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Introduction

In this talk, I will discuss how so-called hypercontractive
inequalities can be used to give new(ish) proofs of results in
quantum information theory:

. . . a bound on the bias of multiplayer XOR games
(originally due to [Defant, Popa and Schwarting ’10] [Pellegrino
and Seoane-Sepúlveda ’12]) which implies the first progress on
a conjecture about quantum query algorithms;

. . . a bound on the bias of local 4-design measurements
(originally due to [Lancien and Winter ’12]).



Hypercontractive inequalities: a CS
perspective

Hypercontractive inequalities have been much used in the
quantum field theory literature:

introduced (in the form of log-Sobolev inequalities) by
[Gross ’75];
for detailed reviews see e.g. [Davies, Gross and Simon ’92],
[Gross ’06].

In the computer science literature, first used by [Kahn, Kalai and
Linial ’88] in an important paper proving that every boolean
function has an influential variable.

The hypercontractive inequality they used is a particularly
simple and clean special case due to [Bonami ’70], [Gross ’75], and
often known as the Bonami-Beckner inequality.
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Noise

Consider functions f : {±1}n → R.

For ε ∈ [0, 1], define the noise operator Tε as follows:

(Tεf )(x) = Ey∼εx[f (y)]

Here the expectation is over strings y ∈ {±1}n obtained
from x by negating each element of x with independent
probability (1 − ε)/2. So. . .

If ε = 1, Tεf = f ;
If ε = 0, Tεf is constant.

Fairly easy to show that Tε is a contraction, i.e.

‖Tεf‖p 6 ‖f‖p

where ‖f‖p :=
(

1
2n

∑
x∈{±1}n |f (x)|p

)1/p
.
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Hypercontractivity of Tε

The Bonami-Beckner inequality [Bonami ’70] [Gross ’75]

For any f : {±1}n → R, and any p and q such that

1 6 p 6 q 6 ∞ and ε 6
√

p−1
q−1 ,

‖Tεf‖q 6 ‖f‖p.

Intuition: usually ‖f‖p 6 ‖f‖q for p 6 q, but applying noise to f
smoothes out its peaks and makes the norms comparable.

Why should we care about this?

Corollary
Let f : {±1}n → R be a polynomial of degree d. Then:

for any p 6 2, ‖f‖p > (p − 1)d/2‖f‖2;

for any q > 2, ‖f‖q 6 (q − 1)d/2‖f‖2.

Intuition: low-degree polynomials are smooth.
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Proof of the corollary

Given a degree d (multilinear) polynomial

f (x1, . . . , xn) =
∑

S⊆[n],|S|6d

f̂ (S)xS,

where xS =
∏

i∈S xi, write f=k =
∑

S,|S|=k f̂ (S)xS.

Then

‖f‖2
q =

∥∥∥∥∥
d∑

k=0

f=k

∥∥∥∥∥
2

q

=

∥∥∥∥∥T1/
√

q−1

(
d∑

k=0

(q − 1)k/2f=k

)∥∥∥∥∥
2

q

6

∥∥∥∥∥
d∑

k=0

(q − 1)k/2f=k

∥∥∥∥∥
2

2

=

d∑
k=0

(q − 1)k
∑

S⊆[n],|S|=k

f̂ (S)2

6 (q − 1)d
∑

S⊆[n]

f̂ (S)2 = (q − 1)d‖f‖2
2.

(last step: Parseval’s equality)
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Applications in quantum computation

The above inequality has recently found some applications in
quantum computation:

Separations between quantum and classical
communication complexity [Gavinsky et al ’07]

Limitations on quantum random access codes [Ben-Aroya,
Regev and de Wolf ’08]

Bounds on non-local games [Buhrman ’11]

Lower bounds on quantum query complexity [Ambainis and
de Wolf ’12]

Many more in classical computer science. . .

Today: two more applications.
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Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum
correlations is via XOR games.

A k-player XOR game is defined as follows:

Fix a multidimensional array A ∈ ({±1}n)k.
The j’th player gets an input ij ∈ {1, . . . ,n}, picked
according to a known distribution π.

The j’th player must reply with an output xj
ij
∈ {±1}.

The players win if the product of their outputs is equal to
Ai1,...,ik .

The players are allowed to communicate before the game
starts, to agree a strategy, but cannot communicate during the
game.
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Multiplayer XOR games

For example, consider the CHSH game:

Two players, two possible inputs, chosen uniformly (k = 2,
n = 2, π is uniform).
A =

(
1 1
1 −1

)
: the players win if their outputs are the same,

unless i1 = i2 = 2, when they win if their outputs are
different.

In general, the maximal bias (i.e. difference between
probability of success and failure) achievable by deterministic
strategies is

β(G) := max
x1,...,xk∈{±1}n

∣∣∣∣∣∣
n∑

i1,...,ik=1

πi1,...,ikAi1,...,ikx
1
i1 . . . xk

ik

∣∣∣∣∣∣ .
It’s easy to see that shared randomness doesn’t help.
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Why care about XOR games?

In some cases (e.g. the CHSH game), if the players are
allowed to share entanglement they can beat any possible
classical strategy.

XOR games thus provide a clean, mathematically tractable
way of studying the power of entanglement.

XOR games are also interesting in themselves classically:
Applications in communication complexity, e.g. [Ford and
Gál ’05]
Known to be NP-hard to compute bias
Connections to combinatorics and coding theory.

Today’s question
What is the hardest k-player XOR game for classical players?

i.e. what is the game which minimises the maximal bias
achievable?
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Previously known results

Until recently, there was a big gap between lower and upper
bounds on minG β(G):

There exists a game G for which β(G) 6 n−(k−1)/2 [Ford
and Gál ’05].
Any game G has β(G) > 2−O(k)n−(k−1)/2 [Bohnenblust and
Hille ’31].

A recent and significant improvement:

Theorem [Defant, Popa and Schwarting ’10] [Pellegrino and

Seoane-Sepúlveda ’12]

There exists a universal constant c > 0 such that, for any XOR
game G as above, β(G) = Ω(k−cn−(k−1)/2).

We will show how this result can be proven using
hypercontractivity (as a small step in the proof).
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XOR games and multilinear forms
A homogeneous polynomial f : (Rn)k → R is said to be a
multilinear form if it can be written as

f (x1, . . . , xk) =
∑

i1,...,ik

f̂i1,...,ikx
1
i1x2

i2 . . . xk
ik

for some multidimensional array f̂ ∈ Rn × Rn × · · · × Rn.

Define as before

‖f‖p :=

 1
2nk

∑
x1,...,xk∈{±1}n

|f (x1, . . . , xk)|p

1/p

.

Any XOR game G = (π,A) corresponds to a multilinear form f :

f (x1, . . . , xk) =
∑

i1,...,ik

πi1,...,ikAi1,...,ikx
1
i1x2

i2 . . . xk
ik ,

and the bias β(G) is precisely ‖f‖∞ := maxx∈{±1}n |f (x)|.
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What we want to prove

Bohnenblust-Hille inequality [BH ’31, DPS ’10, PS ’12]

For any multilinear form f : (Rn)k → R, and any p > 2k/(k + 1),

‖f̂‖p :=

 ∑
i1,...,ik

|̂fi1,...,ik |
p

1/p

6 Ck‖f‖∞,

where Ck may be taken to be O(klog2 e) ≈ O(k1.45).

Implies β(G) = Ω(C−1
k n−(k−1)/2) by choosing p appropriately.

We’ll prove the claim by induction on k, for k a power of 2.

As ‖f̂‖p is nonincreasing with p, it suffices to prove the
claim for p = 2k/(k + 1).
The base case k = 1 is trivial (C1 = 1). So, assuming the
theorem holds for k/2, we prove it holds for k.
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Proof

We start with a matrix inequality [Defant, Popa and Schwarting ’10]:

‖f̂‖2k/(k+1) 6

 ∑
i1,...,ik/2

‖(f̂i1,...,ik)
n
ik/2+1,...,ik=1‖

2k/(k+2)
2

(k+2)/4k

×

 ∑
ik/2+1,...,ik

‖(f̂i1,...,ik)
n
i1,...,ik/2=1‖

2k/(k+2)
2

(k+2)/4k

We estimate the second term (the first follows exactly the same
procedure).
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Proof

For each ik/2+1, . . . , ik ∈ [n], define fik/2+1,...,ik : (R
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Proof
For each tuple ik/2+1, . . . , ik we have by Parseval’s equality
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We now observe that, for any p > 1,
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by the inductive hypothesis.
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Combining both terms in the first inequality, ∑
i1,...,ik
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Thus

Ck 6

(
1 +

4
k − 2

)k/4

Ck/2.

Observing that (1 + 4/(k − 2))k/4 6 (1 + O(1/k))e, we have
Ck = O(klog2 e) as claimed.
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A conjecture of Aaronson and Ambainis

The following beautiful conjecture is currently open:

Conjecture [Aaronson and Ambainis ’11]

Every bounded low-degree polynomial on the boolean cube
has an influential variable.

Generalises a prior result showing this for decision trees
[O’Donnell et al ’05].

One reason this conjecture is interesting: it would imply
that every quantum query algorithm can be approximated
by a classical algorithm on “most” inputs.

One special case known: when f is symmetric, i.e. f (x)
depends only on

∑
i xi [Backurs ’12].
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A conjecture of Aaronson and Ambainis
A more formal version of the conjecture:

Conjecture [Aaronson and Ambainis ’11]

For all degree d polynomials f : {±1}n → [−1, 1], there exists j
such that Ij(f ) > poly(Var(f )/d).

What does this mean?

Write E[f ] = 1
2n

∑
x∈{±1}n f (x). Then the (`2) variance of f is

Var(f ) = E[(f − E[f ])2]

Define the influence of the j’th variable on f as

Ij(f ) =
1

2n+2

∑
x∈{±1}n

(f (x) − f (xj))2,

where xj is x with the j’th variable negated.
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A conjecture of Aaronson and Ambainis
Using the above strengthening of the BH inequality, it is easy
to prove a very special case of the Aaronson-Ambainis
conjecture. Let

f (x1, . . . , xk) =
∑

i1,...,ik

f̂i1,...,ikx
1
i1x2

i2 . . . xk
ik

where f̂i1,...,ik = ±α for some α.

f depends on nk variables xj
`, 1 6 j 6 k and 1 6 ` 6 n.

The influence of variable (j, `) on f is

Inf(j,`)(f ) =
∑

i1,...,ij−1,ij+1,...,ik

f̂ 2
i1,...,ij−1,`,ij+1,...,ik = nk−1α2.

Corollary

If f is a multilinear form such that ‖f‖∞ 6 1 and f̂i1,...,ik = ±α
for some α, then I(j,`)(f ) = Ω(Var(f )2/k3) for all (j, `).
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Application 2: The bias of local 4-designs

Given a quantum state which is promised to be either ρ (with
probability p) or σ (with probability 1 − p), we want to
determine which is the case via a measurement.

The most general kind of quantum measurement is
known as a POVM, i.e. a partition of the identity into
positive operators.

The optimal measurement achieves success probability

1
2
(1 + ‖pρ− (1 − p)σ‖1) ,

where ‖M‖1 = tr |M| is the usual trace norm.

Setting ∆ = pρ− (1 − p)σ, the optimal bias is just ‖∆‖1.



The bias of local measurements

What if we are not allowed to perform an arbitrary
measurement, but can only perform a single fixed quantum
measurement, followed by arbitrary classical postprocessing?

Given a POVM M = (Mi), let ρM, σM be the probability
distributions on measurement outcomes induced by
performing M on ρ, σ.

The optimal bias one can achieve by performing M is then
equal to

‖∆‖M := ‖pρM − (1 − p)σM‖1

=
∑

i

|p tr Miρ− (1 − p) tr Miσ|

=
∑

i

| tr Mi∆|.
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The uniform POVM
One particularly natural (and optimal!) fixed measurement is
the uniform POVM in n dimensions.

This is a continuous POVM with a measurement operator
Mψ ∝ |ψ〉〈ψ| for every n-dimensional pure state |ψ〉,
normalised such that

∫
dψMψ = I.

We can’t actually perform this physically, but can
approximate it using t-designs.

A rank-one POVM M = (Mi) in n dimensions is called a
t-design if ∑

i

piP⊗t
i =

∫
dψ|ψ〉〈ψ|⊗t,

where pi =
1
n tr Mi and Pi =

1
tr Mi

Mi.

As t increases, t-designs become better and better
approximations to the uniform POVM.
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t-design if ∑
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The bias of 4-design measurements

Theorem [Ambainis and Emerson ’07], [Matthews, Wehner and Winter

’09]

Let M be a 4-design and set ∆ = (ρ− σ)/2. Then

‖∆‖M > C
√

tr∆2,

for some universal constant C > 0.

One can generalise this to a setting where locality comes into
play by making M into a tensor product of 4-designs. That is:

Each operator is of the form Mi1,...,ik = Mi1 ⊗Mi2 ⊗ . . .Mik .
Each individual measurement (Mj) is a 4-design.

This is interesting because it allows us to explore the power of
local vs. global measurements.
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Local 4-designs

Theorem [Lancien and Winter ’12]

Let M be a k-partite measurement which is a product of local
4-designs and set ∆ = pρ− (1 − p)σ. Then

‖∆‖M > Dk

∑
S⊆[k]

tr
[
(trS∆)

2]1/2

,

for some universal constant D > 0.

Previously known for k = 2 [Matthews, Wehner and Winter ’09].

We give a new proof using hypercontractivity.
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The k = 1 case

We use the “fourth moment method” [Littlewood ’30] [Berger ’97]:

‖∆‖M =
∑

i

| tr Mi∆|

= n
∑

i

pi| tr Pi∆| > n
(∑

i pi(tr Pi∆)
2
)3/2

(
∑

i pi(tr Pi∆)4)
1/2

= n

(
tr
(∑

i piP⊗2
i

)
∆⊗2

)3/2

(
tr
(∑

i piP⊗4
i

)
∆⊗4

)1/2 .

As M is a 4-design,

‖∆‖M > n
(
tr
(∫

dψ|ψ〉〈ψ|⊗2
)
∆⊗2

)3/2(
tr
(∫

dψ|ψ〉〈ψ|⊗4
)
∆⊗4

)1/2 = n
(∫

(tr∆|ψ〉〈ψ|)2dψ
)3/2(∫

(tr∆|ψ〉〈ψ|)4dψ
)1/2 .

So, if we can upper bound
∫
(tr∆|ψ〉〈ψ|)4dψ in terms of∫

(tr∆|ψ〉〈ψ|)2dψ, this will give a lower bound on ‖∆‖M.
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Functions on the sphere

Let Sn be the real n-sphere, i.e. {x ∈ Rn+1 :
∑

i x2
i = 1}.

For f : Sn → R define the Lp(Sn) norms as

‖f‖Lp(Sn) :=

(∫
|f (ξ)|pdξ

)1/p

,

where we integrate with respect to the uniform measure
on Sn, normalised so that

∫
dξ = 1.

Identify each n-dimensional quantum state |ψ〉 (element of
the unit sphere in Cn) with a real vector ξ ∈ S2n−1 by
taking real and imaginary parts.

Now consider the function f (ξ) = tr∆|ψ〉〈ψ|.

We want to upper bound ‖f‖L4(Sn) in terms of ‖f‖L2(Sn).
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Hypercontractivity to the rescue?

Claim
f is a degree 2 polynomial in the components of ξ.

Suggests that we could relate ‖f‖L4(Sn) to ‖f‖L2(Sn) using some
form of hypercontractivity. . .

We need to understand hypercontractivity for functions on the
sphere, and some basic ideas from the theory of spherical
harmonics.
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Spherical harmonics

The restriction of every degree d polynomial f : Rn+1 → R
to the sphere Sn can be written as

f (x) =
d∑

k=0

Yk(x),

where Yk : Sn → R is called a spherical harmonic, and is
the restriction of a degree k polynomial to the sphere,
satisfying

∫
Yj(ξ)Yk(ξ)dξ = 0 for j 6= k.

The Poisson semigroup (which can be thought of as a
“noise operator” for the sphere) is defined by

(Pεf )(x) =
∑

k

εkYk(x).
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Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed
hypercontractive.

Theorem [Beckner ’92]

If 1 6 p 6 q 6 ∞ and ε 6
√

p−1
q−1 , then

‖Pεf‖Lq(Sn) 6 ‖f‖Lp(Sn).

Just as in the setting of the cube {±1}n, this implies the
following corollary.

Corollary

Let f : Rn+1 → R be a degree d polynomial. Then, for q > 2,

‖f‖Lq(Sn) 6 (q − 1)d/2‖f‖L2(Sn).



Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed
hypercontractive.

Theorem [Beckner ’92]

If 1 6 p 6 q 6 ∞ and ε 6
√

p−1
q−1 , then

‖Pεf‖Lq(Sn) 6 ‖f‖Lp(Sn).

Just as in the setting of the cube {±1}n, this implies the
following corollary.

Corollary

Let f : Rn+1 → R be a degree d polynomial. Then, for q > 2,

‖f‖Lq(Sn) 6 (q − 1)d/2‖f‖L2(Sn).



Declare victory

Taking q = 4, we see that(∫
(tr∆|ψ〉〈ψ|)4dψ

)1/4

6 3
(∫

(tr∆|ψ〉〈ψ|)2dψ
)1/2

,

so we get

‖∆‖M >
n
9

(∫
(tr∆|ψ〉〈ψ|)2dψ

)1/2

;

the RHS can be explicitly evaluated to give

‖∆‖M >
1

9(1 + 1/n)1/2

√
tr∆2.

So we’ve solved the case k = 1. . . what about higher k?
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Arbitrary k

We start the proof in the same way: As M is a tensor product
of local 4-designs,

‖∆‖M > nk

(∫
. . .

∫
dψ1 . . . dψk(tr∆(|ψ1〉〈ψ1|⊗ · · · ⊗ |ψk〉〈ψk|))

2
)3/2(∫

. . .
∫

dψ1 . . . dψk(tr∆(|ψ1〉〈ψ1|⊗ · · · ⊗ |ψk〉〈ψk|))4
)1/2

= nk
‖f‖3

L2((S2n−1)k)

‖f‖2
L4((S2n−1)k)

,

where we define the function f : (S2n−1)k → R by

f (ξ1, . . . , ξk) = tr∆(|ψ1〉〈ψ1|⊗ · · · ⊗ |ψk〉〈ψk|),

where |ψi〉 is the n-dimensional complex unit vector whose
real and imaginary parts are given by ξi ∈ S2n−1 in the obvious
way.

As before, we want to relate ‖f‖L4((S2n−1)k) to ‖f‖L2((S2n−1)k).
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Arbitrary k

Here’s where the magic happens: the Lp → Lq norm is
multiplicative, so as a corollary of Beckner’s result. . .

Corollary

Let f : (Sn)k → R. If 1 6 p 6 q 6 ∞ and ε 6
√

p−1
q−1 , then

‖P⊗k
ε f‖Lq((Sn)k) 6 ‖f‖Lp((Sn)k).

Also, the same corollary goes through!

Corollary

Let f : (Rn+1)k → R be a degree d polynomial in the
components of each x1, . . . , xk ∈ Rn+1. Then, for any q > 2,

‖f‖Lq((Sn)k) 6 (q − 1)dk/2‖f‖L2((Sn)k).
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Completing the proof

We have
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All that remains is to explicitly calculate

‖f‖2
L2((S2n−1)k) = tr

(∫
. . .

∫
dψ1 . . . dψk|ψ1〉〈ψ1|

⊗2 ⊗ · · · ⊗ |ψk〉〈ψk|
⊗2
)
∆⊗2

= tr
(

I + F
n(n + 1)

)⊗k

∆⊗2
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tr
[
(trS∆)

2] .
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Comparison to previous work

The approach of [Lancien and Winter ’12] has definite advantages:

Better constants
Based only on clever use of “elementary” techniques (e.g.
Cauchy-Schwarz)
More “concrete”.

But the hypercontractive approach has good points too:

Extension to arbitrary k is essentially immediate
Can be extended to t-designs for t > 4 with little effort
Gives an intuitive explanation of the exponential prefactor
More “natural” (if one already knows hypercontractivity!)
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Summary

Hypercontractive inequalities seem to be a powerful tool
for proving results in quantum information theory.

The proofs given here were of previously known results:
in both cases the results appear somewhat less technical,
at the expense of being less concrete (and giving worse
constants).

Open problems:

Prove the Aaronson-Ambainis conjecture (using
hypercontractivity!).
Explore connections between the results of [Lancien and
Winter ’12] and testing product states.

Thanks!
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