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Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.
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These methods are used throughout science and engineering:



. . . and were an application of the first electronic computers:
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Monte Carlo methods

One very simple example of a Monte Carlo method:
approximate π by throwing darts at a dartboard (choosing
random points within a square).

Pr[point lands in circle] = π
4 , so π = 4 · Pr[point lands in circle].



A randomised algorithm for approximating π

Pr[point lands in circle] = π
4 , so π = 4 · Pr[point lands in circle].



This talk

Today I will discuss a quantum algorithm to speed up Monte
Carlo methods in a quite general setting.

And also some applications of the algorithm:
1 Partition function problems in statistical physics
2 Approximate counting problems in combinatorics
3 Approximating the distance between probability

distributions



Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.
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Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 trials!
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Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.
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Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.
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Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

First, in the special case where v(A) ∈ [0, 1]:

Assume A is a quantum algorithm which finishes with a
computational basis measurement, and then associates
each outcome x with output φ(x) ∈ [0, 1].

Then we replace the end of A with the map

|x〉|0〉 7→ |x〉(
√

1 − φ(x)|0〉+
√
φ(x)|1〉).

Now the probability of measuring 1 on the last qubit is
precisely µ.

We can use amplitude estimation to approximate µ up to
additive error ε, using A (and A−1) O(1/ε) times.
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Ideas behind the algorithm

Next: the more general case where v(A) > 0, E[v(A)2] = O(1).

In this case (using ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average output values in each of the first
O(log 1/ε) blocks, each divided by 2t.
Sum up the results (after rescaling them again).

p(x)

x
≈ + +

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.
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Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] 6 σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm, with accuracy O(ε/σ), to
the subroutine produced by subtracting m̃ and dividing
by σ.

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.
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with Õ(B/ε) uses of A.



Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .
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Application: partition functions

A := |Ω| can be exponentially large and Z(β) can be hard
to compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

Assume we can exactly compute Z(0) = A efficiently.

One approach: multi-stage Markov chain Monte Carlo
(e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).
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Multiple-stage Markov chain Monte Carlo

The basic framework of these methods:

Let a cooling schedule be a sequence of inverse
temperatures 0 = β0 < β1 < · · · < β` = β.

Express Z(β`) as the telescoping product

Z(β`) = Z(β0)
Z(β1)

Z(β0)

Z(β2)

Z(β1)
. . .

Z(β`)
Z(β`−1)

.

Define random variables Yi where E[Yi] = Z(βi+1)/Z(βi),
with respect to the distribution πi defined by

Pr[x] =
1

Z(βi)
e−βiH(x),

the Gibbs distribution at inverse temperature βi.

Estimate E[Yi] by sampling from this distribution.
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Sampling and estimating

This idea will be efficient if we can satisfy two constraints:

1 The (relative) variance of each random variable Yi is low:
E[Y2

i ]/E[Yi]
2 = O(1) for all i.

2 We can (approximately) sample efficiently from the Gibbs
distributions πi.

Theorem [Stefankovič et al. ’09]

For any partition function problem, there exists a cooling
schedule satisfying the first constraint with ` = Õ(

√
log A).

Such a cooling schedule is known as a Chebyshev cooling
schedule.
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Rapid mixing

To satisfy the second constraint, we can use a sequence of
rapidly mixing Markov chains, each of which has a Gibbs
distribution as its stationary distribution.

Imagine we have a sequence of Markov chains Mi, each with
stationary distribution πi, and relaxation time at most τ. Then:

Theorem [Stefankovič et al. ’09]

Z(β) can be approximated up to relative error ε using
Õ((log A)τ/ε2) steps of the Markov chains.

In the quantum setting, we can apply our algorithm to
accelerate the approximation of E[Yi] (scaling goes from
O(1/ε2) to Õ(1/ε)). . .
. . . and we can also replace the classical Markov chains
with quantum walks to improve the dependence on τ.
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Z(β) can be approximated up to relative error ε using
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Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly, using techniques of [Wocjan and Abeyesinghe ’08].

The mixing time improves from O(τ) to O(
√
τ) and the

final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.
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However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.



Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
rapidly samples from the Gibbs distribution (τ = Õ(n)).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)
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Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)
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Application: the total variation distance

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).



Application: the total variation distance

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
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Application: the total variation distance

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, we can use amplitude estimation to estimate
R(x).

It’s sufficient to use Õ(
√

n/ε) iterations of amplitude
estimation to approximate Ex[R(x)] up to additive error ε.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).
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Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!



Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.
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