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One-way communication complexity

The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

One of the simplest models of communication complexity
is the one-way model.
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The classical one-way communication complexity (1WCC)
of f is the length of the shortest message m sent from
Alice to Bob that allows Bob to compute f (x, y) with
constant probability of success.
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One-way quantum communication complexity

Can we do better by sending a quantum message?
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f (x, y)

The quantum 1WCC of f is the smallest number of qubits
sent from Alice to Bob that allows Bob to compute f (x, y)
with constant probability of success.

We don’t allow Alice and Bob to share any prior
entanglement or randomness.
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Quantum one-way communication complexity

The model of quantum one-way communication complexity is
not well understood. The following results are known:

If f (x, y) is allowed to be a partial function (i.e. there is a
promise on the inputs), there can be an exponential
separation (qv) between quantum and classical 1WCC
[Gavinsky et al ’08].

Very recently, it was shown that for partial functions,
quantum one-way communication is exponentially
stronger than even two-way classical communication
[Klartag and Regev ’10].

If f (x, y) is a total function, the best separation we have is
a factor of 2 for equality testing [Winter ’04].
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Why care about one-way communication
complexity?

One of the simplest interesting models of communication
complexity, and still far from understood.

Lower bounds on one-way communication complexity
have many applications classically to lower bounds on
data structures and streaming algorithms.

Separating quantum and classical 1WCC is a first step to
designing efficient quantum data structures.

On a more basic level: 1WCC allows us to address the
question of how much information a quantum state
contains...

Unfortunately, some of these applications only really make
sense for total functions.
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A potential separation for a total function?

It’s been conjectured for some time that there might be a
quadratic separation between quantum and classical 1WCC
for the following total function.

Subgroup Membership
The Subgroup Membership problem is defined in terms of a
group G, as follows.

Alice gets a subgroup H 6 G.
Bob gets an element g ∈ G.
Bob has to output 1 if g ∈ H, and 0 otherwise.

For any group G, there’s an O(log2 |G|) bit classical protocol:
Alice just sends Bob the identity of her subgroup.
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A potential separation for a total function?

However, for any group G, there is an O(log |G|) qubit
quantum protocol...

Alice prepares two copies of the O(log |G|) qubit state
|H〉 :=

∑
h∈H |h〉 and sends them to Bob.

Bob applies the group operation g to one copy of |H〉, to
produce |gH〉 :=

∑
h∈H |gh〉.

If g ∈ H, then |H〉 = |gH〉. Otherwise, 〈H|gH〉 = 0.

Bob can distinguish these two cases with constant
probability of success using the swap test.
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A potential separation for a total function?

So have we obtained a quadratic separation between quantum
and classical 1WCC?

Unfortunately not yet... for every group G people have
considered so far (e.g. abelian groups), there is in fact a
more clever O(log |G|) bit classical protocol!

The complexity of the general problem has been an open
problem for some time [Aaronson et al ’09]... now it’s even
considered to be a “semi-grand challenge” for quantum
computation: [http://scottaaronson.com/blog/?p=471]

Idea: can we prove any separation between quantum and
classical 1WCC for a more general version of this
problem?

http://scottaaronson.com/blog/?p=471
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New results

In this talk, I will discuss an exponential separation between
quantum and classical 1WCC for a partial function based on
Subgroup Membership.

Given that an exponential separation is already known for a
partial function, why would we want to do this?

There are only one or two known functions showing a
separation – more would be nice...
The known examples are arguably somewhat contrived –
we’d like to find separations for problems we actually
want to solve.
The new problem is a natural generalisation of a
particular total function which people care about.
The techniques used seem a bit more applicable
elsewhere.
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The problem

Perm-Invariance
Alice gets an n-bit string x.
Bob gets an n× n permutation matrix M.

Bob has to output


1 if Mx = x
0 if d(Mx, x) > |x|/8
anything otherwise,

where |x| is the Hamming weight of x and d(x, y) is the
Hamming distance between x and y.

Note that Subgroup Membership is the special case where x is
a |G| bit string such that xi = 1⇔ i ∈ H, and M is the group
action corresponding to g (and we change |x|/8 to 2|x|).
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Main result

Theorem
There is a quantum protocol that solves Perm-Invariance

with constant success probability and communicates
O(log n) bits.

Any one-way classical protocol that solves
Perm-Invariance with a constant success probability
strictly greater than 1/2 must communicate at least
Ω(n1/4) bits.

Therefore, there is an exponential separation between
quantum and classical one-way communication complexity for
this problem.
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The quantum protocol

The quantum protocol is a simple generalisation of the
protocol used for Subgroup Membership:

Alice prepares two copies of the log n qubit state
|ψx〉 :=

∑
i,xi=1 |i〉 and sends them to Bob.

Bob performs the unitary operator corresponding to the
permutation M on one of the states, to produce the state
|ψMx〉, and then uses the swap test to check whether the
states are equal.

By the promise that either |ψMx〉 = |ψx〉, or
〈ψMx|ψx〉 6 1/8, these two cases can be distinguished with
a constant number of repetitions.
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The classical lower bound

We prove a lower bound for a special case of
Perm-Invariance.

PM-Invariance
Alice gets a 2n-bit string x such that |x| = n.
Bob gets a 2n× 2n permutation matrix M, where the
permutation entirely consists of disjoint transpositions
(i.e. corresponds to a perfect matching on the complete
graph on 2n vertices).

Bob has to output


1 if Mx = x
0 if d(Mx, x) > n/8
anything otherwise.



The classical lower bound

In fact, a similar problem was used by [Gavinsky et al ’08] to
separate quantum and classical 1WCC.

α-Partial Matching

Alice gets an n-bit string x.
Bob gets an αn× n matrix M over F2, where each row
contains exactly two 1s, and each column contains at most
one 1, and a string w ∈ {0, 1}αn.

Bob has to output


0 if Mx = w
1 if Mx = w̄
anything otherwise.

The main difference is the relaxation of the promise by
removing this second string from Bob’s input.



Plan of attack

Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.

Fix two “hard” distributions: one on Alice & Bob’s
zero-valued inputs, and one on their one-valued inputs.

Show that the induced distributions on Bob’s inputs are
close to uniform whenever Alice’s subset is large.

This means they’re hard for Bob to distinguish.
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Proof idea: one-valued inputs

We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform (the argument for
zero-valued inputs is similar but easier).

Fix distribution D1 to be uniform over all pairs (M, x)
such that Mx = x.

Let DA
1 be the induced distribution on Bob’s inputs, given

that Alice’s input was in set A.

Let pM be the probability under D1 that Bob gets M, given
that Alice’s input was in A.

Let N2n be the number of partitions of {1, . . . , 2n} into
pairs. Then

pM =

(2n
n

)
N2n

( n
n/2

) Pr
x∈A

[Mx = x].
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Let pM be the probability under D1 that Bob gets M, given
that Alice’s input was in A.

Let N2n be the number of partitions of {1, . . . , 2n} into
pairs. Then

pM =

(2n
n

)
N2n

( n
n/2

) Pr
x∈A

[Mx = x].
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Proof idea

We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform.

Upper bounding the 1-norm by the 2-norm, we have

‖DA
1 − U‖1 6

√
N2n

∑
M

p2
M − 1

where U is the uniform distribution on Bob’s inputs.

We can now calculate

N2n
∑

M

p2
M =

(2n
n
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Proof idea

It turns out that the sum over M only depends on the
Hamming distance d(x, y):∑

M

[Mx = x, My = y] = h(x + y)

where h : {0, 1}2n → R is a function such that h(z) only
depends on the Hamming weight |z|.

So

N2n
∑

M

p2
M =

(2n
n

)2

N2n
( n

n/2

)2
|A|2

∑
x,y

f (x)f (y)h(x + y)

,

where f is the characteristic function of A.

This means that it’s convenient to upper bound
N2n

∑
M p2

M using Fourier analysis over the group Z2n
2 .
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Fourier analysis in 2 lines
Informally:

The Fourier transform of a function f : {0, 1}n → R is the
function f̂ : {0, 1}n → R defined by

f̂ (x) =
1
2n

∑
y∈{0,1}n

(−1)x·yf (y).

For any functions f , g : {0, 1}n → R,∑
x,y∈{0,1}n

f (x)f (y)g(x + y) = 22n
∑

x∈{0,1}n

ĝ(x)f̂ (x)2.

This allows us to write

N2n
∑

M

p2
M =

(2n
n

)2
24n

N2n
( n

n/2

)2
1

|A|2

∑
x∈{0,1}2n

ĥ(x)f̂ (x)2,

where f is the characteristic function of A, and h is as on
the previous slide.
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Upper bounding this sum
We can upper bound this sum using the following crucial
inequality.

Lemma
Let A be a subset of {0, 1}n, let f be the characteristic function
of A, and set 2−α = |A|/2n. Then, for any 1 6 k 6 (ln 2)α,

∑
x,|x|=k

f̂ (x)2 6 2−2α
(
(2e ln 2)α

k

)k

.

This inequality is based on a result of Kahn, Kalai and
Linial (the KKL Lemma), which in turn is based on a
“hypercontractive” inequality of Bonami, Gross and
Beckner.

Here α ends up (approximately) measuring the length of
Alice’s message in bits.
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Finishing up

To summarise:

We calculate and upper bound the Fourier transform ĥ(x),
which turns out to be exponentially decreasing with |x|.

We upper bound the “Fourier weight at the k’th level” of
f ,
∑

x,|x|=k f̂ (x)2, using the previous lemma.

Combining the two upper bounds, we end up with
something that’s smaller than a constant unless
|A| 6 22n−Ω(n1/4).

Thus, unless Alice sends at least Ω(n1/4) bits to Bob, he
can’t distinguish the distribution DA

1 from uniform with
probability better than a fixed constant.

So the classical 1WCC of PM-Invariance is Ω(n1/4).
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Conclusions

We’ve found an Ω(n1/4) lower bound on the classical
1WCC of the PM-Invariance problem, implying an
exponential separation between quantum and classical
1WCC.

How far is this from optimal? There’s an O(n1/2) upper
bound on the classical 1WCC of PM-Invariance, which is
probably actually the right answer.

The original question still remains: can we get a quadratic
separation between quantum and classical 1WCC for
Subgroup Membership?

Or indeed any asymptotic separation for any total
function?
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