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Fourier analysis

...traditionally looks like this:

= 3× − + 2×

Given some (periodic) function f : R→ R...

...we expand it in terms of trigonometric functions sin(kx),
cos(kx)...

...in an attempt to understand the structure of f .



Fourier analysis

In computer science, it’s natural to consider functions on the
set of n-bit strings – also known as the boolean cube {0, 1}n:
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Given some function f : {0, 1}n → R...

...we expand it in terms of parity functions...

...in an attempt to understand the structure of f .



Fourier analysis on the boolean cube

We expand functions f : {0, 1}n → R in terms of the parity
functions

χS(x) = (−1)
∑

i∈S xi ,

also known as the characters of Zn
2 .

There are 2n of these functions, indexed by subsets
S ⊆ {1, . . . , n}. χS(x) = −1 if the no. of bits of x in S set to 1
is odd.

Any f : {0, 1}n → R has the expansion

f =
∑

S⊆{1,...,n}

f̂ (S)χS

for some { f̂ (S) } – the Fourier coefficients of f .

The degree of f is max{|S| : f̂ (S) 6= 0}, which is just the
degree of f as a real n-variate polynomial.
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Applications of Fourier analysis on the
boolean cube

This approach has led to new results in many areas of classical
computer science, including:

Probabilistically checkable proofs [Håstad ’01; Dinur ’07; . . . ]

Decision tree complexity [Nisan & Szegedy ’94]

Influence of voters and fairness of elections [Kahn, Kalai,
Linial ’88; Kalai ’02]

Computational learning theory [Goldreich & Levin ’89;
Kushilevitz & Mansour ’91; . . . ]

Property testing [Bellare et al ’95; Matulef et al ’09; . . . ]



This talk

This talk is about applying and generalising Fourier analysis
on the boolean cube in quantum computation.

Quantum vs. classical communication complexity

Hypercontractivity and low-degree polynomials

Generalising Fourier analysis to quantum computation

Spectra of k-local operators



One-way communication complexity

The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

One of the simplest models of communication complexity
is the one-way model.

Alice
x

Bob

y

m f (x, y)

The classical one-way communication complexity (1WCC)
of a boolean function f is the length of the shortest
message m sent from Alice to Bob that allows Bob to
compute f (x, y) with constant probability of success > 1/2.



One-way communication complexity

The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

One of the simplest models of communication complexity
is the one-way model.

Alice
x

Bob

y

m f (x, y)

The classical one-way communication complexity (1WCC)
of a boolean function f is the length of the shortest
message m sent from Alice to Bob that allows Bob to
compute f (x, y) with constant probability of success > 1/2.



One-way communication complexity

The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

One of the simplest models of communication complexity
is the one-way model.

Alice
x

Bob

y
m

f (x, y)

The classical one-way communication complexity (1WCC)
of a boolean function f is the length of the shortest
message m sent from Alice to Bob that allows Bob to
compute f (x, y) with constant probability of success > 1/2.



One-way communication complexity

The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

One of the simplest models of communication complexity
is the one-way model.

Alice
x

Bob

y
m f (x, y)

The classical one-way communication complexity (1WCC)
of a boolean function f is the length of the shortest
message m sent from Alice to Bob that allows Bob to
compute f (x, y) with constant probability of success > 1/2.



One-way communication complexity

The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

One of the simplest models of communication complexity
is the one-way model.

Alice
x

Bob

y
m f (x, y)

The classical one-way communication complexity (1WCC)
of a boolean function f is the length of the shortest
message m sent from Alice to Bob that allows Bob to
compute f (x, y) with constant probability of success > 1/2.



One-way quantum communication complexity

Can we do better by sending a quantum message?

Alice
x

Bob

y

|ψ〉
f (x, y)

The quantum 1WCC of f is the smallest number of qubits
sent from Alice to Bob that allows Bob to compute f (x, y)
with constant probability of success > 1/2.

We don’t allow Alice and Bob to share any prior
entanglement or randomness.
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Quantum one-way communication complexity

The model of quantum one-way communication complexity is
not (very) well understood. We know that:

If f (x, y) is allowed to be a partial function (i.e. there is a
promise on the inputs), there can be an exponential
separation between quantum and classical 1WCC [Gavinsky
et al ’08].

In fact, for partial functions, quantum one-way
communication is exponentially stronger than even
two-way classical communication [Klartag and Regev ’10].

If f (x, y) is a total function, the best separation we have is
a factor of 2 for equality testing [Winter ’04].

Today: I’ll talk about a (slight) improvement on the separation
of [Gavinsky et al ’08], based on Fourier-analytic techniques.
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The problem

Perm-Invariance
Alice gets an n-bit string x.
Bob gets an n× n permutation matrix M.

Bob has to output


1 if Mx = x
0 if d(Mx, x) > β|x|
anything otherwise,

where β is a constant, |x| is the Hamming weight of x and
d(x, y) is the Hamming distance between x and y.

This is a natural (?) generalisation of the Subgroup

Membership problem where Alice gets a subgroup H 6 G,
Bob gets a group element g ∈ G, and they have to determine if
g ∈ H.
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Main result

Theorem
There is a quantum protocol that solves Perm-Invariance

with constant success probability and communicates
O(log n) bits.

Any one-way classical protocol that solves
Perm-Invariance with a constant success probability
strictly greater than 1/2 must communicate at least
Ω(n7/16) bits (for β = 1/8).

Therefore, there is an exponential separation between
quantum and classical one-way communication complexity for
this problem.

The lower bound has since been improved to Ω(n1/2) by [Verbin
and Yu ’11].
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The quantum protocol

The quantum protocol is simple:

Alice prepares two copies of the log n qubit state
|ψx〉 :=

∑
i,xi=1 |i〉 and sends them to Bob.

Bob performs the unitary operator corresponding to the
permutation M on one of the states, to produce the state
|ψMx〉, and then uses the swap test to check whether the
states are equal.

By the promise that either |ψMx〉 = |ψx〉, or
〈ψMx|ψx〉 6 1/8, these two cases can be distinguished with
a constant number of repetitions.
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The classical lower bound

We prove a lower bound for a special case of
Perm-Invariance.

PM-Invariance
Alice gets a 2n-bit string x such that |x| = n.
Bob gets a 2n× 2n permutation matrix M, where the
permutation entirely consists of disjoint transpositions
(i.e. corresponds to a perfect matching on the complete
graph on 2n vertices).

Bob has to output


1 if Mx = x
0 if d(Mx, x) > n/8
anything otherwise.



Plan of attack

Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.

Fix two “hard” distributions: one on Alice & Bob’s
zero-valued inputs, and one on their one-valued inputs.

Show that the induced distributions on Bob’s inputs are
close to uniform whenever Alice’s subset is large.

This means they’re hard for Bob to distinguish.
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Proof idea: one-valued inputs

We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform (the argument for
zero-valued inputs is similar but easier).

Fix distribution D1 to be uniform over all pairs (M, x)
such that Mx = x.

Let pM be the probability under D1 that Bob gets M, given
that Alice’s input was in A, for an arbitrary set A.

Let N2n be the number of partitions of {1, . . . , 2n} into
pairs. Then

pM =

(2n
n

)
N2n

( n
n/2

) Pr
x∈A

[Mx = x].
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Proof idea

We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform.

Upper bounding the 1-norm by the 2-norm, we have

‖DA
1 − U‖1 6

√
N2n

∑
M

p2
M − 1

where U is the uniform distribution on Bob’s inputs.

We can now calculate

N2n
∑

M

p2
M =

(2n
n

)2

N2n
( n

n/2

)2
|A|2

∑
x,y∈A

∑
M

[Mx = x, My = y]

.
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Proof idea

It turns out that the sum over M only depends on the
Hamming distance d(x, y):∑

M

[Mx = x, My = y] = h(x + y)

where h : {0, 1}2n → R is a function such that h(z) only
depends on the Hamming weight |z|.

So

N2n
∑

M

p2
M =

(2n
n

)2

N2n
( n

n/2

)2
|A|2

∑
x,y

f (x)f (y)h(x + y)

,

where f is the characteristic function of A.

This means that it’s convenient to upper bound
N2n

∑
M p2

M using Fourier analysis over the group Z2n
2 .
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Fourier analysis to the rescue

For any functions f , g : {0, 1}n → R,∑
x,y∈{0,1}n

f (x)f (y)g(x + y) = 22n
∑

S⊆[n]

ĝ(S)f̂ (S)2.

This allows us to write

N2n
∑

M

p2
M =

(2n
n

)2
24n

N2n
( n

n/2

)2
1

|A|2

∑
S⊆[n]

ĥ(S)f̂ (S)2,

where f is the characteristic function of A, and h is as on
the previous slide.
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Upper bounding this sum
We can upper bound this sum using the following crucial
inequality.

Lemma
Let A be a subset of {0, 1}n, let f be the characteristic function
of A, and set 2−α = |A|/2n. Then, for any 1 6 k 6 (ln 2)α,

∑
x,|x|=k

f̂ (x)2 6 2−2α
(
(2e ln 2)α

k

)k

.

This inequality is based on a result of Kahn, Kalai and
Linial (the KKL Lemma), which in turn is based on a
“hypercontractive” inequality of Bonami, Gross and
Beckner.

Here α ends up (approximately) measuring the length of
Alice’s message in bits.
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Finishing up 1WCC

To summarise:

We calculate and upper bound the Fourier transform ĥ(x),
which turns out to be exponentially decreasing with |x|.

We upper bound the “Fourier weight at the k’th level” of
f , ‖f=k‖2

2, using the KKL Lemma.

Combining the two upper bounds, we end up with
something that’s smaller than a constant unless
|A| 6 22n−Ω(n7/16).

Thus, unless Alice sends at least Ω(n7/16) bits to Bob, he
can’t distinguish his induced distribution from uniform
with probability better than a fixed constant.

So the classical 1WCC of PM-Invariance is Ω(n7/16).
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which turns out to be exponentially decreasing with |x|.

We upper bound the “Fourier weight at the k’th level” of
f , ‖f=k‖2

2, using the KKL Lemma.

Combining the two upper bounds, we end up with
something that’s smaller than a constant unless
|A| 6 22n−Ω(n7/16).

Thus, unless Alice sends at least Ω(n7/16) bits to Bob, he
can’t distinguish his induced distribution from uniform
with probability better than a fixed constant.

So the classical 1WCC of PM-Invariance is Ω(n7/16).



Finishing up 1WCC

To summarise:

We calculate and upper bound the Fourier transform ĥ(x),
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Hypercontractivity and noise: an interlude

The KKL Lemma is fundamentally based on
understanding the application of noise to functions
f : {0, 1}n → R.

We now define the noise operator Dρ with noise rate ρ.
For a given string x ∈ {0, 1}n, define the distribution y ∼ρ x
as follows. Each coordinate yi = xi with probability
1/2 + ρ/2, and yi = 1 − xi with probability 1/2 − ρ/2.

In other words, each bit of x is flipped with probability
1/2 − ρ/2.

Then write
(Dρ f )(x) = Ey∼ρx[ f (y) ].

Crucially, noise “smoothes out” high-order Fourier
coefficients:

D̂ρ f (S) = ρ|S| f̂ (S).
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Hypercontractivity of the noise operator

Define the normalised p-norm of f by

‖f‖p =
( 1

2n

∑
x∈{0,1}n

|f (x)|p
)1/p

.

This family of norms is non-decreasing with p.

However, we have the following (non-trivial!) inequality.

Bonami-Gross-Beckner hypercontractive inequality
Let f : {0, 1}n → R be a function on the boolean cube. Then, for

any 1 6 p 6 q, provided that ρ 6
√

p−1
q−1 , we have

‖Dρ f‖q 6 ‖f‖p.

In other words, noise smoothes f out in a formal sense: note
that if f is constant, ‖f‖p is constant wrt p.



Hypercontractivity of the noise operator

p-norms of a random
function f increase
with p:

p
40

‖f‖p

Applying noise
smooths f by reduc-
ing its higher norms:

ρ
10

‖Dρf‖4

‖f‖2
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Why should we care?
Applications! For example, the KKL Lemma follows from:

Different norms of low-degree polynomials are close
Let f : {0, 1}n → R be a function on the boolean cube with
degree at most d. Then, for any q > 2, ‖f‖q 6 (q − 1)d/2‖f‖2.

Armed with the hypercontractive inequality, the proof is
simple. Writing f=k =

∑
S,|S|=k f̂ (S)χS,

‖f‖2
q =

∥∥∥∥∥
d∑

k=0

f=k

∥∥∥∥∥
2

q

=

∥∥∥∥∥D1/
√

q−1

(
d∑

k=0

(q − 1)k/2f=k

)∥∥∥∥∥
2

q

6

∥∥∥∥∥
d∑

k=0

(q − 1)k/2f=k

∥∥∥∥∥
2

2

=

d∑
k=0

(q − 1)k
∑

S⊆[n],|S|=k

f̂ (S)2

6 (q − 1)d
∑

S⊆[n]

f̂ (S)2 = (q − 1)d‖f‖2
2.
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A generalisation of Fourier analysis

We would like to generalise these classical results to a
“truly quantum” (noncommutative) setting.

Our generalisation (others are possible): instead of
decomposing functions f : {0, 1}n → R, we decompose
Hermitian operators on the space of n qubits.

It turns out that a natural analogue of the characters of Z2
are the Pauli matrices.
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“Fourier analysis” for qubits

Write

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

We write a tensor product of Paulis as
χs := σ

s1 ⊗ σs2 ⊗ · · · ⊗ σsn , where sj ∈ {0, 1, 2, 3}.

Any n qubit Hermitian operator f has an expansion

f =
∑

s∈{0,1,2,3}n

f̂s χs.

for some real {f̂s} – the Pauli coefficients of f . This is our
analogue of the Fourier expansion of a function f : {0, 1}n → R.

Note that f is a k-local operator if max{|s| : f̂s 6= 0} 6 k.
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A quantum noise operator

The right quantum generalisation of the noise operator turns
out to be the qubit depolarising channel!

Let Dε be the qubit depolarising channel with noise rate
1 − ε, i.e.

Dε(ρ) =
(1 − ε)

2
tr(ρ)I+ ε ρ.

Then
D⊗n
ε (ρ) =

∑
s∈{0,1,2,3}n

ε|s| ρ̂s χs.

(this connection goes back at least a decade [Bruss et al ’99], and
was used in [Kempe et al ’08] to give upper bounds on
fault-tolerance thresholds)

Can we prove an equivalent hypercontractive result for this
channel?
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Quantum hypercontractivity

Theorem
Let H be a Hermitian operator on n qubits and assume that

1 6 p 6 2 6 q. Then, provided that ε 6
√

p−1
q−1 , we have

‖D⊗n
ε (H)‖q 6 ‖H‖p.

The proof relies on the Pauli expansion and a
non-commutative generalisation of Hanner’s inequality
by King.

It isn’t a simple generalisation of the classical proof, but
would be if the maximum output p→ q norm were
multiplicative!
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“Application”: Spectra of k-local operators
The proof of the classical corollary of the hypercontractive
inequality goes through without change.

Different norms of k-local operators are close
Let H be a k-local Hermitian operator on n qubits. Then, for
any q > 2, ‖H‖q 6 (q − 1)k/2‖H‖2.

This easily implies the following bound.

Spectral concentration for k-local operators
Let H be a k-local Hermitian operator on n qubits with
eigenvalues (λi) and ‖H‖2 = 1. Then, for any t > (2e)k/2,

Pr[|λi| > t] 6 exp(−kt2/k/(2e)).

Note that we have not constrained the topology of H’s
k-locality at all. Stronger results can be proven (e.g. [Hartmann et
al ’04]’s “central limit theorem”) with additional constraints.
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Different norms of k-local operators are close
Let H be a k-local Hermitian operator on n qubits. Then, for
any q > 2, ‖H‖q 6 (q − 1)k/2‖H‖2.
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Conclusions

Fourier analysis on the boolean cube is a powerful
technique in classical computer science which is now
finding applications in quantum computation. Fourier
analysis can be generalised to the quantum regime.

Can there be any asymptotic separation between quantum
and classical 1WCC for a total function?

Can we find any (real!) applications of quantum
hypercontractivity? e.g. quantum k-SAT, fault tolerance,
. . .

There are many results in the classical theory of boolean
functions which might be generalisable to the quantum
regime.
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More formally

For any distribution D on Alice and Bob’s inputs, let DS be the
induced distribution on Bob’s inputs, given that Alice’s input
was in set S.

Lemma (e.g. [Gavinsky et al ’08])
Let f : {0, 1}m × {0, 1}n → {0, 1} be a function of Alice and
Bob’s distributed inputs.

Let D0, D1 be distributions on the zero/one-valued
inputs, respectively, that are each uniform over Alice’s
inputs, when averaged over Bob’s inputs.
Assume there is a one-way classical protocol that
computes f with success probability 1 − ε, for some
ε < 1/3, and uses c bits of communication.
Then there exists S ⊆ {0, 1}m such that |S| > ε 2m−c, and
‖DS

0 −DS
1‖1 > 2(1 − 3ε).
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Relation to previous work

This is equivalent to the following problem.

PM-Invariance
Alice gets a 2n-bit string x.
Bob gets an n× 2n matrix M over F2, where each row
contains exactly two 1s, and each column contains at most
one 1.

Bob has to output


0 if Mx = 0
1 if |Mx| > n/16
anything otherwise.



Relation to previous work

A similar problem was used by [Gavinsky et al ’08] to separate
quantum and classical 1WCC.

α-Partial Matching

Alice gets an n-bit string x.
Bob gets an αn× n matrix M over F2, where each row
contains exactly two 1s, and each column contains at most
one 1, and a string w ∈ {0, 1}αn.

Bob has to output


0 if Mx = w
1 if Mx = w̄
anything otherwise.

So the main difference is the relaxation of the promise by
removing this second string from Bob’s input.



Proof sketch

The proof is by induction on n. The case n = 1 follows
immediately from the classical proof.

For n > 1, expand ρ as ρ = I⊗ a + σ1 ⊗ b + σ2 ⊗ c + σ3 ⊗ d,
and write it as a block matrix.

Using a non-commutative Hanner’s inequality for block
matrices1, can bound ‖D⊗n

ε (ρ)‖q in terms of the norm of a
2× 2 matrix whose entries are the norms of the blocks of
D⊗n
ε (ρ).

Bound the norms of these blocks using the inductive
hypothesis.

The hypercontractive inequality for the base case n = 1
then gives an upper bound for this 2× 2 matrix norm.

1C. King, “Inequalities for trace norms of 2x2 block matrices”, 2003
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