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Introduction

In this talk, I will discuss how so-called hypercontractive
inequalities can be used to give new(ish) proofs of results in
quantum information theory:

@ ...abound on the bias of multiplayer XOR games
(originally due to [Defant, Popa and Schwarting '10] [Pellegrino
and Seoane-Septlveda '12]) which implies the first progress on
a conjecture about quantum query algorithms;

@ ...abound on the bias of local 4-design measurements
(originally due to [Lancien and Winter "12]).



Hypercontractive inequalities: a CS
perspective

Hypercontractive inequalities have been much used in the
quantum field theory literature:

@ introduced (in the form of log-Sobolev inequalities) by
[Gross 75];

o for detailed reviews see e.g. [Davies, Gross and Simon '92],
[Gross “06].
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Hypercontractive inequalities have been much used in the
quantum field theory literature:

@ introduced (in the form of log-Sobolev inequalities) by
[Gross 75];

o for detailed reviews see e.g. [Davies, Gross and Simon '92],
[Gross “06].

In the computer science literature, first used by [Kahn, Kalai and
Linial ‘88] in an important paper proving that every boolean
function has an influential variable.

The hypercontractive inequality they used is a particularly
simple and clean special case due to [Bonami '70], [Gross '75], and
often known as the Bonami-Beckner inequality.
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Noise

Consider functions f : {£1}" — R.

@ For € € [0, 1], define the noise operator T, as follows:

(Tef) (x) = Ey~Efo(y)]

@ Here the expectation is over strings y € {£-1}" obtained
from x by negating each element of x with independent
probability (1 —€)/2. So...

o lfe=1Tf=f;
o If e =0, T¢f is constant.

@ Fairly easy to show that T. is a contraction, i.e.

ITefllp < IFlp

1/p
where [|flly = (% ¥ erarp fF) "



Hypercontractivity of T.

The Bonami-Beckner inequality [Bonami "70] [Gross "75]
For any f : {£1}" — R, and any p and g such that

1<p<q<ooande<,/5%},

ITefllg < I1f1lp-

Intuition: usually ||f||, < [[f||4 for p < g, but applying noise to f
smoothes out its peaks and makes the norms comparable.
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Corollary

Let f : {#1}" — R be a polynomial of degree d. Then:
2, |Ifllp = —1)d/2\lf|!z;

2, [Iflly < (9= 1*2|f]2-

e for any p

VoA

e for any g

Intuition: low-degree polynomials are smooth.
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Proof of the corollary

Given a degree d (multilinear) polynomial

flr, )= ) fS)s,

5Cnl.lSI<d

where x5 = [ [;cqx;, write f =% = Zs,|s\:k]?(5)xs- Then

d 2 d 2
Hf”s = Zf:k = T1/\/q_71 (Z(q_l)k/zf_k>
k=0 q k=0 q
d 2 d X
< D_@=DMFF =D (g-1F Y f(s)
k=0 2 k=0 SCnl,|S|=k
< (@-D"Y f192 =115
SCn]

(last step: Parseval’s equality)



Applications in quantum computation

The above inequality has recently found some applications in
quantum computation:

@ Separations between quantum and classical
communication complexity [Gavinsky et al '07]

@ Limitations on quantum random access codes [Ben-Aroya,
Regev and de Wolf "08]

@ Bounds on non-local games [Buhrman '11]

@ Lower bounds on quantum query complexity [Ambainis and
de Wolf "12]

@ Many more in classical computer science. ..
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quantum computation:
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communication complexity [Gavinsky et al '07]

@ Limitations on quantum random access codes [Ben-Aroya,
Regev and de Wolf "08]

@ Bounds on non-local games [Buhrman '11]

@ Lower bounds on quantum query complexity [Ambainis and
de Wolf "12]

@ Many more in classical computer science. ..

Today: two more applications.
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Application 1: multiplayer XOR games

A simple and natural way of exploring the power of quantum
correlations is via XOR games.

A k-player XOR game is defined as follows:

@ Fix a multidimensional array A € (ESVAL

@ The j’th player gets an inputi; € {1,.. ., n}, picked
according to a known distribution 7t.

@ The j'th player must reply with an output xij € {£1}

@ The players win if the product of their outputs is equal to
A

11,.., U

The players are allowed to communicate before the game
starts, to agree a strategy, but cannot communicate during the
game.
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For example, consider the CHSH game:

e Two players, two possible inputs, chosen uniformly (k = 2,
n = 2, 7 is uniform).

e A= ({): the players win if their outputs are the same,
unless i1 = i = 2, when they win if their outputs are
different.



Multiplayer XOR games

For example, consider the CHSH game:

e Two players, two possible inputs, chosen uniformly (k = 2,
n = 2, 7 is uniform).

e A= ({): the players win if their outputs are the same,
unless i1 = i = 2, when they win if their outputs are
different.

In general, the maximal bias (i.e. difference between

probability of success and failure) achievable by deterministic
strategies is

1 k
B(G):=  max i A XX |
¥l xke{il}” 1-1 Z 5 Lt

It’s easy to see that shared randomness doesn’t help.
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Why care about XOR games?

@ In some cases (e.g. the CHSH game), if the players are
allowed to share entanglement they can beat any possible
classical strategy.

@ XOR games thus provide a clean, mathematically tractable
way of studying the power of entanglement.

@ XOR games are also interesting in themselves classically:

e Applications in communication complexity, e.g. [Ford and
Gal "05]

e Known to be NP-hard to compute bias

e Connections to combinatorics and coding theory.

Today’s question
What is the hardest k-player XOR game for classical players? J

i.e. what is the game which minimises the maximal bias
achievable?
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Previously known results

Until recently, there was a big gap between lower and upper
bounds on ming 3(G):

@ There exists a game G for which 3(G) < n~(=1)/2 [Ford
and Gal '05].

@ Any game G has B(G) > 20 = (k=1)/2 [Bohnenblust and
Hille '31].

A recent and significant improvement:

Theorem [Defant, Popa and Schwarting "10] [Pellegrino and
Seoane-Sepulveda "12]

There exists a universal constant ¢ > 0 such that, for any XOR
game G as above, B(G) = Q(k—n—*=1)/2),

We will show how this result can be proven using
hypercontractivity (as a small step in the proof).
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XOR games and multilinear forms

A homogeneous polynomial f : (R")* — R is said to be a
multilinear form if it can be written as

fat, oy =) fi Al

for some multidimensional array f ER"xR" x --- xR",
Define as before

= (ge X e

Any XOR game G = (7, A) corresponds to a multilinear form f:

1.2 k
f( Z 7.[11 ..... lk 11 ..... ka x xk

and the bias 3(G) is precisely ||f|oo := maxyecr1y [f(x)].
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What we want to prove

Bohnenblust-Hille inequality [BH ‘31, DPS ‘10, PS "12]

For any multilinear form f : (R")* — R, and any p > 2k/(k + 1),

where C; may be taken to be O(k'82¢) ~ O(k'4%).

Implies B(G) = Q(C, 'n~*"1)/2) by choosing p appropriately.
We’ll prove the claim by induction on k, for k a power of 2.

o As ||f|| p is nonincreasing with p, it suffices to prove the
claim for p = 2k/(k +1).

@ The base case k =1 is trivial (C; = 1). So, assuming the
theorem holds for k/2, we prove it holds for k.



Proof

We start with a matrix inequality [Defant, Popa and Schwarting "10]:

(k+2)/4k
A A 2k/ (k+2)
Fll2k/ (k1) < Z Uiyt py,ei=1112

(k+2) /4k

2 2k/ (k+2)
X Z H(fll ----- k)ﬁ ..... lk/2 1H



Proof

We start with a matrix inequality [Defant, Popa and Schwarting "10]:

(k+2) /4k
- - 2k/ (k+2)
Fll2ky ey < D (V7 Y
(I ik/Z
(k+2) /4k
p 2%/ (k+2)
X Z H(fll ----- k)ﬁ ..... lk/2 1H
Ik /2410-00lk

We estimate the second term (the first follows exactly the same
procedure).
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Proof

(R”)k/2 — R by

For each ix/p,1,... i € [n], define f;, |

1 k/2\ _ 2z 1.2 k/2
fl'k/z.1 ..... ik(X....,x/)_ Z fil _____ PWXi Xiy X

/2

fxll ..... Xk/z( k/2+l ’xk) :f(xll rxk)
We have
1 1 k/2y. k/2+1 k.
fxll ..... xk/z(xk/zJr ree Z f7A/2+1 ----- fk(x reea X / )xik/2+1 e Y
Ik /2410 ik=1
of course | xl,,..,xk/2H00 < flloo



Proof

For each tuple i 5.1, ..., ik we have by Parseval’s equality
1/2

7 2
”(fll ..... ik)z ..... ik/2:1||2: Z fh ..... i :Wik/zu ----- kaZ'
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”(fll ----- k)z ..... lk/2 1||2

By hypercontractivity,

2k/ (k+2)
Hfik/ZH ----- 1kH

Proof

, ix we have by Parseval’s equality

1/2
n
72
Z fi1 ..... i :|Vik/z+1 ----- ikHZ'
11,00,y ik/z—l

k 42\ M2 25
S (k—2> Hflk/zm ----- IAHZk/



Proof

For each tuple i 5.1, ..., ik we have by Parseval’s equality
1/2
n
y, 22
”(fll ----- k)z ..... ik jp= 1”2 Z fi1 ..... i = |mk/2+1 ----- ikHZ'
il ..... ik/z—l

By hypercontractivity,

2%/ (k+2) k+2\ 7 2%/ (k
’Vik/zu ..... 1kH <(k—2 Hflk/Z\l ----- IAHZk/

We now observe that, for any p > 1

1 k/2
Z Hfik/z+1 ----- ik”Z = Ea w2 Z fl//2+1 ----- ik(x reeea X / )P



Proof

Hence, taking p = 2k/(k +2) = 2(k/2)/(k/2 4+ 1), we have

£ 2k/ (k+2)
> i ipalls

k4272 2k/ (k+2)
<<k_2> RN TR i ras]



Proof

Hence, taking p = 2k/(k +2) = 2(k/2)/(k/2 4+ 1), we have

A 2%/ (k+2)
Z H(fll ----- Zk)Z ..... lk/2 1”

K2

k+2 e 2k/ (k+2)
<<k_2) RN TR i ras]

K2

k+2 2 2%/ (k+2)
< (1) e

by the inductive hypothesis.



Proof

Combining both terms in the first inequality,
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Proof

Combining both terms in the first inequality,

(k+1)/(2k) K/
3 a0 <(F2) cualfl
. : yeeey U ~X k—2 k/2 o0
5 I

Thus

Nz
Cr < (1 ai m) Ck/2-

Observing that (1 +4/(k — 2))'(/4 < (1 + O(1/k))e, we have
Cr = O(K'°82¢) as claimed.
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A conjecture of Aaronson and Ambainis

The following beautiful conjecture is currently open:

Conjecture [Aaronson and Ambainis "11]

Every bounded low-degree polynomial on the boolean cube
has an influential variable.

@ Generalises a prior result showing this for decision trees
[O'Donnell et al ‘05].

@ One reason this conjecture is interesting: it would imply
that every quantum query algorithm can be approximated
by a classical algorithm on “most” inputs.

@ One special case known: when f is symmetric, i.e. f(x)
depends only on ) _; x; [Backurs "12].
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A conjecture of Aaronson and Ambainis
A more formal version of the conjecture:

COllj ecture [Aaronson and Ambainis "11]

For all degree d polynomials f : {£1}" — [—1, 1], there exists j
such that [;(f) > poly(Var(f)/d).

What does this mean?

o Write E[f] = > re(+1ynf(x). Then the (€2) variance of f is
Var(f) = E[(f — E[f])*]

@ Define the influence of the j'th variable on f as

) =5 Y (0 —fW)2

xe{£1}

where ¥/ is x with the j’th variable negated.
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A conjecture of Aaronson and Ambainis

Using the above strengthening of the BH inequality, it is easy
to prove a very special case of the Aaronson-Ambainis
conjecture. Let

1 k 2 1.2 k
f(x,...,x):Zfi1 _____ X, Xiy - X

where f;, ; = F« for some «.

°f depends on nk variables xlz, 1<j<kand1 <<
@ The influence of variable (j, ) on f is

2 k1.2
Inf(; o) (f) = Z fil,...,ij,l,z,im ..... o =m a

T A

Corollary

If f is a multilinear form such that ||f||cc < 1 and le =tou

.....

for some «, then [ o (f) = Q(Var(f) )2/k%) for all (j, (7,)




Application 2: The bias of local 4-designs

Given a quantum state which is promised to be either p (with
probability p) or o (with probability 1 — p), we want to
determine which is the case via a measurement.

@ The most general kind of quantum measurement is
known as a POVM, i.e. a partition of the identity into
positive operators.

@ The optimal measurement achieves success probability

%(H lpp — (1 —p)oll1),

where ||M||; = tr|M] is the usual trace norm.

@ Setting A = pp — (1 — p)o, the optimal bias is just ||Al|;.
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The uniform POVM

One particularly natural (and optimal!) fixed measurement is
the uniform POVM in n dimensions.

@ This is a continuous POVM with a measurement operator
My, o [\p) (W] for every n-dimensional pure state i),
normalised such that [ ApM,, = I.

@ We can’t actually perform this physically, but can
approximate it using f-designs.

@ A rank-one POVM M = (M;) in n dimensions is called a
t-design if

> pip? = [ do)

where p; = % trM; and P; = %MMi'

@ Ast increases, t-designs become better and better
approximations to the uniform POVM.
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The bias of 4-design measurements

Theorem [Ambainis and Emerson 071, [Matthews, Wehner and Winter
’09]
Let M be a 4-design and set A = (p — ¢)/2. Then

1AM > CVir AZ,

for some universal constant C > 0.

One can generalise this to a setting where locality comes into
play by making M into a tensor product of 4-designs. That is:

i :Mil OM;, ® .. -Mik-
@ Each individual measurement (M;) is a 4-design.

@ Each operator is of the form M;,

This is interesting because it allows us to explore the power of
local vs. global measurements.



Local 4-designs

Theorem [Lancien and Winter "12]

Let M be a k-partite measurement which is a product of local
4-designs and set A = pp — (1 —p)o. Then
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Local 4-designs

Theorem [Lancien and Winter "12]

Let M be a k-partite measurement which is a product of local
4-designs and set A = pp — (1 —p)o. Then

1/2

Al > DF [ D tr[(trsA)?] |,
SCIk]

for some universal constant D > 0.

@ Previously known for k = 2 [Matthews, Wehner and Winter 09].

We give a new proof using hypercontractivity.
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The k =1 case

We use the “fourth moment method” [Littlewood 30] [Berger '97]:

(X ipiltr P;A)?)
(X piltr PAYHY?
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i
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As M is a 4-design,

(tr (J dphp) (I#2) A%2)%2 ([(tr Ap) (1) >dap) >
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The k =1 case

We use the “fourth moment method” [Littlewood 30] [Berger '97]:

(Zipiltr PiAy)™"”

Al = Y [eMAl=n) piltrPAl > n
i i (X piltr PAYH 2

(i (e a)”
() o)

As M is a 4-design,

3/2

(tr ([ dbhp) (bI#2) A%2)7° ([t ARp) (0] *ehp)
(tr (J dpp) (Io) A9 2 ([ (tr Ap) () icp)

So, if we can upper bound |[(tr Alp) (p])*dp in terms of
[ (tr ARp) (p])2dp, this will give a lower bound on ||A||p.

”AHM Zn 1/2°
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Functions on the sphere

Let S" be the real n-sphere, i.e. {x € Rt Zl-xlz =1}

For f : S" — R define the L7(S") norms as

1/p
Wfllzr (smy = (J If(E,)IpdE> :

where we integrate with respect to the uniform measure
on S§", normalised so that [ d& = 1.

Identify each n-dimensional quantum state [p) (element of
the unit sphere in C") with a real vector & € $*'~! by
taking real and imaginary parts.

Now consider the function f(&) = tr Afp) (Ul

We want to upper bound ||f|[+ (g in terms of [|f|[;2(gn)-



Hypercontractivity to the rescue?

Claim
f is a degree 2 polynomial in the components of &.

Suggests that we could relate ||f|| 4 s to ||f||;2(sn) using some
form of hypercontractivity. ..



Hypercontractivity to the rescue?

Claim
f is a degree 2 polynomial in the components of &.

Suggests that we could relate ||f|| 4 s to ||f||;2(sn) using some
form of hypercontractivity. ..

We need to understand hypercontractivity for functions on the
sphere, and some basic ideas from the theory of spherical
harmonics.
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Spherical harmonics

o The restriction of every degree d polynomial f : R"*1 — R
to the sphere S” can be written as

where Y} : S" — R is called a spherical harmonic, and is
the restriction of a degree k polynomial to the sphere,
satisfying [ Y;(&)Y(&)dE = 0 for j # k.

@ The Poisson semigroup (which can be thought of as a
“noise operator” for the sphere) is defined by

(Pef)x) = Y e Yilx).
k
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Crucially, it is known that the Poisson semigroup is indeed
hypercontractive.

Theorem [Beckner "92]
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Hypercontractivity on the sphere

Crucially, it is known that the Poisson semigroup is indeed
hypercontractive.

Theorem [Beckner "92]

fl<p<g<ooande < Z_;i,then

IPefllacsmy < IIflleecsmy-

Just as in the setting of the cube {£1}", this implies the
following corollary.

Corollary
Let f : R"*1 — R be a degree d polynomial. Then, for g > 2,

fllzacsm) < (g —DY2|fllzz(sm-




Declare victory

Taking g = 4, we see that
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(J(trmwwww) <3 (J(trmwwnzdw)

so we get

1/2
It > ([(er sy o )

the RHS can be explicitly evaluated to give

1
Ay > ————— Vi A2,
1&lm > 777z Ve

So we’ve solved the case k = 1...what about higher k?



Arbitrary k

We start the proof in the same way: As M is a tensor product
of local 4-designs,
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where we define the function f : (S*"~1)f — R by
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where [;) is the n-dimensional complex unit vector whose
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We start the proof in the same way: As M is a tensor product
of local 4-designs,

([ Ty byt Alp) (1] © - @ ) (i))2)

Al >
M (j jdxpl A (tr A1) (W1 @ - - - @ [y) <1|)k|))4)1/2
Hf” 52111k

where we define the function f : (S*"~1)f — R by

fl& - &) =t A1) (b @ -+ @ i) (i),

where [;) is the n-dimensional complex unit vector whose
real and imaginary parts are given by &; € S**~! in the obvious
way.

As before, we want to relate ||f ||+ (g1 to [[f[l12((s20-1))-



Arbitrary k

Here’s where the magic happens: the L¥ — L7 norm is
multiplicative, so as a corollary of Beckner’s result. ..
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Arbitrary k

Here’s where the magic happens: the L¥ — L7 norm is
multiplicative, so as a corollary of Beckner’s result. ..

Corollary

Letf: (SN >R Ifl<p<g<ooand e < Z_;i,then

IPEf

ra(smk) S [l esnye

Also, the same corollary goes through!

Corollary

Let f : (R"1)f — R be a degree d polynomial in the
components of each x', ..., xf € R"*1. Then, for any g > 2

’VHL‘?((S”)") < (q - 1)dk/2’V||L2((5n)k).
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Completing the proof

NI

n\k
W (5) Hf”Lz((SZn—l)k)
S2n

All that remains is to explicitly calculate
VI g2y =t ( J .. del ) (p1[F2 @ - @ |wk><¢k|®2> AP

®k
= tr< [+F ) A®?

(n+1)

N n+1 Ztr (trs A
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The approach of [Lancien and Winter '12] has definite advantages:

@ Better constants

@ Based only on clever use of “elementary” techniques (e.g.
Cauchy-Schwarz)

@ More “concrete”.

But the hypercontractive approach has good points too:

@ Extension to arbitrary k is essentially immediate
@ Can be extended to t-designs for t > 4 with little effort
@ Gives an intuitive explanation of the exponential prefactor

@ More “natural” (if one already knows hypercontractivity!)



Summary

e Hypercontractive inequalities seem to be a powerful tool
for proving results in quantum information theory.

@ The proofs given here were of previously known results:
in both cases the results appear somewhat less technical,
at the expense of being less concrete (and giving worse
constants).

Open problems:
@ Prove the Aaronson-Ambainis conjecture (using
hypercontractivity!).

@ Explore connections between the results of [Lancien and
Winter '12] and testing product states.
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@ The proofs given here were of previously known results:
in both cases the results appear somewhat less technical,
at the expense of being less concrete (and giving worse
constants).

Open problems:

@ Prove the Aaronson-Ambainis conjecture (using
hypercontractivity!).

@ Explore connections between the results of [Lancien and
Winter '12] and testing product states.

Thanks!





