitude amplication on the resulting kl sub-databases?
Seems to give T(n) 6 klO(n1/2−ε)+ O(kl/2) T(n/kl) = O(n1/2+c)

for some constant c that turns up because of the hidden
constant in the big-O notation

Moral: We have to be very careful about constants in this
recursive algorithm!



Proof idea of the recursive quantum search theorem

Idea: perform the recursive search of the k sub-databases
in quantum parallel.
Want to end up with a recurrence like
T(n) 6 O(n1/2−ε) +

√
k T(n/k) = O(

√
n).

Immediate from amplitude amplification?

Not so fast!
What happens if we perform l levels of recursion then use
amplitude amplication on the resulting kl sub-databases?
Seems to give T(n) 6 klO(n1/2−ε)+ O(kl/2) T(n/kl) = O(n1/2+c)

for some constant c that turns up because of the hidden
constant in the big-O notation

Moral: We have to be very careful about constants in this
recursive algorithm!



Proof idea of the recursive quantum search theorem

Idea: perform the recursive search of the k sub-databases
in quantum parallel.
Want to end up with a recurrence like
T(n) 6 O(n1/2−ε) +

√
k T(n/k) = O(

√
n).

Immediate from amplitude amplification?

Not so fast!
What happens if we perform l levels of recursion then use
amplitude amplication on the resulting kl sub-databases?
Seems to give T(n) 6 klO(n1/2−ε)+ O(kl/2) T(n/kl) = O(n1/2+c)

for some constant c that turns up because of the hidden
constant in the big-O notation

Moral: We have to be very careful about constants in this
recursive algorithm!



A general recursive quantum search algorithm

We extend a powerful result of [Aaronson and Ambainis
’05] on quantum search of spatial regions.

Idea: it’s more efficient to do fewer iterations of amplitude
amplification

So our recursive algorithm performs “a small amount of”
amplitude amplification on an algorithm that consists of:

Divide the database into some number of sub-databases
Pick one of these sub-databases at random
Call yourself on that sub-database

Then it does “lots” of amplitude amplification at the end.

Importantly, can find exact bounds on the time required
to achieve a certain success probability!



A general recursive quantum search algorithm

We extend a powerful result of [Aaronson and Ambainis
’05] on quantum search of spatial regions.

Idea: it’s more efficient to do fewer iterations of amplitude
amplification

So our recursive algorithm performs “a small amount of”
amplitude amplification on an algorithm that consists of:

Divide the database into some number of sub-databases
Pick one of these sub-databases at random
Call yourself on that sub-database

Then it does “lots” of amplitude amplification at the end.

Importantly, can find exact bounds on the time required
to achieve a certain success probability!



Extensions

The quantum algorithm for finding an integer in a n × n
array of distinct integers immediately extends to a
d-dimensional n × n × · · · × n array sorted in each
dimension (complexity is O(n(d−1)/2))

This is a special case of a more general problem: quantum
search of partially ordered sets (posets).

One can show general upper and lower bounds for this
task (summary: quantum computers can achieve at most a
quadratic speed-up (approx) for any poset, and barely any
speed-up at all for some posets).



Summary and further work

We have outlined a general approach for achieving a
quantum speed-up from recursive classical search
algorithms.
This gives a quantum algorithm that finds the intersection
of two sorted n-element lists in O(

√
n) time.

Future work?
Extend the recursive quantum search theorem to finding
multiple marked elements?
Further applications? Finding problems where the
speed-up is more dramatic?

Further reading: “Quantum search of partially ordered sets”,
http://arxiv.org/abs/quant-ph/0702196

http://arxiv.org/abs/quant-ph/0702196


Summary and further work

We have outlined a general approach for achieving a
quantum speed-up from recursive classical search
algorithms.
This gives a quantum algorithm that finds the intersection
of two sorted n-element lists in O(

√
n) time.

Future work?
Extend the recursive quantum search theorem to finding
multiple marked elements?
Further applications? Finding problems where the
speed-up is more dramatic?

Further reading: “Quantum search of partially ordered sets”,
http://arxiv.org/abs/quant-ph/0702196

http://arxiv.org/abs/quant-ph/0702196


Summary and further work

We have outlined a general approach for achieving a
quantum speed-up from recursive classical search
algorithms.
This gives a quantum algorithm that finds the intersection
of two sorted n-element lists in O(

√
n) time.

Future work?
Extend the recursive quantum search theorem to finding
multiple marked elements?
Further applications? Finding problems where the
speed-up is more dramatic?

Further reading: “Quantum search of partially ordered sets”,
http://arxiv.org/abs/quant-ph/0702196

http://arxiv.org/abs/quant-ph/0702196


Advertisement

Bristol Summer School on Probabilistic
Techniques in Computer Science

6-11 July 2008

Keynote speaker: Bela Bollobás.
Topics include: randomised algorithms, communication
complexity, concentration of measure, data stream
algorithms, ...

http://www.cs.bris.ac.uk/probtcs08/

http://www.cs.bris.ac.uk/probtcs08/

