Quantum search of partially ordered sets

Ashley Montanaro!

lDepartment of Computer Science
University of Bristol
Bristol, UK

13th March 2008

Bl University of [QIIICIST
BRISTOL




Introduction

One of the most significant quantum algorithms developed so
far is Grover’s algorithm for unstructured search [Grover "97].



Introduction

One of the most significant quantum algorithms developed so
far is Grover’s algorithm for unstructured search [Grover 97].

EEEEREE




Introduction

One of the most significant quantum algorithms developed so
far is Grover’s algorithm for unstructured search [Grover "97].

EEEEEEN

e Given an arbitrary non-zero function f : [n] — {0, 1},
Grover’s quantum algorithm finds an x such that f(x) =1,
with constant probability, using only O(+/n) queries to f.

e Important extension to amplitude amplification: given a
probabilistic algorithm A that succeeds with probability p,
and the ability recognise a correct solution, can output a
correct solution with probability O(1) using only O(1/,/p)
uses of A [Brassard et al "00].



More complicated search

Grover’s algorithm is already a useful primitive to speed up
more complicated classical algorithms. For example, we can:

@ Find the minimum element in a set of n integers in O(y/n)
time [Diirr, Hoyer "96],

e Find a collision in a 2 — 1 function f : [2n] — [n] in
O(n'/3) time [Brassard et al '97],

e Find a spanning tree in an n-vertex graph in O(n%/2) time
(adjacency matrix model) [Diirr et al "04],

All these applications work by finding a part of the problem in
question that’s essentially unstructured, and running Grover
search on this.



More structured search?

Could we speed up a search problem that has some kind of
recursive structure?

(NB: already known that quantum search of an ordered
n-element list requires Q) (logn) time [Hoyer et al "01])



More structured search?

Consider the problem of (classical) search of an abstract
“database” D,,, parametrised by a problem size n, with the
following characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tgy, for some constant ¢y.



More structured search?

Consider the problem of (classical) search of an abstract
“database” D,,, parametrised by a problem size n, with the
following characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tgy, for some constant ¢y.

@ If n > ny: the database can be divided into k sub-databases
of size at most [n/k]|, for some constant k > 1.



More structured search?

Consider the problem of (classical) search of an abstract
“database” D,,, parametrised by a problem size n, with the
following characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tgy, for some constant ¢y.

@ If n > ny: the database can be divided into k sub-databases
of size at most [n/k]|, for some constant k > 1.

@ If the element is in the original database, then it is in
exactly one of these sub-databases.



More structured search?

Consider the problem of (classical) search of an abstract
“database” D,,, parametrised by a problem size n, with the
following characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tgy, for some constant ¢y.

@ If n > ny: the database can be divided into k sub-databases
of size at most [n/k]|, for some constant k > 1.

@ If the element is in the original database, then it is in
exactly one of these sub-databases.

@ Each division into sub-databases uses time f (1), where
fln) = O(n'~¢€) for some € > 0.

What is the time T(n) to find an element in D,,?



Recursive quantum search?

This is easy to solve by the recurrence

T(n) =k T(n/k) + O(n'~¢)



Recursive quantum search?

This is easy to solve by the recurrence

T(n) =k T(n/k) +O(n'=¢) = O(n)

We would like to find a quantum version of this recurrence.
Can we get a speed-up by searching the sub-databases in
quantum parallel?



Recursive quantum search theorem

Consider the problem of searching an abstract “database” D,,,
parametrised by a problem size n, with the following
characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tg, for some constant ¢y.



Recursive quantum search theorem

Consider the problem of searching an abstract “database” D,,,
parametrised by a problem size n, with the following
characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tg, for some constant ¢y.

@ If n > ny: the database can be divided into k sub-databases
of size at most [n/k]|, for some constant k > 1.



Recursive quantum search theorem

Consider the problem of searching an abstract “database” D,,,
parametrised by a problem size n, with the following
characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tg, for some constant ¢y.

@ If n > ny: the database can be divided into k sub-databases
of size at most [n/k]|, for some constant k > 1.

@ If the element is in the original database, then it is in
exactly one of these sub-databases.



Recursive quantum search theorem

Consider the problem of searching an abstract “database” D,,,
parametrised by a problem size n, with the following
characteristics:

o If n < ng for some constant ny: can find the element in
time T(n) < tg, for some constant ¢y.

@ If n > ny: the database can be divided into k sub-databases
of size at most [n/k]|, for some constant k > 1.

@ If the element is in the original database, then it is in
exactly one of these sub-databases.

e Each division into sub-databases uses time f(#), where
f(n) = O(n'/?=¢€) for some € > 0.

Then there is a quantum algorithm that finds an element in D,
with constant probability in time T(n) = O(y/n).



Finding the intersection of two sorted lists

Given monotone functions f : [n] — Z, g : [n] — Z, output a y
such that f(x) = g(x’) = y for some x, x’, if one exists.

12|44 |8|9 /|10




Finding the intersection of two sorted lists

Given monotone functions f : [n] — Z, g : [n] — Z, output a y
such that f(x) = g(x’) = y for some x, x’, if one exists.

12|44 |8|9 /|10

@ Obvious classical lower bound is 2n queries (have to read
all the input in)
@ “Obvious” quantum algorithm uses O(y/nlogn) queries

@ [Buhrman et al ‘05] gave an ingenious O(y/nclos™ ")
algorithm

@ Lower bound is Q(/n) queries

We give an algorithm matching this lower bound.



A recursive classical algorithm

Idea: reduce the problem to searching in a 2d array sorted
along rows and columns.

@ Consider a notional n x n array T where
T(x,y) =f(x) —gn+1—y).

@ Then finding a zero in T finds a match in the two lists.

O | (@ [N =
1
B
1
W
1
N
1
N
_




A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical
algorithm for this task, then use the recursive quantum search
theorem.



A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical
algorithm for this task, then use the recursive quantum search
theorem.

Given an nn x n array A:
@ Perform binary search on the middle row/column of A.

@ After binary search, can eliminate two subarrays of A
containing about half the elements in A.

@ We're left with two subarrays which might contain the
target element: recurse on these subarrays.



A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical
algorithm for this task, then use the recursive quantum search
theorem.

Given an nn x n array A:
@ Perform binary search on the middle row/column of A.

@ After binary search, can eliminate two subarrays of A
containing about half the elements in A.

@ We're left with two subarrays which might contain the
target element: recurse on these subarrays.

Can show T'(n) < O(logn) 4+ 2T(n/2) = O(n).

(a different optimal classical algorithm was already known
[Linial, Saks "85], but seems harder to “make quantum™)



1|3|5|10|13

2,47 |11|14

6 | 8|9 (15|21

12|16 | 17 | 20 | 24

1819 122 |23 |25

( integer to search for, yellow: not searched yet, blue:
currently being searched, red: discarded)



1|3|5|10|13

2,47 |11 |14

6 | 8|9 15|21

12|16 | 17 | 20 | 24

18 |19 |22 | 23 | 25

( integer to search for, yellow: not searched yet, blue:
currently being searched, red: discarded)



1|3|5|10|13

2 4|7 |11|14

6 | 8|9 15|21

12 |16 |17 | 20 | 24

18 |19 | 22 | 23 | 25

( integer to search for, yellow: not searched yet, blue:
currently being searched, red: discarded)



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

o If n < ng for some constant ny: can find the element in
time T(n) < ty, for some constant f.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

o If n < ng for some constant ny: can find the element in
time T(n) < ty, for some constant f.

@ If n > np: the database can be divided into k sub-databases
of size at most [n/k], for some constant k > 1.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

o If n < ng for some constant ny: can find the element in
time T(n) < ty, for some constant f.

@ If n > np: the database can be divided into k sub-databases
of size at most [n/k], for some constant k > 1.

@ Each division into sub-databases uses time f (1), where
f(n) = O(n'/?=¢€) for some € > 0.



Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.

o If n < ng for some constant ny: can find the element in
time T(n) < ty, for some constant f.

@ If n > np: the database can be divided into k sub-databases
of size at most [n/k], for some constant k > 1.

@ Each division into sub-databases uses time f (1), where
f(n) = O(n'/?=¢€) for some € > 0.

o If the element is in the original database, then it is in
exactly one of these sub-databases. X

We might have more than one zero in the array.



Finishing off the algorithm

Problem: The recursive quantum search algorithm can only
cope with at most one marked element.

Solution:
@ Note that the zeroes only occur in rectangular blocks,

with at most one block per row and column

@ If there’s only one such “zero block”, can modify the
search algorithm to pretend that the block contains one
element

@ If not, to reduce to the single-block case, repeatedly throw
away random rows and columns over several rounds

@ Can show that with constant probability, one round will
have only one zero block remaining

@ Can also show that the asymptotic query complexity isn’t
hurt by doing this



Proof idea of the recursive quantum search theorem

@ Idea: perform the recursive search of the k sub-databases
in quantum parallel.

e Want to end up with a recurrence like
T(n) < O(n'/?~¢) + VkT(n/k) = O(V/n).
@ Immediate from amplitude amplification?



Proof idea of the recursive quantum search theorem

@ Idea: perform the recursive search of the k sub-databases
in quantum parallel.

e Want to end up with a recurrence like
T(n) < O(n'/?~¢) + VkT(n/k) = O(V/n).
@ Immediate from amplitude amplification?

Not so fast!
e What happens if we perform [ levels of recursion then use
amplitude amplication on the resulting k' sub-databases?
@ Seems to give T(n) < K'O(n'/?=¢)+O(k/?) T(n/k') = O(n'/2+¢)

o for some constant c¢ that turns up because of the hidden
constant in the big-O notation



Proof idea of the recursive quantum search theorem

@ Idea: perform the recursive search of the k sub-databases
in quantum parallel.

e Want to end up with a recurrence like
T(n) < O(n'/?~¢) + VkT(n/k) = O(V/n).
@ Immediate from amplitude amplification?

Not so fast!
e What happens if we perform [ levels of recursion then use
amplitude amplication on the resulting k' sub-databases?
@ Seems to give T(n) < K'O(n'/?=¢)+O(k/?) T(n/k') = O(n'/2+¢)
o for some constant c¢ that turns up because of the hidden
constant in the big-O notation
Moral: We have to be very careful about constants in this
recursive algorithm!



A general recursive quantum search algorithm

@ We extend a powerful result of [Aaronson and Ambainis
’05] on quantum search of spatial regions.

@ Idea: it’s more efficient to do fewer iterations of amplitude
amplification



A general recursive quantum search algorithm

@ We extend a powerful result of [Aaronson and Ambainis
’05] on quantum search of spatial regions.

@ Idea: it’s more efficient to do fewer iterations of amplitude
amplification

@ So our recursive algorithm performs “a small amount of”
amplitude amplification on an algorithm that consists of:

e Divide the database into some number of sub-databases
e Pick one of these sub-databases at random
e Call yourself on that sub-database

@ Then it does “lots” of amplitude amplification at the end.

@ Importantly, can find exact bounds on the time required
to achieve a certain success probability!



Extensions

@ The quantum algorithm for finding an integer ina n x n
array of distinct integers immediately extends to a
d-dimensional n x n x --- x n array sorted in each
dimension (complexity is O(n'd-11/2))

e This is a special case of a more general problem: quantum
search of partially ordered sets (posets).

@ One can show general upper and lower bounds for this
task (summary: quantum computers can achieve at most a
quadratic speed-up (approx) for any poset, and barely any
speed-up at all for some posets).



Summary and further work

@ We have outlined a general approach for achieving a
quantum speed-up from recursive classical search
algorithms.

e This gives a quantum algorithm that finds the intersection
of two sorted n-element lists in O(y/n) time.


http://arxiv.org/abs/quant-ph/0702196

Summary and further work

@ We have outlined a general approach for achieving a
quantum speed-up from recursive classical search
algorithms.

e This gives a quantum algorithm that finds the intersection
of two sorted n-element lists in O(y/n) time.

Future work?

@ Extend the recursive quantum search theorem to finding
multiple marked elements?

o Further applications? Finding problems where the
speed-up is more dramatic?


http://arxiv.org/abs/quant-ph/0702196

Summary and further work

@ We have outlined a general approach for achieving a
quantum speed-up from recursive classical search
algorithms.

e This gives a quantum algorithm that finds the intersection
of two sorted n-element lists in O(y/n) time.

Future work?

@ Extend the recursive quantum search theorem to finding
multiple marked elements?

o Further applications? Finding problems where the
speed-up is more dramatic?

Further reading: “Quantum search of partially ordered sets”,
http:/ /arxiv.org/abs/quant-ph /0702196


http://arxiv.org/abs/quant-ph/0702196

Advertisement

Bristol Summer School on Probabilistic
Techniques in Computer Science
6-11 July 2008

e Keynote speaker: Bela Bollobas.

e Topics include: randomised algorithms, communication
complexity, concentration of measure, data stream
algorithms, ...

http:/ /www.cs.bris.ac.uk/probtcs08/


http://www.cs.bris.ac.uk/probtcs08/

