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@ The classical one-way communication complexity (IWCC)
of f is the length of the shortest message m sent from
Alice to Bob that allows Bob to compute f(x, y) with
constant probability of success.



One-way quantum communication complexity

Can we do better by sending a quantum message?

X Y



One-way quantum communication complexity

Can we do better by sending a quantum message?

X P) Y

Alice Bob




One-way quantum communication complexity

Can we do better by sending a quantum message?

- W)

Alice

y
(Bob | flxy)



One-way quantum communication complexity

Can we do better by sending a quantum message?
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@ The quantum 1WCC of f is the smallest number of qubits
sent from Alice to Bob that allows Bob to compute f(x, y)
with constant probability of success.

@ We don’t allow Alice and Bob to share any prior
entanglement or randomness.
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Quantum one-way communication complexity

The model of quantum one-way communication complexity is
not well understood. The following results are known:

@ If f(x,y) is allowed to be a partial function (i.e. there is a
promise on the inputs), there can be an exponential
separation (qv) between quantum and classical IWCC
[Gavinsky et al "08].

@ Very recently, it was shown that for partial functions,
quantum one-way communication is exponentially
stronger than even two-way classical communication
[Klartag and Regev "10].

o If f(x,y) is a total function, the best separation we have is
a factor of 2 for equality testing [Winter '04].
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Why care about one-way communication
complexity?

@ One of the simplest interesting models of communication
complexity, and still far from understood.

@ Lower bounds on one-way communication complexity
have many applications classically to lower bounds on
data structures and streaming algorithms.

@ Separating quantum and classical IWCC is a first step to
designing efficient quantum data structures.

@ On a more basic level: 1WCC allows us to address the
question of how much information a quantum state
contains...

Unfortunately, some of these applications only really make
sense for total functions.
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It’s been conjectured for some time that there might be a
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for the following total function.

Subgroup Membership

The SuBGroUr MEMBERSHIP problem is defined in terms of a
group G, as follows.

@ Alice gets a subgroup H < G.
@ Bob gets an element g € G.
@ Bob has to output 1 if g € H, and 0 otherwise.

For any group G, there’s an O(log” |G|) bit classical protocol:
Alice just sends Bob the identity of her subgroup.
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A potential separation for a total function?

However, for any group G, there is an O(log|G|) qubit
quantum protocol...

@ Alice prepares two copies of the O(log|G|) qubit state
\H) == e Ih) and sends them to Bob.

@ Bob applies the group operation g to one copy of |H), to
produce [gH) := 3 ;5 |gh).

e If g € H, then |H) = [gH). Otherwise, (H|gH) = 0.

@ Bob can distinguish these two cases with constant
probability of success using the swap test.
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A potential separation for a total function?

So have we obtained a quadratic separation between quantum
and classical IWCC?

@ Unfortunately not yet... for every group G people have
considered so far (e.g. abelian groups), there is in fact a
more clever O(log|G]|) bit classical protocol!

@ The complexity of the general problem has been an open
problem for some time [Aaronson et al 09]... now it’s even
considered to be a “semi-grand challenge” for quantum
computation: [http://scottaaronson.com/blog/?p=471]

@ Idea: can we prove any separation between quantum and
classical IWCC for a more general version of this
problem?


http://scottaaronson.com/blog/?p=471
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New results

In this talk, I will discuss an exponential separation between
quantum and classical IWCC for a partial function based on
SuBGROUP MEMBERSHIP.

Given that an exponential separation is already known for a
partial function, why would we want to do this?

@ There are only one or two known functions showing a
separation — more would be nice...

@ The known examples are arguably somewhat contrived —
we’d like to find separations for problems we actually
want to solve.

@ The new problem is a natural generalisation of a
particular total function which people care about.

@ The techniques used seem a bit more applicable
elsewhere.
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Hamming distance between x and y.
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Perm-Invariance
@ Alice gets an n-bit string x.
@ Bob gets an n x n permutation matrix M.
1 if Mx =x
@ Bob has to output < 0 if d(Mx, x) > |x|/8
anything otherwise,

where |x| is the Hamming weight of x and d(x, y) is the
Hamming distance between x and y.

Note that SuBGrour MEMBERSHIP is the special case where x is
a |G| bit string such that x; =1 < i € H, and M is the group
action corresponding to ¢ (and we change |x|/8 to 2|x]).



Main result

Theorem

@ There is a quantum protocol that solves PERM-INVARIANCE
with constant success probability and communicates
O(logn) bits.




Main result

Theorem

@ There is a quantum protocol that solves PERM-INVARIANCE
with constant success probability and communicates
O(logn) bits.

@ Any one-way classical protocol that solves
PERM-INVARIANCE with a constant success probability

strictly greater than 1/2 must communicate at least
Q(n/*) bits.




Main result

Theorem

@ There is a quantum protocol that solves PERM-INVARIANCE
with constant success probability and communicates
O(logn) bits.

@ Any one-way classical protocol that solves
PERM-INVARIANCE with a constant success probability

strictly greater than 1/2 must communicate at least
Q(n/*) bits.

Therefore, there is an exponential separation between
quantum and classical one-way communication complexity for
this problem.
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The quantum protocol

The quantum protocol is a simple generalisation of the
protocol used for SUBGROUP MEMBERSHIP:

@ Alice prepares two copies of the logn qubit state
Wy) == Zi,x,:l i) and sends them to Bob.

@ Bob performs the unitary operator corresponding to the
permutation M on one of the states, to produce the state
[Wary), and then uses the swap test to check whether the
states are equal.

@ By the promise that either py,) = [1,), or
(Gpxchby) < 1/8, these two cases can be distinguished with
a constant number of repetitions.



The classical lower bound

We prove a lower bound for a special case of
PERM-INVARIANCE.

PM-Invariance

o Alice gets a 2n-bit string x such that |x| = n.

@ Bob gets a 2n x 2n permutation matrix M, where the
permutation entirely consists of disjoint transpositions
(i.e. corresponds to a perfect matching on the complete
graph on 2n vertices).

1 if Mx = x
@ Bob has to output < 0 if d Mx,x) >n/8

anything otherwise.




The classical lower bound

In fact, a similar problem was used by [Gavinsky et al 08] to
separate quantum and classical IWCC.

x-Partial Matching

@ Alice gets an n-bit string x.

@ Bob gets an an x n matrix M over F,, where each row
contains exactly two 1s, and each column contains at most
one 1, and a string w € {0, 1}%".

0 if Mx =w

@ Bob has to output < 1 if Mx =w

anything otherwise.

The main difference is the relaxation of the promise by
removing this second string from Bob’s input.



Plan of attack

@ Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.



Plan of attack

@ Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

e Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.



Plan of attack

@ Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

e Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.

@ Fix two “hard” distributions: one on Alice & Bob’s
zero-valued inputs, and one on their one-valued inputs.



Plan of attack

@ Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

e Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.

@ Fix two “hard” distributions: one on Alice & Bob’s
zero-valued inputs, and one on their one-valued inputs.

@ Show that the induced distributions on Bob’s inputs are
close to uniform whenever Alice’s subset is large.



Plan of attack

@ Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

e Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.

@ Fix two “hard” distributions: one on Alice & Bob’s
zero-valued inputs, and one on their one-valued inputs.

@ Show that the induced distributions on Bob’s inputs are
close to uniform whenever Alice’s subset is large.

@ This means they’re hard for Bob to distinguish.
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We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform (the argument for
zero-valued inputs is similar but easier).

e Fix distribution D; to be uniform over all pairs (M, x)
such that Mx = x.

o Let D be the induced distribution on Bob’s inputs, given
that Alice’s input was in set A.

@ Let py be the probability under D; that Bob gets M, given
that Alice’s input was in A.

@ Let Ny, be the number of partitions of {1, .. ., 2n} into
pairs. Then
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We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform.

e Upper bounding the 1-norm by the 2-norm, we have

|Df — Ul < [Naw Y p3y—1
M

where U is the uniform distribution on Bob’s inputs.

@ We can now calculate

Nzan]ZVI:(ZH) (Z ZMx—xMy y]).

NZn (n/Z) |A| x,yeA M
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Proof idea

@ It turns out that the sum over M only depends on the
Hamming distance d(x, y):

Z[Mx =x,My=yl=h(x+y)
M

where /1 : {0, 1/*" — R is a function such that /(z) only
depends on the Hamming weight |z].

@ So

Now ) P = _ Gy (Zf x+y),

N2n (n/2) |A|2

where f is the characteristic function of A.

@ This means that it’s convenient to upper bound
Nay Y\ P2, using Fourier analysis over the group Z3".
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Fourier analysis in 2 lines

Informally:

@ The Fourier transform of a function f : {0, 1} — R is the
function f : {0, 1}" — R defined by

N 1 )
flx) = on > (=D)YYf(y)
ye{0,1}"
@ For any functions f,g:{0,1}" — R,
Z fOf(y)glx +y) =2*" Z 3(x)f (x)?
x,ye{0,1}" x€{0,1}#
@ This allows us to write

4n R R
Non 3 = G2 1 g

NZ"(n/Z) A2 x€{0,1}2"

where f is the characteristic function of A, and & is as on
the previous slide.
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Upper bounding this sum

We can upper bound this sum using the following crucial
inequality.

Lemma

Let A be a subset of {0, 1}", let f be the characteristic function
of A, and set 27% = |A|/2". Then, for any 1 < k < (In2)«,

k
5 o cin (22025

x,|x|=k

@ This inequality is based on a result of Kahn, Kalai and
Linial (the KKL Lemma), which in turn is based on a
“hypercontractive” inequality of Bonami, Gross and
Beckner.

@ Here o ends up (approximately) measuring the length of
Alice’s message in bits.
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Finishing up
To summarise:

@ We calculate and upper bound the Fourier transform hi(x),
which turns out to be exponentially decreasing with |[x].

@ We upper bound the “Fourier weight at the k’th level” of
fr X+ x/—rf ()%, using the previous lemma.

@ Combining the two upper bounds, we end up with
something that’s smaller than a constant unless
Al < 22;/1711(;11/4)'

@ Thus, unless Alice sends at least Q) (1'/#) bits to Bob, he
can’t distinguish the distribution D from uniform with
probability better than a fixed constant.

@ So the classical IWCC of PM-INVARIANCE is Q(n!/4).
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Conclusions

e We've found an Q(1'/*) lower bound on the classical
1WCC of the PM-INVARIANCE problem, implying an
exponential separation between quantum and classical
1WCC.

e How far is this from optimal? There’s an O(n'/?) upper
bound on the classical IWCC of PM-INVARIANCE, which is
probably actually the right answer.

@ The original question still remains: can we get a quadratic
separation between quantum and classical IWCC for
SUBGROUP MEMBERSHIP?

@ Or indeed any asymptotic separation for any total
function?



Thanks!
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