
Three quantum learning algorithms

Ashley Montanaro

Talk based on joint work with Andris Ambainis and ongoing joint work with
Scott Aaronson, David Chen, Daniel Gottesman and Vincent Liew.

11 March 2013

What is learning?

In this talk
Learning a set S ≡ identifying an arbitrary, unknown object
picked from S.

This talk

“A little learning is a dangerous thing;
drink deep, or taste not the Pierian spring:
there shallow draughts intoxicate the brain,
and drinking largely sobers us again. ”— Alexander Pope

On this principle, I’ll talk about three optimal quantum
algorithms for learning an unknown. . .

. . . bit-string, given access to “wildcard” queries;

. . . low-degree multilinear polynomial;

. . . stabilizer state.

Bonus mini-result: A composition theorem for classical
decision tree complexity.

This talk

“A little learning is a dangerous thing;
drink deep, or taste not the Pierian spring:
there shallow draughts intoxicate the brain,
and drinking largely sobers us again. ”— Alexander Pope

On this principle, I’ll talk about three optimal quantum
algorithms for learning an unknown. . .

. . . bit-string, given access to “wildcard” queries;

. . . low-degree multilinear polynomial;

. . . stabilizer state.

Bonus mini-result: A composition theorem for classical
decision tree complexity.

Search with wildcards

We are given access to an unknown n-bit string x.

Our task is to determine x using the minimum expected
number of queries.

The different possible queries are given by strings
s ∈ {0, 1, ∗}n. A query qx(s) returns 1 if xi = si for all i such
that si 6= ∗, and returns 0 otherwise.

A generalisation of the simple “standard” model where
each query is to an individual bit of x.

Example
Imagine the hidden string is x = 01101. Then querying...

0 ∗ 1 ∗ 1 returns 1;
∗1 ∗ 1∗ returns 0.

Search with wildcards

We are given access to an unknown n-bit string x.

Our task is to determine x using the minimum expected
number of queries.

The different possible queries are given by strings
s ∈ {0, 1, ∗}n. A query qx(s) returns 1 if xi = si for all i such
that si 6= ∗, and returns 0 otherwise.

A generalisation of the simple “standard” model where
each query is to an individual bit of x.

Example
Imagine the hidden string is x = 01101. Then querying...

0 ∗ 1 ∗ 1 returns 1;
∗1 ∗ 1∗ returns 0.

Search with wildcards

We are given access to an unknown n-bit string x.

Our task is to determine x using the minimum expected
number of queries.

The different possible queries are given by strings
s ∈ {0, 1, ∗}n. A query qx(s) returns 1 if xi = si for all i such
that si 6= ∗, and returns 0 otherwise.

A generalisation of the simple “standard” model where
each query is to an individual bit of x.

Example
Imagine the hidden string is x = 01101. Then querying...

0 ∗ 1 ∗ 1 returns 1;
∗1 ∗ 1∗ returns 0.

Search with wildcards

We are given access to an unknown n-bit string x.

Our task is to determine x using the minimum expected
number of queries.

The different possible queries are given by strings
s ∈ {0, 1, ∗}n. A query qx(s) returns 1 if xi = si for all i such
that si 6= ∗, and returns 0 otherwise.

A generalisation of the simple “standard” model where
each query is to an individual bit of x.

Example
Imagine the hidden string is x = 01101. Then querying...

0 ∗ 1 ∗ 1 returns 1;
∗1 ∗ 1∗ returns 0.

Search with wildcards

We are given access to an unknown n-bit string x.

Our task is to determine x using the minimum expected
number of queries.

The different possible queries are given by strings
s ∈ {0, 1, ∗}n. A query qx(s) returns 1 if xi = si for all i such
that si 6= ∗, and returns 0 otherwise.

A generalisation of the simple “standard” model where
each query is to an individual bit of x.

Example
Imagine the hidden string is x = 01101. Then querying...

0 ∗ 1 ∗ 1 returns 1;
∗1 ∗ 1∗ returns 0.

Search with wildcards

We can also think of a query as specifying a subset S of
the bits, and a “guess” yS.

Classically, we need n queries to determine x (each query
gives one bit of information).

In the quantum case, we imagine we have access to an
oracle which maps

|s〉|z〉 7→ |s〉|z⊕ qx(s)〉.

Theorem
Search with wildcards can be solved with O(

√
n) quantum

queries on average.

Contrast: In the standard model, there is a quantum speed-up
by about a factor of 2 [van Dam ’98], and this is optimal.

Search with wildcards

We can also think of a query as specifying a subset S of
the bits, and a “guess” yS.

Classically, we need n queries to determine x (each query
gives one bit of information).

In the quantum case, we imagine we have access to an
oracle which maps

|s〉|z〉 7→ |s〉|z⊕ qx(s)〉.

Theorem
Search with wildcards can be solved with O(

√
n) quantum

queries on average.

Contrast: In the standard model, there is a quantum speed-up
by about a factor of 2 [van Dam ’98], and this is optimal.

Search with wildcards

We can also think of a query as specifying a subset S of
the bits, and a “guess” yS.

Classically, we need n queries to determine x (each query
gives one bit of information).

In the quantum case, we imagine we have access to an
oracle which maps

|s〉|z〉 7→ |s〉|z⊕ qx(s)〉.

Theorem
Search with wildcards can be solved with O(

√
n) quantum

queries on average.

Contrast: In the standard model, there is a quantum speed-up
by about a factor of 2 [van Dam ’98], and this is optimal.

Search with wildcards

We can also think of a query as specifying a subset S of
the bits, and a “guess” yS.

Classically, we need n queries to determine x (each query
gives one bit of information).

In the quantum case, we imagine we have access to an
oracle which maps

|s〉|z〉 7→ |s〉|z⊕ qx(s)〉.

Theorem
Search with wildcards can be solved with O(

√
n) quantum

queries on average.

Contrast: In the standard model, there is a quantum speed-up
by about a factor of 2 [van Dam ’98], and this is optimal.

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma
Fix n > 1 and, for any 0 6 k 6 n, set

|ψk
x〉 :=

1(n
k

)1/2

∑
S⊆[n],|S|=k

|S〉|xS〉,

where |xS〉 :=
⊗

i∈S |xi〉. Then, for any k = n − O(
√

n), there is a
quantum measurement (POVM) which, on input |ψk

x〉, outputs
x̃ such that the expected Hamming distance d(x, x̃) is O(1).

This is surprising because the equivalent classical statement is
not true!

Why does this let us solve SWW?

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma
Fix n > 1 and, for any 0 6 k 6 n, set

|ψk
x〉 :=

1(n
k

)1/2

∑
S⊆[n],|S|=k

|S〉|xS〉,

where |xS〉 :=
⊗

i∈S |xi〉. Then, for any k = n − O(
√

n), there is a
quantum measurement (POVM) which, on input |ψk

x〉, outputs
x̃ such that the expected Hamming distance d(x, x̃) is O(1).

This is surprising because the equivalent classical statement is
not true!

Why does this let us solve SWW?

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma
Fix n > 1 and, for any 0 6 k 6 n, set

|ψk
x〉 :=

1(n
k

)1/2

∑
S⊆[n],|S|=k

|S〉|xS〉,

where |xS〉 :=
⊗

i∈S |xi〉. Then, for any k = n − O(
√

n), there is a
quantum measurement (POVM) which, on input |ψk

x〉, outputs
x̃ such that the expected Hamming distance d(x, x̃) is O(1).

This is surprising because the equivalent classical statement is
not true!

Why does this let us solve SWW?

The measurement lemma⇒ solving SWW

Our algorithm for SWW repeatedly uses the lemma to
learn O(

√
n) bits of x at a time in superposition.

Imagine we have |ψk
x〉. For k ′ > k, this can be mapped to

∑
S ′:S ′⊆[n],|S ′|=k ′

|S ′〉

 ∑
S:S⊆S ′,|S|=k

|S〉|xS〉

 =
∑

S:S⊆[n],|S|=k ′
|S〉|ψk

xS
〉,

so if we can map |ψk
xS
〉 7→ |xS〉, we’ve made |ψk ′

x 〉.

By the lemma, we can do this when k = k ′ − O(
√

k ′). . .

. . . but after each measurement, an expected O(1) bits are
incorrect.

How to fix these?

The measurement lemma⇒ solving SWW

Our algorithm for SWW repeatedly uses the lemma to
learn O(

√
n) bits of x at a time in superposition.

Imagine we have |ψk
x〉. For k ′ > k, this can be mapped to

∑
S ′:S ′⊆[n],|S ′|=k ′

|S ′〉

 ∑
S:S⊆S ′,|S|=k

|S〉|xS〉

 =
∑

S:S⊆[n],|S|=k ′
|S〉|ψk

xS
〉,

so if we can map |ψk
xS
〉 7→ |xS〉, we’ve made |ψk ′

x 〉.

By the lemma, we can do this when k = k ′ − O(
√

k ′). . .

. . . but after each measurement, an expected O(1) bits are
incorrect.

How to fix these?

The measurement lemma⇒ solving SWW

Our algorithm for SWW repeatedly uses the lemma to
learn O(

√
n) bits of x at a time in superposition.

Imagine we have |ψk
x〉. For k ′ > k, this can be mapped to

∑
S ′:S ′⊆[n],|S ′|=k ′

|S ′〉

 ∑
S:S⊆S ′,|S|=k

|S〉|xS〉

 =
∑

S:S⊆[n],|S|=k ′
|S〉|ψk

xS
〉,

so if we can map |ψk
xS
〉 7→ |xS〉, we’ve made |ψk ′

x 〉.

By the lemma, we can do this when k = k ′ − O(
√

k ′). . .

. . . but after each measurement, an expected O(1) bits are
incorrect.

How to fix these?

The measurement lemma⇒ solving SWW

Our algorithm for SWW repeatedly uses the lemma to
learn O(

√
n) bits of x at a time in superposition.

Imagine we have |ψk
x〉. For k ′ > k, this can be mapped to

∑
S ′:S ′⊆[n],|S ′|=k ′

|S ′〉

 ∑
S:S⊆S ′,|S|=k

|S〉|xS〉

 =
∑

S:S⊆[n],|S|=k ′
|S〉|ψk

xS
〉,

so if we can map |ψk
xS
〉 7→ |xS〉, we’ve made |ψk ′

x 〉.

By the lemma, we can do this when k = k ′ − O(
√

k ′). . .

. . . but after each measurement, an expected O(1) bits are
incorrect.

How to fix these?

The measurement lemma⇒ solving SWW

Our algorithm for SWW repeatedly uses the lemma to
learn O(

√
n) bits of x at a time in superposition.

Imagine we have |ψk
x〉. For k ′ > k, this can be mapped to

∑
S ′:S ′⊆[n],|S ′|=k ′

|S ′〉

 ∑
S:S⊆S ′,|S|=k

|S〉|xS〉

 =
∑

S:S⊆[n],|S|=k ′
|S〉|ψk

xS
〉,

so if we can map |ψk
xS
〉 7→ |xS〉, we’ve made |ψk ′

x 〉.

By the lemma, we can do this when k = k ′ − O(
√

k ′). . .

. . . but after each measurement, an expected O(1) bits are
incorrect.

How to fix these?

Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

Exactly k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . , n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.

Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

Exactly k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . , n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.

Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

Exactly k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . , n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.

Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

Exactly k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . , n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.

Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

Exactly k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . , n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.

Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

Exactly k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . , n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.

Classical results

The number of classical queries required to solve CGT is
Θ(k log(n/k)).

Lower bound: information-theoretic argument.
Upper bound: (essentially) binary search.

If we restrict to nonadaptive queries, the bound becomes
essentially Θ(min{k2 log n, n}).

Many applications known: molecular biology, data
streaming algorithms, compressed sensing, pattern
matching in strings, . . .

See the book “Combinatorial Group Testing and Its
Applications” [Du and Hwang ’00] for more.

Classical results

The number of classical queries required to solve CGT is
Θ(k log(n/k)).

Lower bound: information-theoretic argument.
Upper bound: (essentially) binary search.

If we restrict to nonadaptive queries, the bound becomes
essentially Θ(min{k2 log n, n}).

Many applications known: molecular biology, data
streaming algorithms, compressed sensing, pattern
matching in strings, . . .

See the book “Combinatorial Group Testing and Its
Applications” [Du and Hwang ’00] for more.

Classical results

The number of classical queries required to solve CGT is
Θ(k log(n/k)).

Lower bound: information-theoretic argument.
Upper bound: (essentially) binary search.

If we restrict to nonadaptive queries, the bound becomes
essentially Θ(min{k2 log n, n}).

Many applications known: molecular biology, data
streaming algorithms, compressed sensing, pattern
matching in strings, . . .

See the book “Combinatorial Group Testing and Its
Applications” [Du and Hwang ’00] for more.

Classical results

The number of classical queries required to solve CGT is
Θ(k log(n/k)).

Lower bound: information-theoretic argument.
Upper bound: (essentially) binary search.

If we restrict to nonadaptive queries, the bound becomes
essentially Θ(min{k2 log n, n}).

Many applications known: molecular biology, data
streaming algorithms, compressed sensing, pattern
matching in strings, . . .

See the book “Combinatorial Group Testing and Its
Applications” [Du and Hwang ’00] for more.

Quantum algorithms for CGT

The k = 1 case
If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

To learn x, suffices to be able to compute the function
x · s =

⊕
i xisi for arbitrary s ∈ {0, 1}n (as with e.g. the

quantum oracle interrogation algorithm of [van Dam ’98]).

In the CGT problem, we have access to an oracle which
computes f (s) =

∨
i xisi for arbitrary s ∈ {0, 1}n. But if

|x| 6 1, then for any s,
∨

i xisi = x · s.

Quantum algorithms for CGT

The k = 1 case
If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

To learn x, suffices to be able to compute the function
x · s =

⊕
i xisi for arbitrary s ∈ {0, 1}n (as with e.g. the

quantum oracle interrogation algorithm of [van Dam ’98]).

In the CGT problem, we have access to an oracle which
computes f (s) =

∨
i xisi for arbitrary s ∈ {0, 1}n. But if

|x| 6 1, then for any s,
∨

i xisi = x · s.

Quantum algorithms for CGT

The k = 1 case
If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

To learn x, suffices to be able to compute the function
x · s =

⊕
i xisi for arbitrary s ∈ {0, 1}n (as with e.g. the

quantum oracle interrogation algorithm of [van Dam ’98]).

In the CGT problem, we have access to an oracle which
computes f (s) =

∨
i xisi for arbitrary s ∈ {0, 1}n. But if

|x| 6 1, then for any s,
∨

i xisi = x · s.

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Generalising this idea to arbitrary k

Theorem
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).

Back to search with wildcards

When we measure |ψk
x〉, we get an outcome x̃ such that

d(x̃, x) = O(1).

We want to determine x, which is equivalent to
determining x̃⊕ x, a string of Hamming weight O(1).

A wildcard query corresponding to S ⊆ [n] and the string
x̃S returns 1 iff all bits of x̃S are correct. Negating the
output gives a query that behaves the same as a CGT
query.

So we can use the algorithm for CGT to find, and correct,
all incorrect bits using O(1) queries.

Back to search with wildcards

When we measure |ψk
x〉, we get an outcome x̃ such that

d(x̃, x) = O(1).

We want to determine x, which is equivalent to
determining x̃⊕ x, a string of Hamming weight O(1).

A wildcard query corresponding to S ⊆ [n] and the string
x̃S returns 1 iff all bits of x̃S are correct. Negating the
output gives a query that behaves the same as a CGT
query.

So we can use the algorithm for CGT to find, and correct,
all incorrect bits using O(1) queries.

Back to search with wildcards

When we measure |ψk
x〉, we get an outcome x̃ such that

d(x̃, x) = O(1).

We want to determine x, which is equivalent to
determining x̃⊕ x, a string of Hamming weight O(1).

A wildcard query corresponding to S ⊆ [n] and the string
x̃S returns 1 iff all bits of x̃S are correct. Negating the
output gives a query that behaves the same as a CGT
query.

So we can use the algorithm for CGT to find, and correct,
all incorrect bits using O(1) queries.

Back to search with wildcards

When we measure |ψk
x〉, we get an outcome x̃ such that

d(x̃, x) = O(1).

We want to determine x, which is equivalent to
determining x̃⊕ x, a string of Hamming weight O(1).

A wildcard query corresponding to S ⊆ [n] and the string
x̃S returns 1 iff all bits of x̃S are correct. Negating the
output gives a query that behaves the same as a CGT
query.

So we can use the algorithm for CGT to find, and correct,
all incorrect bits using O(1) queries.

Summary

Using an efficient algorithm for CGT as a subroutine, we
can solve search with wildcards using O(

√
n) queries.

This is a square-root speed-up which (apparently) does
not come from amplitude amplification or quantum
walks.

Open problem: Determine the quantum query complexity
of CGT. We have an upper bound of O(k) and a lower
bound of Ω(

√
k).

Learning classical oracles

Consider the following basic problem.

x f
f (x)

We are given access to a function f : Fn
q → Fq. We would

like to identify f .

If f is arbitrary, we need qn classical queries.

If f is picked from a known set F, we need at least logq |F|

queries.

We say that F can be learned using t queries if any
function f ∈ F can be identified with t uses of f (perhaps
allowing some probability of error).

Learning classical oracles

Consider the following basic problem.

x f
f (x)

We are given access to a function f : Fn
q → Fq. We would

like to identify f .

If f is arbitrary, we need qn classical queries.

If f is picked from a known set F, we need at least logq |F|

queries.

We say that F can be learned using t queries if any
function f ∈ F can be identified with t uses of f (perhaps
allowing some probability of error).

Learning classical oracles

Consider the following basic problem.

x f
f (x)

We are given access to a function f : Fn
q → Fq. We would

like to identify f .

If f is arbitrary, we need qn classical queries.

If f is picked from a known set F, we need at least logq |F|

queries.

We say that F can be learned using t queries if any
function f ∈ F can be identified with t uses of f (perhaps
allowing some probability of error).

Learning classical oracles

Consider the following basic problem.

x f
f (x)

We are given access to a function f : Fn
q → Fq. We would

like to identify f .

If f is arbitrary, we need qn classical queries.

If f is picked from a known set F, we need at least logq |F|

queries.

We say that F can be learned using t queries if any
function f ∈ F can be identified with t uses of f (perhaps
allowing some probability of error).

Learning classical oracles on a quantum
computer

On a quantum computer, we have the ability to query f in
superposition, i.e. to perform the map

|x〉|z〉 7→ |x〉|z + f (x)〉.

One of the oldest results in quantum computing: the
Bernstein-Vazirani algorithm [Bernstein and Vazirani ’97].

Theorem (Bernstein and Vazirani)
The class of linear functions f : Fn

2 → F2 can be learned with
certainty using 1 quantum query.

f is linear if f (x + y) = f (x) + f (y); equivalently, f (x) = ` · x for
some ` ∈ Fn

2 .

Learning classical oracles on a quantum
computer

On a quantum computer, we have the ability to query f in
superposition, i.e. to perform the map

|x〉|z〉 7→ |x〉|z + f (x)〉.

One of the oldest results in quantum computing: the
Bernstein-Vazirani algorithm [Bernstein and Vazirani ’97].

Theorem (Bernstein and Vazirani)
The class of linear functions f : Fn

2 → F2 can be learned with
certainty using 1 quantum query.

f is linear if f (x + y) = f (x) + f (y); equivalently, f (x) = ` · x for
some ` ∈ Fn

2 .

Learning multilinear polynomials
f : Fn

q → Fq is a degree d multilinear polynomial:

f (x) =
∑

S⊆[n],|S|6d

αS
∏
i∈S

xi

for some coefficients αS ∈ Fq, where [n] := {1, . . . , n}.

Note that for S = ∅ we define
∏

i∈S xi = 1.

For example, any multilinear polynomial of degree 3 can
be written as

f (x) = α∅ +
∑

i

α{i}xi +
∑
i<j

α{i,j}xixj +
∑

i<j<k

α{i,j,k}xixjxk.

In the important special case q = 2 (boolean functions),
every polynomial is multilinear.
The set of degree d polynomials over F2 is known as the
binary Reed-Muller code of order d.

Learning multilinear polynomials
f : Fn

q → Fq is a degree d multilinear polynomial:

f (x) =
∑

S⊆[n],|S|6d

αS
∏
i∈S

xi

for some coefficients αS ∈ Fq, where [n] := {1, . . . , n}.

Note that for S = ∅ we define
∏

i∈S xi = 1.
For example, any multilinear polynomial of degree 3 can
be written as

f (x) = α∅ +
∑

i

α{i}xi +
∑
i<j

α{i,j}xixj +
∑

i<j<k

α{i,j,k}xixjxk.

In the important special case q = 2 (boolean functions),
every polynomial is multilinear.
The set of degree d polynomials over F2 is known as the
binary Reed-Muller code of order d.

Learning multilinear polynomials
f : Fn

q → Fq is a degree d multilinear polynomial:

f (x) =
∑

S⊆[n],|S|6d

αS
∏
i∈S

xi

for some coefficients αS ∈ Fq, where [n] := {1, . . . , n}.

Note that for S = ∅ we define
∏

i∈S xi = 1.
For example, any multilinear polynomial of degree 3 can
be written as

f (x) = α∅ +
∑

i

α{i}xi +
∑
i<j

α{i,j}xixj +
∑

i<j<k

α{i,j,k}xixjxk.

In the important special case q = 2 (boolean functions),
every polynomial is multilinear.

The set of degree d polynomials over F2 is known as the
binary Reed-Muller code of order d.

Learning multilinear polynomials
f : Fn

q → Fq is a degree d multilinear polynomial:

f (x) =
∑

S⊆[n],|S|6d

αS
∏
i∈S

xi

for some coefficients αS ∈ Fq, where [n] := {1, . . . , n}.

Note that for S = ∅ we define
∏

i∈S xi = 1.
For example, any multilinear polynomial of degree 3 can
be written as

f (x) = α∅ +
∑

i

α{i}xi +
∑
i<j

α{i,j}xixj +
∑

i<j<k

α{i,j,k}xixjxk.

In the important special case q = 2 (boolean functions),
every polynomial is multilinear.
The set of degree d polynomials over F2 is known as the
binary Reed-Muller code of order d.

Learning multilinear polynomials

Fact
The class of degree d multilinear polynomials in n variables
over Fq can be learned exactly using O(nd) classical queries,
and this is optimal.

Upper bound: It suffices to query f (x) for all strings
x ∈ Fn

q that contain only 0 and 1, and such that |x| 6 d.

Lower bound: there are qΘ(nd) distinct multilinear degree
d polynomials of n variables over Fq; each classical query
to f only provides log2 q bits of information.

Learning multilinear polynomials

Fact
The class of degree d multilinear polynomials in n variables
over Fq can be learned exactly using O(nd) classical queries,
and this is optimal.

Upper bound: It suffices to query f (x) for all strings
x ∈ Fn

q that contain only 0 and 1, and such that |x| 6 d.

Lower bound: there are qΘ(nd) distinct multilinear degree
d polynomials of n variables over Fq; each classical query
to f only provides log2 q bits of information.

Learning multilinear polynomials

Theorem
The class of degree d multilinear polynomials in n variables
over Fq can be learned exactly using O(nd−1) quantum queries,
and this is optimal.

Notes:

The lower bound follows from Holevo’s theorem.

The Bernstein-Vazirani algorithm is the case q = 2, d = 1.

Rötteler previously gave a bounded-error quantum
algorithm for the case q = 2, d = 2 [Rötteler ’09].

A quantum algorithm for estimating a quadratic form
over the reals had previously been given by Jordan [Jordan
’08].

Learning multilinear polynomials

Theorem
The class of degree d multilinear polynomials in n variables
over Fq can be learned exactly using O(nd−1) quantum queries,
and this is optimal.

Notes:

The lower bound follows from Holevo’s theorem.

The Bernstein-Vazirani algorithm is the case q = 2, d = 1.

Rötteler previously gave a bounded-error quantum
algorithm for the case q = 2, d = 2 [Rötteler ’09].

A quantum algorithm for estimating a quadratic form
over the reals had previously been given by Jordan [Jordan
’08].

The algorithm

The algorithm will be based on efficient learning of linear
functions, via the following lemma [de Beaudrap et al ’02, van Dam
et al ’02].

Lemma 1
Let f : Fn

q → Fq be linear, and let g : Fn
q → Fq be the function

g(x) = f (x) + β for some constant β ∈ Fq. Then f can be
determined exactly using one quantum query to g.

Proof: query f in superposition and use the QFT over Fn
q .

The algorithm

The algorithm will be based on efficient learning of linear
functions, via the following lemma [de Beaudrap et al ’02, van Dam
et al ’02].

Lemma 1
Let f : Fn

q → Fq be linear, and let g : Fn
q → Fq be the function

g(x) = f (x) + β for some constant β ∈ Fq. Then f can be
determined exactly using one quantum query to g.

Proof: query f in superposition and use the QFT over Fn
q .

The algorithm
For S ⊆ [n], |S| = k, define

fS(x) =
∑

β1,...,βk∈{0,1}

(−1)k−
∑k

i=1βi f

x +

k∑
j=1

βjeSj

 .

Here ei is the i’th element in the standard basis for Fn
q ; the

inner sum is over Fn
q and the outer sum is over Fq.

For example, if S = {1, 2}:

fS(x) = f (x) − f (x + e1) − f (x + e2) + f (x + e1 + e2).

A query to fS can be simulated using 2k queries to f .
Define the discrete derivative of f in direction i ∈ [n] as

(∆if)(x) := f (x + ei) − f (x).

Then fS(x) = (∆S1∆S2 . . .∆Sk f)(x).

The algorithm
For S ⊆ [n], |S| = k, define

fS(x) =
∑

β1,...,βk∈{0,1}

(−1)k−
∑k

i=1βi f

x +

k∑
j=1

βjeSj

 .

Here ei is the i’th element in the standard basis for Fn
q ; the

inner sum is over Fn
q and the outer sum is over Fq.

For example, if S = {1, 2}:

fS(x) = f (x) − f (x + e1) − f (x + e2) + f (x + e1 + e2).

A query to fS can be simulated using 2k queries to f .
Define the discrete derivative of f in direction i ∈ [n] as

(∆if)(x) := f (x + ei) − f (x).

Then fS(x) = (∆S1∆S2 . . .∆Sk f)(x).

The algorithm
For S ⊆ [n], |S| = k, define

fS(x) =
∑

β1,...,βk∈{0,1}

(−1)k−
∑k

i=1βi f

x +

k∑
j=1

βjeSj

 .

Here ei is the i’th element in the standard basis for Fn
q ; the

inner sum is over Fn
q and the outer sum is over Fq.

For example, if S = {1, 2}:

fS(x) = f (x) − f (x + e1) − f (x + e2) + f (x + e1 + e2).

A query to fS can be simulated using 2k queries to f .

Define the discrete derivative of f in direction i ∈ [n] as

(∆if)(x) := f (x + ei) − f (x).

Then fS(x) = (∆S1∆S2 . . .∆Sk f)(x).

The algorithm
For S ⊆ [n], |S| = k, define

fS(x) =
∑

β1,...,βk∈{0,1}

(−1)k−
∑k

i=1βi f

x +

k∑
j=1

βjeSj

 .

Here ei is the i’th element in the standard basis for Fn
q ; the

inner sum is over Fn
q and the outer sum is over Fq.

For example, if S = {1, 2}:

fS(x) = f (x) − f (x + e1) − f (x + e2) + f (x + e1 + e2).

A query to fS can be simulated using 2k queries to f .
Define the discrete derivative of f in direction i ∈ [n] as

(∆if)(x) := f (x + ei) − f (x).

Then fS(x) = (∆S1∆S2 . . .∆Sk f)(x).

The algorithm

We will be interested in querying fS for sets S of size d − 1. In
this case, we have the following characterisation for
multilinear polynomials f .

Lemma 2
Let f : Fn

q → Fq be a multilinear polynomial of degree d with
expansion

f (x) =
∑

T⊆[n],|T|6d

αT
∏
i∈T

xi.

Then, for any S such that |S| = d − 1,

fS(x) = αS +
∑
k/∈S

αS∪{k}xk.

Proof: follows easily from expressing f in terms of discrete
derivatives.

The algorithm

We will be interested in querying fS for sets S of size d − 1. In
this case, we have the following characterisation for
multilinear polynomials f .

Lemma 2
Let f : Fn

q → Fq be a multilinear polynomial of degree d with
expansion

f (x) =
∑

T⊆[n],|T|6d

αT
∏
i∈T

xi.

Then, for any S such that |S| = d − 1,

fS(x) = αS +
∑
k/∈S

αS∪{k}xk.

Proof: follows easily from expressing f in terms of discrete
derivatives.

Learning all the degree d terms

The algorithm

foreach S ⊆ [n] such that |S| = d − 1 do
Use one query to fS to learn αS∪{k}, for all k /∈ S;

end
Output the function fd(x) =

∑
S⊆[n],|S|=d αS

∏
i∈S xi;

Proof of correctness:

By Lemma 2, for any S such that |S| = d − 1, knowledge of
the degree 1 component of fS is sufficient to determine
αS∪{k} for all k /∈ S.

So knowing the degree 1 part of fS for all S ⊆ [n] such that
|S| = d − 1 is sufficient to completely determine all degree
d coefficients of f .

Learning all the degree d terms

The algorithm

foreach S ⊆ [n] such that |S| = d − 1 do
Use one query to fS to learn αS∪{k}, for all k /∈ S;

end
Output the function fd(x) =

∑
S⊆[n],|S|=d αS

∏
i∈S xi;

Proof of correctness:

By Lemma 2, for any S such that |S| = d − 1, knowledge of
the degree 1 component of fS is sufficient to determine
αS∪{k} for all k /∈ S.

So knowing the degree 1 part of fS for all S ⊆ [n] such that
|S| = d − 1 is sufficient to completely determine all degree
d coefficients of f .

Learning all the degree d terms

The algorithm

foreach S ⊆ [n] such that |S| = d − 1 do
Use one query to fS to learn αS∪{k}, for all k /∈ S;

end
Output the function fd(x) =

∑
S⊆[n],|S|=d αS

∏
i∈S xi;

Proof of correctness:

By Lemma 1, for any S with |S| = d − 1, the degree 1
component of fS can be determined with one quantum
query to fS.

So the algorithm completely determines the degree d
component of f using

(n
d−1

)
queries to fS, each of which

uses 2d−1 queries to f .

Learning all the degree d terms

The algorithm

foreach S ⊆ [n] such that |S| = d − 1 do
Use one query to fS to learn αS∪{k}, for all k /∈ S;

end
Output the function fd(x) =

∑
S⊆[n],|S|=d αS

∏
i∈S xi;

Proof of correctness:

By Lemma 1, for any S with |S| = d − 1, the degree 1
component of fS can be determined with one quantum
query to fS.

So the algorithm completely determines the degree d
component of f using

(n
d−1

)
queries to fS, each of which

uses 2d−1 queries to f .

Finishing up

Once the degree d component of f has been learned, f can
be reduced to a degree d − 1 polynomial by crossing out
the degree d part whenever the oracle for f is called.

Whenever the oracle is called on x, we subtract fd(x) from
the result (where fd is the degree d part of f), at no extra
query cost.

Inductively, f can be determined completely using

2d−1
(

n
d − 1

)
+ 2d−2

(
n

d − 2

)
+ · · ·+ 2n + 1 + 1

queries; the last query is to determine the constant term
α∅, which can be achieved by classically querying f (0n).

The number of queries used is therefore O(nd−1) for
constant d.

Finishing up

Once the degree d component of f has been learned, f can
be reduced to a degree d − 1 polynomial by crossing out
the degree d part whenever the oracle for f is called.

Whenever the oracle is called on x, we subtract fd(x) from
the result (where fd is the degree d part of f), at no extra
query cost.

Inductively, f can be determined completely using

2d−1
(

n
d − 1

)
+ 2d−2

(
n

d − 2

)
+ · · ·+ 2n + 1 + 1

queries; the last query is to determine the constant term
α∅, which can be achieved by classically querying f (0n).

The number of queries used is therefore O(nd−1) for
constant d.

Finishing up

Once the degree d component of f has been learned, f can
be reduced to a degree d − 1 polynomial by crossing out
the degree d part whenever the oracle for f is called.

Whenever the oracle is called on x, we subtract fd(x) from
the result (where fd is the degree d part of f), at no extra
query cost.

Inductively, f can be determined completely using

2d−1
(

n
d − 1

)
+ 2d−2

(
n

d − 2

)
+ · · ·+ 2n + 1 + 1

queries; the last query is to determine the constant term
α∅, which can be achieved by classically querying f (0n).

The number of queries used is therefore O(nd−1) for
constant d.

Finishing up

Once the degree d component of f has been learned, f can
be reduced to a degree d − 1 polynomial by crossing out
the degree d part whenever the oracle for f is called.

Whenever the oracle is called on x, we subtract fd(x) from
the result (where fd is the degree d part of f), at no extra
query cost.

Inductively, f can be determined completely using

2d−1
(

n
d − 1

)
+ 2d−2

(
n

d − 2

)
+ · · ·+ 2n + 1 + 1

queries; the last query is to determine the constant term
α∅, which can be achieved by classically querying f (0n).

The number of queries used is therefore O(nd−1) for
constant d.

Learning quantum states
Consider the basic task of quantum state estimation.

|ψ〉

|ψ〉

|ψ〉

|ψ〉

M
“|ψ〉 ≈ . . . ”

Given the ability to produce copies of an unknown
n-qubit quantum state |ψ〉, we would like to estimate |ψ〉.

Standard quantum state tomography uses 2Θ(n) copies of
|ψ〉 to achieve constant fidelity.
Can we do better?

Learning quantum states
Consider the basic task of quantum state estimation.

|ψ〉

|ψ〉

|ψ〉

|ψ〉

M
“|ψ〉 ≈ . . . ”

Given the ability to produce copies of an unknown
n-qubit quantum state |ψ〉, we would like to estimate |ψ〉.
Standard quantum state tomography uses 2Θ(n) copies of
|ψ〉 to achieve constant fidelity.

Can we do better?

Learning quantum states
Consider the basic task of quantum state estimation.

|ψ〉

|ψ〉

|ψ〉

|ψ〉

M
“|ψ〉 ≈ . . . ”

Given the ability to produce copies of an unknown
n-qubit quantum state |ψ〉, we would like to estimate |ψ〉.
Standard quantum state tomography uses 2Θ(n) copies of
|ψ〉 to achieve constant fidelity.
Can we do better?

Learning quantum states
Consider the basic task of quantum state estimation.

|ψ〉

|ψ〉

|ψ〉

|ψ〉

M
“|ψ〉 ≈ . . . ”

To achieve constant fidelity between our guess and |ψ〉, we
need 2Ω(n) copies of |ψ〉.

In order to determine |ψ〉 efficiently (using poly(n) copies)
we must restrict to classes of states which have efficient
descriptions, or change the problem.

Learning quantum states
Consider the basic task of quantum state estimation.

|ψ〉

|ψ〉

|ψ〉

|ψ〉

M
“|ψ〉 ≈ . . . ”

To achieve constant fidelity between our guess and |ψ〉, we
need 2Ω(n) copies of |ψ〉.
In order to determine |ψ〉 efficiently (using poly(n) copies)
we must restrict to classes of states which have efficient
descriptions, or change the problem.

Learning quantum states

Some examples where this has been done:

[Cramer et al ’10] give an efficient algorithm for learning
matrix product states.

[Aaronson ’06] introduces “pretty good tomography”: relax
to attempting to predict the outcomes of “most”
measurements on the state.

[Flammia and Liu ’11] and [da Silva et al ’11] give efficient
algorithms for certifying the production of certain states.

Learning stabilizer states

Today I’ll talk about a learning algorithm for another
important class of quantum states with efficient descriptions:
stabilizer states.

|ψ〉 is a stabilizer state of n qubits if there exists a
subgroup G of 2n pairwise commuting Pauli matrices
(with ±1 phases) such that M|ψ〉 = |ψ〉 for all M ∈ G.

Examples include GHZ states, cluster states, states
occurring in quantum error-correcting codes, . . .

A stabilizer state of n qubits is completely specified by a
generating set for its stabilizer (n Pauli matrices on n qubits).
There are 2Θ(n2) stabilizer states of n qubits.

Learning stabilizer states

Today I’ll talk about a learning algorithm for another
important class of quantum states with efficient descriptions:
stabilizer states.

|ψ〉 is a stabilizer state of n qubits if there exists a
subgroup G of 2n pairwise commuting Pauli matrices
(with ±1 phases) such that M|ψ〉 = |ψ〉 for all M ∈ G.

Examples include GHZ states, cluster states, states
occurring in quantum error-correcting codes, . . .

A stabilizer state of n qubits is completely specified by a
generating set for its stabilizer (n Pauli matrices on n qubits).
There are 2Θ(n2) stabilizer states of n qubits.

Learning stabilizer states

Today I’ll talk about a learning algorithm for another
important class of quantum states with efficient descriptions:
stabilizer states.

|ψ〉 is a stabilizer state of n qubits if there exists a
subgroup G of 2n pairwise commuting Pauli matrices
(with ±1 phases) such that M|ψ〉 = |ψ〉 for all M ∈ G.

Examples include GHZ states, cluster states, states
occurring in quantum error-correcting codes, . . .

A stabilizer state of n qubits is completely specified by a
generating set for its stabilizer (n Pauli matrices on n qubits).
There are 2Θ(n2) stabilizer states of n qubits.

Prior work on learning stabilizer states

[Aaronson and Gottesman ’08] have previously given quantum
algorithms for learning an unknown stabilizer state |ψ〉:

An algorithm which uses O(n) copies of |ψ〉 and runs in
time O(n4);
An algorithm which uses O(n2) copies of |ψ〉, runs in time
O(n4) and uses only single-copy measurements.

Learning stabilizer states

Theorem
There is a quantum algorithm which learns an unknown
stabilizer state |ψ〉 given access to O(n) copies of |ψ〉, and runs
in time O(n3) (or better).

Notes on this result:

By Holevo’s theorem, this is optimal in terms of the
scaling of the number of copies of |ψ〉 used.

Any algorithm for learning stabilizer states requires Ω(n2)
time just to write the output.

The algorithm makes measurements on two copies of |ψ〉
at a time.

Learning stabilizer states

Theorem
There is a quantum algorithm which learns an unknown
stabilizer state |ψ〉 given access to O(n) copies of |ψ〉, and runs
in time O(n3) (or better).

Notes on this result:

By Holevo’s theorem, this is optimal in terms of the
scaling of the number of copies of |ψ〉 used.

Any algorithm for learning stabilizer states requires Ω(n2)
time just to write the output.

The algorithm makes measurements on two copies of |ψ〉
at a time.

The algorithm

The algorithm is based on the following subroutine.

Bell sampling
1 Create two copies of |ψ〉.
2 Measure each pair of qubits of |ψ〉⊗2 in the Bell basis.

1

1

Bell
meas.

2

2

Bell
meas.

3

3

Bell
meas.

...

...
n

n

Bell
meas.

|ψ〉

|ψ〉

Learning stabilizer states

For z, x ∈ {0, 1}, write σzx :=
(

1 0
0 −1

)z (0 1
1 0

)x.

For s ∈ {0, 1}2n, write

σs := σs1s2 ⊗ · · · ⊗ σs2n−1s2n .

Fact
Let |ψ〉 be a state of n qubits. Performing Bell sampling on
|ψ〉⊗2 returns outcome s with probability

|〈ψ|σs|ψ
∗〉|2

2n .

Bell sampling and stabilizer states

Up to an overall phase every stabilizer state |ψ〉 can be
written in the form

|ψ〉 = 1√
|A|

∑
x∈A

i`(x)(−1)q(x)|x〉,

where A is an affine subspace of Fn
2 , and

`, q : {0, 1}n → {0, 1} are linear and quadratic (respectively)
polynomials over F2 [Dehaene and Moor ’02].

As ` is linear, `(x) = s · x for some s ∈ {0, 1}n.

So (−1)`(x) =
∏

i∈S(−1)xi for some S ⊆ [n].

Hence
|ψ∗〉 = σ⊗S

10 |ψ〉.

Bell sampling and stabilizer states

Up to an overall phase every stabilizer state |ψ〉 can be
written in the form

|ψ〉 = 1√
|A|

∑
x∈A

i`(x)(−1)q(x)|x〉,

where A is an affine subspace of Fn
2 , and

`, q : {0, 1}n → {0, 1} are linear and quadratic (respectively)
polynomials over F2 [Dehaene and Moor ’02].

As ` is linear, `(x) = s · x for some s ∈ {0, 1}n.

So (−1)`(x) =
∏

i∈S(−1)xi for some S ⊆ [n].

Hence
|ψ∗〉 = σ⊗S

10 |ψ〉.

Bell sampling and stabilizer states

Up to an overall phase every stabilizer state |ψ〉 can be
written in the form

|ψ〉 = 1√
|A|

∑
x∈A

i`(x)(−1)q(x)|x〉,

where A is an affine subspace of Fn
2 , and

`, q : {0, 1}n → {0, 1} are linear and quadratic (respectively)
polynomials over F2 [Dehaene and Moor ’02].

As ` is linear, `(x) = s · x for some s ∈ {0, 1}n.

So (−1)`(x) =
∏

i∈S(−1)xi for some S ⊆ [n].

Hence
|ψ∗〉 = σ⊗S

10 |ψ〉.

Bell sampling and stabilizer states

Up to an overall phase every stabilizer state |ψ〉 can be
written in the form

|ψ〉 = 1√
|A|

∑
x∈A

i`(x)(−1)q(x)|x〉,

where A is an affine subspace of Fn
2 , and

`, q : {0, 1}n → {0, 1} are linear and quadratic (respectively)
polynomials over F2 [Dehaene and Moor ’02].

As ` is linear, `(x) = s · x for some s ∈ {0, 1}n.

So (−1)`(x) =
∏

i∈S(−1)xi for some S ⊆ [n].

Hence
|ψ∗〉 = σ⊗S

10 |ψ〉.

Bell sampling and stabilizer states

If we perform Bell sampling on |ψ〉⊗2, we receive outcome
t with probability

|〈ψ|σt|ψ
∗〉|2

2n =
|〈ψ|σtσ

⊗S
10 |ψ〉|2

2n .

Let G stabilize |ψ〉 and let T denote the set of strings
t ∈ {0, 1}2n such that σt ∈ G, up to a phase. Then T is an
n-dimensional linear subspace of F2n

2 .

Bell sampling gives an outcome r which is uniformly
distributed on the set {t⊕ s : t ∈ T} for some s ∈ {0, 1}2n.

Bell sampling and stabilizer states

If we perform Bell sampling on |ψ〉⊗2, we receive outcome
t with probability

|〈ψ|σt|ψ
∗〉|2

2n =
|〈ψ|σtσ

⊗S
10 |ψ〉|2

2n .

Let G stabilize |ψ〉 and let T denote the set of strings
t ∈ {0, 1}2n such that σt ∈ G, up to a phase. Then T is an
n-dimensional linear subspace of F2n

2 .

Bell sampling gives an outcome r which is uniformly
distributed on the set {t⊕ s : t ∈ T} for some s ∈ {0, 1}2n.

Bell sampling and stabilizer states

If we perform Bell sampling on |ψ〉⊗2, we receive outcome
t with probability

|〈ψ|σt|ψ
∗〉|2

2n =
|〈ψ|σtσ

⊗S
10 |ψ〉|2

2n .

Let G stabilize |ψ〉 and let T denote the set of strings
t ∈ {0, 1}2n such that σt ∈ G, up to a phase. Then T is an
n-dimensional linear subspace of F2n

2 .

Bell sampling gives an outcome r which is uniformly
distributed on the set {t⊕ s : t ∈ T} for some s ∈ {0, 1}2n.

Bell sampling and stabilizer states

For any two such outcomes r1, r2, the sum r1 ⊕ r2 is
uniformly distributed in T.

In order to find a basis for T, we can therefore produce
k + 1 Bell samples r0, r1, . . . , rk and consider the uniformly
random elements of T given by r1 ⊕ r0, r2 ⊕ r0, . . . , rk ⊕ r0.

If the dimension of the subspace of F2n
2 spanned by these

vectors is n, any basis of this subspace is a basis for T.

Although T does not contain information about phases,
determining T suffices to uniquely determine |ψ〉.

Once we have found a basis for T, we can measure |ψ〉 in
the eigenbasis of each corresponding Pauli matrix M to
decide whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Bell sampling and stabilizer states

For any two such outcomes r1, r2, the sum r1 ⊕ r2 is
uniformly distributed in T.

In order to find a basis for T, we can therefore produce
k + 1 Bell samples r0, r1, . . . , rk and consider the uniformly
random elements of T given by r1 ⊕ r0, r2 ⊕ r0, . . . , rk ⊕ r0.

If the dimension of the subspace of F2n
2 spanned by these

vectors is n, any basis of this subspace is a basis for T.

Although T does not contain information about phases,
determining T suffices to uniquely determine |ψ〉.

Once we have found a basis for T, we can measure |ψ〉 in
the eigenbasis of each corresponding Pauli matrix M to
decide whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Bell sampling and stabilizer states

For any two such outcomes r1, r2, the sum r1 ⊕ r2 is
uniformly distributed in T.

In order to find a basis for T, we can therefore produce
k + 1 Bell samples r0, r1, . . . , rk and consider the uniformly
random elements of T given by r1 ⊕ r0, r2 ⊕ r0, . . . , rk ⊕ r0.

If the dimension of the subspace of F2n
2 spanned by these

vectors is n, any basis of this subspace is a basis for T.

Although T does not contain information about phases,
determining T suffices to uniquely determine |ψ〉.

Once we have found a basis for T, we can measure |ψ〉 in
the eigenbasis of each corresponding Pauli matrix M to
decide whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Learning stabilizer states

The algorithm
1 Set S = ∅.

2 Create two copies of |ψ〉 and perform Bell sampling,
obtaining outcome r0.

3 Repeat the following 2n times:
1 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r.
2 Add r⊕ r0 to S.

4 Determine a basis for S; call this basis B.
5 For each element of B, measure a copy of |ψ〉 in the

eigenbasis of the corresponding Pauli matrix M to
determine whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Learning stabilizer states

The algorithm
1 Set S = ∅.
2 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r0.

3 Repeat the following 2n times:
1 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r.
2 Add r⊕ r0 to S.

4 Determine a basis for S; call this basis B.
5 For each element of B, measure a copy of |ψ〉 in the

eigenbasis of the corresponding Pauli matrix M to
determine whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Learning stabilizer states

The algorithm
1 Set S = ∅.
2 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r0.
3 Repeat the following 2n times:

1 Create two copies of |ψ〉 and perform Bell sampling,
obtaining outcome r.

2 Add r⊕ r0 to S.
4 Determine a basis for S; call this basis B.
5 For each element of B, measure a copy of |ψ〉 in the

eigenbasis of the corresponding Pauli matrix M to
determine whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Learning stabilizer states

The algorithm
1 Set S = ∅.
2 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r0.
3 Repeat the following 2n times:

1 Create two copies of |ψ〉 and perform Bell sampling,
obtaining outcome r.

2 Add r⊕ r0 to S.

4 Determine a basis for S; call this basis B.
5 For each element of B, measure a copy of |ψ〉 in the

eigenbasis of the corresponding Pauli matrix M to
determine whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Learning stabilizer states

The algorithm
1 Set S = ∅.
2 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r0.
3 Repeat the following 2n times:

1 Create two copies of |ψ〉 and perform Bell sampling,
obtaining outcome r.

2 Add r⊕ r0 to S.
4 Determine a basis for S; call this basis B.

5 For each element of B, measure a copy of |ψ〉 in the
eigenbasis of the corresponding Pauli matrix M to
determine whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Learning stabilizer states

The algorithm
1 Set S = ∅.
2 Create two copies of |ψ〉 and perform Bell sampling,

obtaining outcome r0.
3 Repeat the following 2n times:

1 Create two copies of |ψ〉 and perform Bell sampling,
obtaining outcome r.

2 Add r⊕ r0 to S.
4 Determine a basis for S; call this basis B.
5 For each element of B, measure a copy of |ψ〉 in the

eigenbasis of the corresponding Pauli matrix M to
determine whether M|ψ〉 = |ψ〉 or M|ψ〉 = −|ψ〉.

Summary of learning stabilizer states

The algorithm uses O(n) copies of |ψ〉. Time complexity is
dominated by finding a basis for S (O(n3) time or better).

The algorithm fails (i.e. does not identify |ψ〉) if each of
the 2n samples r⊕ r0 lies in a subspace of T of dimension
at most n − 1. This occurs with probability at most 2−n.

Summary of learning stabilizer states

The algorithm uses O(n) copies of |ψ〉. Time complexity is
dominated by finding a basis for S (O(n3) time or better).

The algorithm fails (i.e. does not identify |ψ〉) if each of
the 2n samples r⊕ r0 lies in a subspace of T of dimension
at most n − 1. This occurs with probability at most 2−n.

Bonus: a composition theorem for decision
tree complexity

Imagine we want to compute a function of the form

h(x) = g(f 1(x1), . . . , f n(xn)),

where xi ∈ {0, 1}mi , using the minimal number of classical
queries to x.

One strategy to compute h:

Replace g with the function ḡ given by substituting the
values taken by any constant functions f i into g.
Compute ḡ using efficient algorithms for f 1, . . . , f n as
black boxes.

“Theorem”: The xi inputs are independent, so this is the most
efficient way to compute g.

Bonus: a composition theorem for decision
tree complexity

Imagine we want to compute a function of the form

h(x) = g(f 1(x1), . . . , f n(xn)),

where xi ∈ {0, 1}mi , using the minimal number of classical
queries to x.

One strategy to compute h:

Replace g with the function ḡ given by substituting the
values taken by any constant functions f i into g.
Compute ḡ using efficient algorithms for f 1, . . . , f n as
black boxes.

“Theorem”: The xi inputs are independent, so this is the most
efficient way to compute g.

Bonus: a composition theorem for decision
tree complexity

Imagine we want to compute a function of the form

h(x) = g(f 1(x1), . . . , f n(xn)),

where xi ∈ {0, 1}mi , using the minimal number of classical
queries to x.

One strategy to compute h:

Replace g with the function ḡ given by substituting the
values taken by any constant functions f i into g.
Compute ḡ using efficient algorithms for f 1, . . . , f n as
black boxes.

“Theorem”: The xi inputs are independent, so this is the most
efficient way to compute g.

Counterexample to “theorem”
Let f : {0, 1}2 → {0, 1, 2} and g : {0, 1, 2}2 → {0, 1, 2} be defined by
the decision trees below (where edges correspond to elements
of {0, 1} or {0, 1, 2} in ascending order from left to right).

x1

0 x2

1 2

f :

y1

y2 1 2

0 1 2

g:

Set h(x1, x2, x3, x4) = g(f (x1, x2), f (x3, x4)). Then h can be
computed using only 3 queries:

x1

x3 x2

0 x4 1 2

1 2

Counterexample to “theorem”
Let f : {0, 1}2 → {0, 1, 2} and g : {0, 1, 2}2 → {0, 1, 2} be defined by
the decision trees below (where edges correspond to elements
of {0, 1} or {0, 1, 2} in ascending order from left to right).

x1

0 x2

1 2

f :

y1

y2 1 2

0 1 2

g:

Set h(x1, x2, x3, x4) = g(f (x1, x2), f (x3, x4)). Then h can be
computed using only 3 queries:

x1

x3 x2

0 x4 1 2

1 2

Nevertheless. . .

Theorem
The above algorithm is optimal when range(f i) ⊆ {0, 1} for all i.

Some notes on this result:

Also holds for computing partial functions and relations.

Implies various corollaries, e.g. a direct sum theorem for
decision tree complexity (a special case of a result of [Jain,
Klauck and Santha ’10]) and optimal bounds for iteratively
defined functions.

The quantum equivalent of this result was proven by
[Høyer, Lee and Špalek ’07] and [Reichardt ’09].

Nevertheless. . .

Theorem
The above algorithm is optimal when range(f i) ⊆ {0, 1} for all i.

Some notes on this result:

Also holds for computing partial functions and relations.

Implies various corollaries, e.g. a direct sum theorem for
decision tree complexity (a special case of a result of [Jain,
Klauck and Santha ’10]) and optimal bounds for iteratively
defined functions.

The quantum equivalent of this result was proven by
[Høyer, Lee and Špalek ’07] and [Reichardt ’09].

Nevertheless. . .

Theorem
The above algorithm is optimal when range(f i) ⊆ {0, 1} for all i.

Some notes on this result:

Also holds for computing partial functions and relations.

Implies various corollaries, e.g. a direct sum theorem for
decision tree complexity (a special case of a result of [Jain,
Klauck and Santha ’10]) and optimal bounds for iteratively
defined functions.

The quantum equivalent of this result was proven by
[Høyer, Lee and Špalek ’07] and [Reichardt ’09].

Nevertheless. . .

Theorem
The above algorithm is optimal when range(f i) ⊆ {0, 1} for all i.

Some notes on this result:

Also holds for computing partial functions and relations.

Implies various corollaries, e.g. a direct sum theorem for
decision tree complexity (a special case of a result of [Jain,
Klauck and Santha ’10]) and optimal bounds for iteratively
defined functions.

The quantum equivalent of this result was proven by
[Høyer, Lee and Špalek ’07] and [Reichardt ’09].

Summary

We can learn. . .

. . . n-bit strings with O(
√

n) wildcard queries;

. . . degree d n-variate multilinear polynomials with
O(nd−1) queries;

. . . n-qubit stabilizer states with O(n) copies.

Open problems:

Determine the quantum query complexity of CGT.
Other applications of SWW! A possible example: testing
juntas.
What about testing stabilizer states?

Summary

We can learn. . .

. . . n-bit strings with O(
√

n) wildcard queries;

. . . degree d n-variate multilinear polynomials with
O(nd−1) queries;

. . . n-qubit stabilizer states with O(n) copies.

Open problems:

Determine the quantum query complexity of CGT.
Other applications of SWW! A possible example: testing
juntas.
What about testing stabilizer states?

Thanks!

Some further reading:

The algorithm for search with wildcards: arXiv:1210.1148
(joint work with Andris Ambainis)

The algorithm for learning multilinear polynomials:
arXiv:1105.3310

The algorithm for learning stabilizer states:
arXiv:13??.???? (joint work with Scott Aaronson, David
Chen, Daniel Gottesman and Vincent Liew)

The composition theorem for decision tree complexity:
arXiv:1302.4207

Proving the measurement lemma

We finally need to prove we can distinguish the |ψk
x〉 states. We

use the pretty good measurement (PGM).

Lemma
The probability that the PGM outputs y on input |ψk

x〉 is
precisely (

√
G)2

xy, where

Gxy = 〈ψk
x|ψ

k
y〉 =

1(n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(n−d(x,y)
k

)(n
k

) .

We want to bound Dk :=
∑

y∈{0,1}n d(x, y)(
√

Gxy)
2.

Gxy depends only on x⊕ y, so G is diagonalised by the
Fourier transform over Zn

2 and Dk does not depend on x.

Dk can be upper bounded using Fourier duality and some
combinatorics.

Proving the measurement lemma

We finally need to prove we can distinguish the |ψk
x〉 states. We

use the pretty good measurement (PGM).

Lemma
The probability that the PGM outputs y on input |ψk

x〉 is
precisely (

√
G)2

xy, where

Gxy = 〈ψk
x|ψ

k
y〉 =

1(n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(n−d(x,y)
k

)(n
k

) .

We want to bound Dk :=
∑

y∈{0,1}n d(x, y)(
√

Gxy)
2.

Gxy depends only on x⊕ y, so G is diagonalised by the
Fourier transform over Zn

2 and Dk does not depend on x.

Dk can be upper bounded using Fourier duality and some
combinatorics.

Proving the measurement lemma

We finally need to prove we can distinguish the |ψk
x〉 states. We

use the pretty good measurement (PGM).

Lemma
The probability that the PGM outputs y on input |ψk

x〉 is
precisely (

√
G)2

xy, where

Gxy = 〈ψk
x|ψ

k
y〉 =

1(n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(n−d(x,y)
k

)(n
k

) .

We want to bound Dk :=
∑

y∈{0,1}n d(x, y)(
√

Gxy)
2.

Gxy depends only on x⊕ y, so G is diagonalised by the
Fourier transform over Zn

2 and Dk does not depend on x.

Dk can be upper bounded using Fourier duality and some
combinatorics.

Proving the measurement lemma

We finally need to prove we can distinguish the |ψk
x〉 states. We

use the pretty good measurement (PGM).

Lemma
The probability that the PGM outputs y on input |ψk

x〉 is
precisely (

√
G)2

xy, where

Gxy = 〈ψk
x|ψ

k
y〉 =

1(n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(n−d(x,y)
k

)(n
k

) .

We want to bound Dk :=
∑

y∈{0,1}n d(x, y)(
√

Gxy)
2.

Gxy depends only on x⊕ y, so G is diagonalised by the
Fourier transform over Zn

2 and Dk does not depend on x.

Dk can be upper bounded using Fourier duality and some
combinatorics.

Proving the measurement lemma

We finally need to prove we can distinguish the |ψk
x〉 states. We

use the pretty good measurement (PGM).

Lemma
The probability that the PGM outputs y on input |ψk

x〉 is
precisely (

√
G)2

xy, where

Gxy = 〈ψk
x|ψ

k
y〉 =

1(n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(n−d(x,y)
k

)(n
k

) .

We want to bound Dk :=
∑

y∈{0,1}n d(x, y)(
√

Gxy)
2.

Gxy depends only on x⊕ y, so G is diagonalised by the
Fourier transform over Zn

2 and Dk does not depend on x.

Dk can be upper bounded using Fourier duality and some
combinatorics.

