
Quantum speedup of Monte Carlo methods

Ashley Montanaro

Department of Computer Science and School of Mathematics,
University of Bristol

27 August 2015

arXiv:1504.06987
Proc. R. Soc. A 2015 471 20150301

Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

Pic: Wikipedia

Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

Pic: Wikipedia

These methods are used throughout science and engineering:

. . . and were an application of the first electronic computers:

Pic: Wikipedia

Monte Carlo methods

One very simple example of a Monte Carlo method:
approximate π by throwing darts at a dartboard (choosing
random points within a square).

Pr[point lands in circle] = π
4 , so π = 4 · Pr[point lands in circle].

A randomised algorithm for approximating π

Pr[point lands in circle] = π
4 , so π = 4 · Pr[point lands in circle].

This talk

Today I will discuss a quantum algorithm to speed up Monte
Carlo methods in a quite general setting.

And also some applications of the algorithm:
1 Partition function problems in statistical physics
2 Approximate counting problems in combinatorics
3 Approximating the distance between probability

distributions

Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.

Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.

Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 trials!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 trials!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 trials!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 trials!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 trials!

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

First, in the special case where v(A) ∈ [0, 1]:

Assume A is a quantum algorithm which finishes with a
computational basis measurement, and then associates
each outcome x with output φ(x) ∈ [0, 1].

Then we replace the end of A with the map

|x〉|0〉 7→ |x〉(
√

1 − φ(x)|0〉+
√
φ(x)|1〉).

Now the probability of measuring 1 on the last qubit is
precisely µ.

We can use amplitude estimation to approximate µ up to
additive error ε, using A (and A−1) O(1/ε) times.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

First, in the special case where v(A) ∈ [0, 1]:

Assume A is a quantum algorithm which finishes with a
computational basis measurement, and then associates
each outcome x with output φ(x) ∈ [0, 1].

Then we replace the end of A with the map

|x〉|0〉 7→ |x〉(
√

1 − φ(x)|0〉+
√
φ(x)|1〉).

Now the probability of measuring 1 on the last qubit is
precisely µ.

We can use amplitude estimation to approximate µ up to
additive error ε, using A (and A−1) O(1/ε) times.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

First, in the special case where v(A) ∈ [0, 1]:

Assume A is a quantum algorithm which finishes with a
computational basis measurement, and then associates
each outcome x with output φ(x) ∈ [0, 1].

Then we replace the end of A with the map

|x〉|0〉 7→ |x〉(
√

1 − φ(x)|0〉+
√
φ(x)|1〉).

Now the probability of measuring 1 on the last qubit is
precisely µ.

We can use amplitude estimation to approximate µ up to
additive error ε, using A (and A−1) O(1/ε) times.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

First, in the special case where v(A) ∈ [0, 1]:

Assume A is a quantum algorithm which finishes with a
computational basis measurement, and then associates
each outcome x with output φ(x) ∈ [0, 1].

Then we replace the end of A with the map

|x〉|0〉 7→ |x〉(
√

1 − φ(x)|0〉+
√
φ(x)|1〉).

Now the probability of measuring 1 on the last qubit is
precisely µ.

We can use amplitude estimation to approximate µ up to
additive error ε, using A (and A−1) O(1/ε) times.

Ideas behind the algorithm

Next: the more general case where v(A) > 0, E[v(A)2] = O(1).

In this case (using ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average output values in each of the first
O(log 1/ε) blocks, each divided by 2t.
Sum up the results (after rescaling them again).

p(x)

x
≈ + +

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.

Ideas behind the algorithm

Next: the more general case where v(A) > 0, E[v(A)2] = O(1).

In this case (using ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average output values in each of the first
O(log 1/ε) blocks, each divided by 2t.
Sum up the results (after rescaling them again).

p(x)

x
≈ + +

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.

Ideas behind the algorithm

Next: the more general case where v(A) > 0, E[v(A)2] = O(1).

In this case (using ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average output values in each of the first
O(log 1/ε) blocks, each divided by 2t.
Sum up the results (after rescaling them again).

p(x)

x
≈ + +

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] 6 σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm, with accuracy O(ε/σ), to
the subroutine produced by subtracting m̃ and dividing
by σ.

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] 6 σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm, with accuracy O(ε/σ), to
the subroutine produced by subtracting m̃ and dividing
by σ.

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] 6 σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm, with accuracy O(ε/σ), to
the subroutine produced by subtracting m̃ and dividing
by σ.

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] 6 σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm, with accuracy O(ε/σ), to
the subroutine produced by subtracting m̃ and dividing
by σ.

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

A := |Ω| can be exponentially large and Z(β) can be hard
to compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

Assume we can exactly compute Z(0) = A efficiently.

One approach: multi-stage Markov chain Monte Carlo
(e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

Application: partition functions

A := |Ω| can be exponentially large and Z(β) can be hard
to compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

Assume we can exactly compute Z(0) = A efficiently.

One approach: multi-stage Markov chain Monte Carlo
(e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

Multiple-stage Markov chain Monte Carlo

The basic framework of these methods:

Let a cooling schedule be a sequence of inverse
temperatures 0 = β0 < β1 < · · · < β` = β.

Express Z(β`) as the telescoping product

Z(β`) = Z(β0)
Z(β1)

Z(β0)

Z(β2)

Z(β1)
. . .

Z(β`)
Z(β`−1)

.

Define random variables Yi where E[Yi] = Z(βi+1)/Z(βi),
with respect to the distribution πi defined by

Pr[x] =
1

Z(βi)
e−βiH(x),

the Gibbs distribution at inverse temperature βi.

Estimate E[Yi] by sampling from this distribution.

Multiple-stage Markov chain Monte Carlo

The basic framework of these methods:

Let a cooling schedule be a sequence of inverse
temperatures 0 = β0 < β1 < · · · < β` = β.

Express Z(β`) as the telescoping product

Z(β`) = Z(β0)
Z(β1)

Z(β0)

Z(β2)

Z(β1)
. . .

Z(β`)
Z(β`−1)

.

Define random variables Yi where E[Yi] = Z(βi+1)/Z(βi),
with respect to the distribution πi defined by

Pr[x] =
1

Z(βi)
e−βiH(x),

the Gibbs distribution at inverse temperature βi.

Estimate E[Yi] by sampling from this distribution.

Multiple-stage Markov chain Monte Carlo

The basic framework of these methods:

Let a cooling schedule be a sequence of inverse
temperatures 0 = β0 < β1 < · · · < β` = β.

Express Z(β`) as the telescoping product

Z(β`) = Z(β0)
Z(β1)

Z(β0)

Z(β2)

Z(β1)
. . .

Z(β`)
Z(β`−1)

.

Define random variables Yi where E[Yi] = Z(βi+1)/Z(βi),
with respect to the distribution πi defined by

Pr[x] =
1

Z(βi)
e−βiH(x),

the Gibbs distribution at inverse temperature βi.

Estimate E[Yi] by sampling from this distribution.

Sampling and estimating

This idea will be efficient if we can satisfy two constraints:

1 The (relative) variance of each random variable Yi is low:
E[Y2

i]/E[Yi]
2 = O(1) for all i.

2 We can (approximately) sample efficiently from the Gibbs
distributions πi.

Theorem [Stefankovič et al. ’09]

For any partition function problem, there exists a cooling
schedule satisfying the first constraint with ` = Õ(

√
log A).

Such a cooling schedule is known as a Chebyshev cooling
schedule.

Sampling and estimating

This idea will be efficient if we can satisfy two constraints:

1 The (relative) variance of each random variable Yi is low:
E[Y2

i]/E[Yi]
2 = O(1) for all i.

2 We can (approximately) sample efficiently from the Gibbs
distributions πi.

Theorem [Stefankovič et al. ’09]

For any partition function problem, there exists a cooling
schedule satisfying the first constraint with ` = Õ(

√
log A).

Such a cooling schedule is known as a Chebyshev cooling
schedule.

Rapid mixing

To satisfy the second constraint, we can use a sequence of
rapidly mixing Markov chains, each of which has a Gibbs
distribution as its stationary distribution.

Imagine we have a sequence of Markov chains Mi, each with
stationary distribution πi, and relaxation time at most τ. Then:

Theorem [Stefankovič et al. ’09]

Z(β) can be approximated up to relative error ε using
Õ((log A)τ/ε2) steps of the Markov chains.

In the quantum setting, we can apply our algorithm to
accelerate the approximation of E[Yi] (scaling goes from
O(1/ε2) to Õ(1/ε)). . .
. . . and we can also replace the classical Markov chains
with quantum walks to improve the dependence on τ.

Rapid mixing

To satisfy the second constraint, we can use a sequence of
rapidly mixing Markov chains, each of which has a Gibbs
distribution as its stationary distribution.

Imagine we have a sequence of Markov chains Mi, each with
stationary distribution πi, and relaxation time at most τ. Then:

Theorem [Stefankovič et al. ’09]

Z(β) can be approximated up to relative error ε using
Õ((log A)τ/ε2) steps of the Markov chains.

In the quantum setting, we can apply our algorithm to
accelerate the approximation of E[Yi] (scaling goes from
O(1/ε2) to Õ(1/ε)). . .
. . . and we can also replace the classical Markov chains
with quantum walks to improve the dependence on τ.

Rapid mixing

To satisfy the second constraint, we can use a sequence of
rapidly mixing Markov chains, each of which has a Gibbs
distribution as its stationary distribution.

Imagine we have a sequence of Markov chains Mi, each with
stationary distribution πi, and relaxation time at most τ. Then:

Theorem [Stefankovič et al. ’09]

Z(β) can be approximated up to relative error ε using
Õ((log A)τ/ε2) steps of the Markov chains.

In the quantum setting, we can apply our algorithm to
accelerate the approximation of E[Yi] (scaling goes from
O(1/ε2) to Õ(1/ε)). . .
. . . and we can also replace the classical Markov chains
with quantum walks to improve the dependence on τ.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly, using techniques of [Wocjan and Abeyesinghe ’08].

The mixing time improves from O(τ) to O(
√
τ) and the

final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly, using techniques of [Wocjan and Abeyesinghe ’08].

The mixing time improves from O(τ) to O(
√
τ) and the

final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly, using techniques of [Wocjan and Abeyesinghe ’08].

The mixing time improves from O(τ) to O(
√
τ) and the

final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly, using techniques of [Wocjan and Abeyesinghe ’08].

The mixing time improves from O(τ) to O(
√
τ) and the

final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
rapidly samples from the Gibbs distribution (τ = Õ(n)).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
rapidly samples from the Gibbs distribution (τ = Õ(n)).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
rapidly samples from the Gibbs distribution (τ = Õ(n)).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)

Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)

Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)

Application: the total variation distance

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).

Application: the total variation distance

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).

Application: the total variation distance

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).

Application: the total variation distance

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, we can use amplitude estimation to estimate
R(x).

It’s sufficient to use Õ(
√

n/ε) iterations of amplitude
estimation to approximate Ex[R(x)] up to additive error ε.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).

Application: the total variation distance

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, we can use amplitude estimation to estimate
R(x).

It’s sufficient to use Õ(
√

n/ε) iterations of amplitude
estimation to approximate Ex[R(x)] up to additive error ε.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).

Application: the total variation distance

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, we can use amplitude estimation to estimate
R(x).

It’s sufficient to use Õ(
√

n/ε) iterations of amplitude
estimation to approximate Ex[R(x)] up to additive error ε.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	0.178:
	0.179:
	0.180:
	0.181:
	0.182:
	0.183:
	0.184:
	0.185:
	0.186:
	0.187:
	0.188:
	0.189:
	0.190:
	0.191:
	0.192:
	0.193:
	0.194:
	0.195:
	0.196:
	0.197:
	0.198:
	0.199:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

