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Fourier analysis

...traditionally looks like this:
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@ Given some (periodic) function f : R — R...

@ ..we expand it in terms of trigonometric functions sin(kx),
cos(kx)...

@ ..in an attempt to understand the structure of f.
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In computer science, it’s natural to consider functions on the
set of n-bit strings — also known as the boolean cube {0, 1}":

@ Given some function f : {0, 1}* — R...

@ ..we expand it in terms of parity functions...

@ ..in an attempt to understand the structure of f.
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Fourier analysis on the boolean cube

@ We expand functions f : {0, 1}" — R in terms of the parity
functions

Xs(x) = (1) %=,
also known as the characters of Zj.

@ There are 2" of these functions, indexed by subsets
S C{1,...,n}. xs(x) = —1 if the no. of bits of x in S set to 1
is odd.

@ Any f :{0,1}" — R has the expansion
f= Z fis

for some { f (S) } — the Fourier coefficients of f.

@ The degree of f is max{|S| :f(S) # 0}, which is just the
degree of f as a real n-variate polynomial.



Applications of Fourier analysis on the
boolean cube

This approach has led to new results in many areas of classical
computer science, including:

Probabilistically checkable proofs [Hastad ‘01; Dinur ‘07; ... ]

Decision tree complexity [Nisan & Szegedy '94]

Influence of voters and fairness of elections [Kahn, Kalai,
Linial '88; Kalai "02]

Computational learning theory [Goldreich & Levin 89;
Kushilevitz & Mansour 91; ... ]

Property testing [Bellare et al "95; Matulef et al '09; ... ]



This talk

This talk is about applying and generalising Fourier analysis
on the boolean cube in quantum computation.

@ Quantum vs. classical communication complexity

@ Hypercontractivity and low-degree polynomials

@ Generalising Fourier analysis to quantum computation

@ Spectra of k-local operators
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them to compute some function of their joint inputs.
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One-way communication complexity

@ The field of communication complexity studies the
amount of communication between parties required for
them to compute some function of their joint inputs.

@ One of the simplest models of communication complexity
is the one-way model.

X Y
Alice i Bob flx,y)

@ The classical one-way communication complexity (1WCC)
of a boolean function f is the length of the shortest
message m sent from Alice to Bob that allows Bob to
compute f(x, y) with constant probability of success > 1/2.
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One-way quantum communication complexity

Can we do better by sending a quantum message?

- W)

Alice

y
(Bob | flxy)

@ The quantum 1WCC of f is the smallest number of qubits
sent from Alice to Bob that allows Bob to compute f(x, y)
with constant probability of success > 1/2.

@ We don’t allow Alice and Bob to share any prior
entanglement or randomness.
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Quantum one-way communication complexity

The model of quantum one-way communication complexity is
not (very) well understood. We know that:

@ If f(x,y) is allowed to be a partial function (i.e. there is a
promise on the inputs), there can be an exponential
separation between quantum and classical IWCC [Gavinsky
et al "08].

@ In fact, for partial functions, quantum one-way
communication is exponentially stronger than even
two-way classical communication [Klartag and Regev 10].

o If f(x,y) is a total function, the best separation we have is
a factor of 2 for equality testing [Winter '04].

Today: I'll talk about a (slight) improvement on the separation
of [Gavinsky et al '08], based on Fourier-analytic techniques.



The problem

Perm-Invariance
@ Alice gets an n-bit string x.
@ Bob gets an n x n permutation matrix M.
1 if Mx =x
@ Bob has to output < 0 if d(Mx, x) > Blx|
anything otherwise,

where f3 is a constant, |x| is the Hamming weight of x and
d(x,y) is the Hamming distance between x and y.
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Perm-Invariance
@ Alice gets an n-bit string x.
@ Bob gets an n x n permutation matrix M.
1 if Mx =x
@ Bob has to output < 0 if d(Mx, x) > Blx|
anything otherwise,

where f3 is a constant, |x| is the Hamming weight of x and
d(x,y) is the Hamming distance between x and y.

This is a natural (?) generalisation of the SusGrouP
MEMBERSHIP problem where Alice gets a subgroup H < G,
Bob gets a group element ¢ € G, and they have to determine if
gE€EH.
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Main result

Theorem

@ There is a quantum protocol that solves PERM-INVARIANCE
with constant success probability and communicates
O(logn) bits.

@ Any one-way classical protocol that solves
PERM-INVARIANCE with a constant success probability

strictly greater than 1/2 must communicate at least
Q(n”/1%) bits (for p = 1/8).

Therefore, there is an exponential separation between
quantum and classical one-way communication complexity for
this problem.

v

The lower bound has since been improved to Q(nl/?) by [Verbin
and Yu "11].
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The quantum protocol
The quantum protocol is simple:

@ Alice prepares two copies of the logn qubit state
Wy) =2 ;. 1i) and sends them to Bob.

@ Bob performs the unitary operator corresponding to the
permutation M on one of the states, to produce the state
[Wary), and then uses the swap test to check whether the
states are equal.

@ By the promise that either [\ys) = [\y), or
(Gmxhby) < 1/8, these two cases can be distinguished with
a constant number of repetitions.



The classical lower bound

We prove a lower bound for a special case of
PERM-INVARIANCE.

PM-Invariance

o Alice gets a 2n-bit string x such that |x| = n.

@ Bob gets a 2n x 2n permutation matrix M, where the
permutation entirely consists of disjoint transpositions
(i.e. corresponds to a perfect matching on the complete
graph on 2n vertices).

1 if Mx = x
@ Bob has to output < 0 if d Mx,x) >n/8

anything otherwise.
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Plan of attack

@ Imagine Alice and Bob have a randomised protocol that
uses a small amount of communication.

e Fixing a distribution on the inputs, this corresponds to a
partition of Alice’s inputs into large subsets, each
corresponding to a short message.

@ Fix two “hard” distributions: one on Alice & Bob’s
zero-valued inputs, and one on their one-valued inputs.

@ Show that the induced distributions on Bob’s inputs are
close to uniform whenever Alice’s subset is large.

@ This means they’re hard for Bob to distinguish.
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Proof idea: one-valued inputs

We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform (the argument for
zero-valued inputs is similar but easier).

e Fix distribution D; to be uniform over all pairs (M, x)
such that Mx = x.

@ Let py be the probability under D; that Bob gets M, given
that Alice’s input was in A, for an arbitrary set A.

@ Let Ny, be the number of partitions of {1, .. ., 2n} into
pairs. Then
)
= —"2 _ Pr[Mx =x].
P Noy (752) xed
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Proof idea

We want to show that Bob’s induced distribution on inputs
such that Mx = x is close to uniform.

e Upper bounding the 1-norm by the 2-norm, we have

|Df — Ul < [Naw Y p3y—1
M

where U is the uniform distribution on Bob’s inputs.

@ We can now calculate

Nzan]ZVI:(ZH) (Z ZMx—xMy y]).

NZn (n/Z) |A| x,yeA M
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Proof idea

@ It turns out that the sum over M only depends on the
Hamming distance d(x, y):

Z[Mx =x,My=yl=h(x+y)
M

where /1 : {0, 1/*" — R is a function such that /(z) only
depends on the Hamming weight |z].

@ So

Now ) P = _ Gy (Zf x+y),

N2n (n/2) |A|2

where f is the characteristic function of A.

@ This means that it’s convenient to upper bound
Nay Y\ P2, using Fourier analysis over the group Z3".
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Fourier analysis to the rescue

e For any functions f, g :{0,1}" = R,

Y ffglx+y) =22 Y 2SS
SCln]

x,ye{0,1)

@ This allows us to write

21\ 2~ 4n
2 1 N A
NZn E P]zw = (l’l) n 2| |2 h(S) (S)Z,
M Noy (n/Z) SCn]

where f is the characteristic function of A, and & is as on
the previous slide.
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Upper bounding this sum

We can upper bound this sum using the following crucial
inequality.

Lemma

Let A be a subset of {0, 1}", let f be the characteristic function
of A, and set 27% = |A|/2". Then, for any 1 < k < (In2)«,

k
5 o cin (22025

x,|x|=k

@ This inequality is based on a result of Kahn, Kalai and
Linial (the KKL Lemma), which in turn is based on a
“hypercontractive” inequality of Bonami, Gross and
Beckner.

@ Here o ends up (approximately) measuring the length of
Alice’s message in bits.
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Finishing up 1IWCC
To summarise:

@ We calculate and upper bound the Fourier transform /1(x),
which turns out to be exponentially decreasing with [x].

@ We upper bound the “Fourier weight at the k’'th level” of
f Hf:kH%, using the KKL Lemma.

e Combining the two upper bounds, we end up with
something that’s smaller than a constant unless
|A‘ < 22n Q(n7/1(’)‘

@ Thus, unless Alice sends at least Q(17/1¢) bits to Bob, he
can’t distinguish his induced distribution from uniform
with probability better than a fixed constant.

@ So the classical IWCC of PM-INVARIANCE is Q(n”/19).
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Hypercontractivity and noise: an interlude

@ The KKL Lemma is fundamentally based on
understanding the application of noise to functions
f:{0, 1} = R.

@ We now define the noise operator D, with noise rate p.
For a given string x € {0, 1}, define the distribution y ~, x
as follows. Each coordinate y; = x; with probability
1/2 + p/2, and y; = 1 — x; with probability 1/2 — p/2.

@ In other words, each bit of x is flipped with probability
1/2—p/2.

@ Then write

pf y~px[f(}/)]-

@ Crucially, noise “smoothes out” high-order Fourier
coefficients:

Do f(S) = pl¥ F(S)



Hypercontractivity of the noise operator

Define the normalised p-norm of f by
1 1
IFlb =G > IFp)™”.
xe{0,1}"

This family of norms is non-decreasing with p.

However, we have the following (non-trivial!) inequality.

Bonami-Gross-Beckner hypercontractive inequality
Let f : {0, 1} — R be a function on the boolean cube. Then, for
any 1 < p < g, provided that p < i, we have

IDofllg < IIfllp-

In other words, noise smoothes f out in a formal sense: note
that if f is constant, ||f[|, is constant wrt p.
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Hypercontractivity of the noise operator

p-norms of a random
function f increase
with p:

1l

Applying noise
smooths f by reduc-
ing its higher norms:

IDof Il
/ Fll2

p
1
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Why should we care?

Applications! For example, the KKL Lemma follows from:

Different norms of low-degree polynomials are close

Let f : {0, 1} — R be a function on the boolean cube with
degree at most d. Then, for any g > 2, |If|l; < (g — 1)¥2||f|..

Armed with the hypercontractlve mequahty, the proof is
simple. ertlngf ZS,|S\7kf )Xs,

[l

N

N

k=0
(-1 Y F(92=(g— D3
SCln
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A generalisation of Fourier analysis

@ We would like to generalise these classical results to a
“truly quantum” (noncommutative) setting.

@ Our generalisation (others are possible): instead of
decomposing functions f : {0, 1} — R, we decompose
Hermitian operators on the space of n qubits.

@ It turns out that a natural analogue of the characters of Z,
are the Pauli matrices.



Write
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“Fourier analysis” for qubits

Write

10 01 0 —i
0 1 3 _
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We write a tensor product of Paulis as
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“Fourier analysis” for qubits

Write

10 0 1 0 —i 1 0
0 __ 1 _ _ 3 _
“‘(0 1)'“‘(1 0)'“2_<i o>'a“d0_<o 1

We write a tensor product of Paulis as
Xs =01 ® 02 ®---® o™, where s; € {0,1,2,3}.

Any n qubit Hermitian operator f has an expansion

f: Z sts-

s€{0,1,2,3}"

for some real {f;} — the Pauli coefficients of f. This is our
analogue of the Fourier expansion of a function f : {0, 1} — R.

Note that f is a k-local operator if max{|s| : fs #0} <k
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The right quantum generalisation of the noise operator turns
out to be the qubit depolarising channel!

@ Let D, be the qubit depolarising channel with noise rate

1—e¢,ie.
(1—e)

2

Delp) = tr(p)I + e p.

@ Then
DE'p)= > e*psxs.
s€{0,1,2,3}"

(this connection goes back at least a decade [Bruss et al '99], and
was used in [Kempe et al ‘08] to give upper bounds on
fault-tolerance thresholds)

Can we prove an equivalent hypercontractive result for this
channel?
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Theorem
Let H be a Hermitian operator on n qubits and assume that

1 <p <2 <gq. Then, provided that € < Z }, we have

1D (H) g < [Hllp-

@ The proof relies on the Pauli expansion and a
non-commutative generalisation of Hanner’s inequality
by King.

e Itisn’t a simple generalisation of the classical proof, but
would be if the maximum output p — g norm were
multiplicative!



“Application”: Spectra of k-local operators

The proof of the classical corollary of the hypercontractive
inequality goes through without change.
Different norms of k-local operators are close

Let H be a k-local Hermitian operator on n qubits. Then, for
any q > 2, [|Hll < (g — D*?|[H]2.




“Application”: Spectra of k-local operators

The proof of the classical corollary of the hypercontractive
inequality goes through without change.
Different norms of k-local operators are close

Let H be a k-local Hermitian operator on n qubits. Then, for
any q > 2, [|Hll < (g — D*?|[H]2.

This easily implies the following bound.

Spectral concentration for k-local operators

Let H be a k-local Hermitian operator on n qubits with
eigenvalues (A;) and ||H|> = 1. Then, for any t > (2¢)"/2,

Pri]] > 1] < exp(—kt/%/(2e)).




“Application”: Spectra of k-local operators

The proof of the classical corollary of the hypercontractive
inequality goes through without change.
Different norms of k-local operators are close

Let H be a k-local Hermitian operator on n qubits. Then, for
any q > 2, [|Hll < (g — D*?|[H]2.

This easily implies the following bound.

Spectral concentration for k-local operators

Let H be a k-local Hermitian operator on n qubits with
eigenvalues (A;) and ||H|> = 1. Then, for any t > (2¢)"/2,

Pri]] > 1] < exp(—kt/%/(2e)).

Note that we have not constrained the topology of H’s

k-locality at all. Stronger results can be proven (e.g. [Hartmann et

al '04]’s “central limit theorem”) with additional constraints.
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Conclusions

@ Fourier analysis on the boolean cube is a powerful
technique in classical computer science which is now
finding applications in quantum computation. Fourier
analysis can be generalised to the quantum regime.

@ Can there be any asymptotic separation between quantum
and classical IWCC for a total function?

e Can we find any (real!) applications of quantum
hypercontractivity? e.g. quantum k-SAT, fault tolerance,

@ There are many results in the classical theory of boolean
functions which might be generalisable to the quantum
regime.



Thanks!

arXiv:1007.3587v3

arXiv:0810.2435 (joint work with Tobias Osborne)
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More formally

For any distribution D on Alice and Bob’s inputs, let D° be the
induced distribution on Bob’s inputs, given that Alice’s input
was in set S.

Lemma (eg [Gavinsky et al ’08])

@ Letf:{0,1}" x {0,1}" — {0, 1} be a function of Alice and
Bob’s distributed inputs.

@ Let Dy, Dy be distributions on the zero/one-valued
inputs, respectively, that are each uniform over Alice’s
inputs, when averaged over Bob’s inputs.

@ Assume there is a one-way classical protocol that
computes f with success probability 1 — €, for some
€ < 1/3, and uses c bits of communication.

@ Then there exists S C {0, 1} such that |S| > €2™ ¢, and
ID§ — D3 llx = 2(1 —3e).




Relation to previous work

This is equivalent to the following problem.

PM-Invariance
@ Alice gets a 2n-bit string x.

@ Bob gets an n x 2n matrix M over F,, where each row
contains exactly two 1s, and each column contains at most
one 1.

0 if Mx =0
@ Bob has to output < 1 if [Mx| > n/16

anything otherwise.




Relation to previous work

A similar problem was used by [Gavinsky et al 08] to separate
quantum and classical IWCC.

a-Partial Matching

@ Alice gets an n-bit string x.

@ Bob gets an an x n matrix M over F,, where each row
contains exactly two 1s, and each column contains at most
one 1, and a string w € {0, 1}%".

0 if Mx =w

@ Bob has to output < 1 if Mx =w

anything otherwise.

So the main difference is the relaxation of the promise by
removing this second string from Bob’s input.
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Proof sketch

@ The proof is by induction on n. The case n = 1 follows
immediately from the classical proof.

@ Forn>1,expand pasp=I®a+o' @b+ 0’ ®c+0°®d,
and write it as a block matrix.

@ Using a non-commutative Hanner’s inequality for block
matrices!, can bound [|D&"(p)||, in terms of the norm of a
2 x 2 matrix whose entries are the norms of the blocks of

DE"(p).

@ Bound the norms of these blocks using the inductive
hypothesis.

@ The hypercontractive inequality for the base case n =1
then gives an upper bound for this 2 x 2 matrix norm.

IC. King, “Inequalities for trace norms of 2x2 block matrices”, 2003



