Metric Embeddings

Ashley Montanaro

Department of Computer Science,
University of Bristol

December 12, 2008

Ashley Montanaro

Metric Embeddings Slide 1/31



Outline

» What is a metric and why would we want to embed one?

» Exponential dimensionality reduction

» Embedding finite metrics and applications
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Metrics

A metric is a mathematical abstraction of the notion of distance.
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A metric is a mathematical abstraction of the notion of distance.

A metric space M is a pair (X, D), where X is a set of points and
D: X x X — [0,00) is a distance function satisfying:
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Metrics
A metric is a mathematical abstraction of the notion of distance.

A metric space M is a pair (X, D), where X is a set of points and
D: X x X — [0,00) is a distance function satisfying:

» D(p,q)=0ifandonlyifp=q
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Metrics
A metric is a mathematical abstraction of the notion of distance.

A metric space M is a pair (X, D), where X is a set of points and
D: X x X — [0,00) is a distance function satisfying:

» D(p,q)=0ifandonlyifp=q
» D(p.q) = D(q,p)
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Metrics
A metric is a mathematical abstraction of the notion of distance.

A metric space M is a pair (X, D), where X is a set of points and
D: X x X — [0,00) is a distance function satisfying:

» D(p,q)=0ifandonlyifp=q

» D(p.q) = D(q,p)
» Triangle inequality: D(p, q) + D(q,r) > D(p,r)

Ashley Montanaro

Metric Embeddings Slide 3/31



Metrics
A metric is a mathematical abstraction of the notion of distance.

A metric space M is a pair (X, D), where X is a set of points and
D: X x X — [0,00) is a distance function satisfying:

» D(p,q)=0ifandonlyifp=q

» D(p.q) = D(q,p)
» Triangle inequality: D(p, q) + D(q,r) > D(p,r)

Example:

» String edit distance: D(s, t) is the number of insertions,
deletions and substitutions needed to change s into t
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Finite metrics

Any metric on n points can be represented by a matrix M where
M; = D(i,j), e.g.:

]
0
4
1

N W= O
Wo W
oOw-=DN
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Finite metrics
Any metric on n points can be represented by a matrix M where
M; = D(i,j), e.g.: 5

N W= O
_— NO =
wWo W

1
3
0

A natural way of getting a finite metric is from the shortest path
metric over a graph (D(x, y) = length of shortest path from x to y).

w =0 =
O =D
oOhr~rOWWMN
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Finite metrics

Any metric on n points can be represented by a matrix M where
M; = D(i,j), e.g.:

—_ N O =
WO r~W
O wWw-—=N

0
1
3
2

A natural way of getting a finite metric is from the shortest path
metric over a graph (D(x, y) = length of shortest path from x to y).
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Norms

A norm is a mathematical abstraction of the notion of length.

Ashley Montanaro

Metric Embeddings Slide 5/31



Norms

A norm is a mathematical abstraction of the notion of length.

A normed vector space is a pair (V, || - ||), where V is a vector space
and || - || is a norm, i.e. a function V — [0, o) satisfying:
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Norms

A norm is a mathematical abstraction of the notion of length.

A normed vector space is a pair (V, || - ||), where V is a vector space
and || - || is a norm, i.e. a function V — [0, o) satisfying:

> |lx|=0ifandonlyif x =0
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Norms

A norm is a mathematical abstraction of the notion of length.

A normed vector space is a pair (V, || - ||), where V is a vector space
and || - || is a norm, i.e. a function V — [0, o) satisfying:

> |lx|=0ifandonlyif x =0
» Forc e R, |cx|| = |c]||x]|
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Norms

A norm is a mathematical abstraction of the notion of length.

A normed vector space is a pair (V, || - ||), where V is a vector space
and || - || is a norm, i.e. a function V — [0, o) satisfying:

> |lx|=0ifandonlyif x =0
» Forc eR, |lex|| = |c|||x]l
» Triangle inequality: ||x + y|| < ||x]| + |ly|l

Norms give rise to metrics by setting D(x, y) = ||x — y/||.
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Important norms

Some important examples are the ¢, norms: for v € RY,

1/p

d
Ivllp={ >_Ivil?
i=1
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Important norms

Some important examples are the ¢, norms: for v € RY,
d 1/p
IVl = (Z |Vi|p>
i=1

» /> (Euclidean) norm:

IVl = /5, v2 /

In particular:

-1
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Important norms

Some important examples are the ¢, norms: for v € RY,

d 1/p
Ivllp = (Z |Vi|p>

i=1
In particular:
» /4y (Manhattan/taxicab) norm:

IvIl+ =25 [vil

,
» /> (Euclidean) norm: <
)

-1
Ivll2 = /> V2
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Important norms

Some important examples are the ¢, norms: for v € RY,
d 1/p
IVilp = <Z !vf\p>
i=1

» /1 (Manhattan/taxicab) norm:

> ng |(|I1Eu:cI%é;:)| norm: / \
N

In particular:

Ivll2 = /32 v}

> (oo NOrM: ||V||so = Max; |V;]
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Important norms
Some important examples are the ¢, norms: for v € RY,

d 1/p
IVilp = (Z !v/\”)
i=1
In particular:

» /4y (Manhattan/taxicab) norm: !
Vil = X251 7N\

» (> (Euclidean) norm: . 1
IVl = /322 NN

> (oo NOrM: ||V]|oo = Max; |V;] 1

» We call the space R?, equipped with the ¢, norm, just £3.
» Note that these norms can all be computed in time O(d).
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The diameter problem

Problem

Given a set S of n points in Ef,’, find a pair p, g € S such that
lp — q||p is maximised.
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The diameter problem in /.

» Testing every pair of points gives an O(dn?) algorithm.

» Not great when nis large and d is small (e.g. constant).
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The diameter problem in /.

» Testing every pair of points gives an O(dn?) algorithm.
» Not great when nis large and d is small (e.g. constant).

» But in the co-norm we can do better!
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The diameter problem in /.

» Testing every pair of points gives an O(dn?) algorithm.
» Not great when nis large and d is small (e.g. constant).

» But in the co-norm we can do better!

max o — gll. = max max|p; — g
S p,geS i
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The diameter problem in /.

» Testing every pair of points gives an O(dn?) algorithm.
» Not great when nis large and d is small (e.g. constant).

» But in the co-norm we can do better!

max [p— qlls = max max|p; - gj
€S gesS i

’ )

= max [ maxp;, — ming;
i peS gesS
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The diameter problem in /.

» Testing every pair of points gives an O(dn?) algorithm.
» Not great when nis large and d is small (e.g. constant).

» But in the co-norm we can do better!

max [[p—qgllc = max max|p; — q;l
S gesS i

) )

= max [ maxp;, — ming;
i peS gesS

» This gives an O(dn) algorithm for computing the diameter in /.

» But what if we want to use (say) the ¢4 norm?
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From ¢4 to /

We'll construct a mapping f : R? — R such that:

> [[f(p) = 1(Q)llec = llp — qll1
> d = 2d
» f can be computed in time O(d29).

Ashley Montanaro

Metric Embeddings Slide 9/31



From ¢4 to /

We'll construct a mapping f : R? — R such that:

> [[f(p) = 1(Q)llec = llp — qll1
> d = 2d
» f can be computed in time O(d29).

Implies an O(nd) + O(nd29) = O(nd29) algorithm for computing
the diameter in 4;.

Assuming constant dimension, this is linear time.
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From ¢4 to /

Our function f is defined elementwise. For each vector s € {—1,1}¢,

define
d

fs(p)=s-p=>_sip;

i=1

Then concatenate all the f5(p) for the 29 different s to form f(p).
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From ¢4 to /

Our function f is defined elementwise. For each vector s € {—1,1}¢,

define
d

fs(p)=s-p=>_sip;

i=1

Then concatenate all the f5(p) for the 29 different s to form f(p).

We need to show that ||f(p) — f(Q)]lc = I[P — 9ll1-
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From ¢4 to /

Our function f is defined elementwise. For each vector s € {—1,1}¢,

define
d

fs(p) =s-p=)_sip;

i=1

Then concatenate all the f5(p) for the 29 different s to form f(p).

We need to show that ||f(p) — f(Q)]lc = I[P — 9ll1-

» fis linear, so would suffice that ||f(p — 9)|lcc = ||P — q||1-
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From ¢4 to /

Our function f is defined elementwise. For each vector s € {—1,1}¢,

define
d

fs(p)=s-p=>_sip;

i=1

Then concatenate all the f5(p) for the 29 different s to form f(p).

We need to show that ||f(p) — f(Q)]lc = I[P — 9ll1-

» fis linear, so would suffice that ||f(p — q)||cc = llp — ql|1-
» For any x, fs(x) is clearly maximised when s; = sgn x; for all i.
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From ¢4 to /

Our function f is defined elementwise. For each vector s € {—1,1}¢,

define
d

fs(p)=s-p=>_sip;

i=1

Then concatenate all the f5(p) for the 29 different s to form f(p).

We need to show that ||f(p) — f(Q)]lc = I[P — 9ll1-
» fis linear, so would suffice that ||f(p — 9)|lcc = ||P — q||1-

» For any x, fs(x) is clearly maximised when s; = sgn x; for all i.
» But for any x, ||x|[1 = >_,(sgn x;)x;.
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From ¢4 to /

Our function f is defined elementwise. For each vector s € {—1,1}¢,

define
d

fs(p) =s-p=)_sip;

i=1

Then concatenate all the f5(p) for the 29 different s to form f(p).

We need to show that ||f(p) — f(Q)]lc = I[P — 9ll1-

» fis linear, so would suffice that ||f(p — 9)|lcc = ||P — q||1-

» For any x, fs(x) is clearly maximised when s; = sgn x; for all i.
» But for any x, ||x|[1 = >_,(sgn x;)x;.

» So for the s such that s; = sgn(p — q)i, fs(p — q) = ||p — q||1-
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Norm embeddings

This map f is an example of an embedding of éﬁ’ in EEZ.
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Norm embeddings
This map f is an example of an embedding of Eﬁ’ in eg;’.
Definition
Let (X, D) and (Y, D’) be metric spaces. Amap f: X — Y is said to
be a randomised embedding of X in Y with distortion ¢ and failure

probability ¢ if, for all p, q € X,

D(p,q)/c < D'(f(p),f(q)) < cD(p, q)

with probability 1 — 6.
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Norm embeddings
This map f is an example of an embedding of Eﬁ’ in Eﬁi.
Definition
Let (X, D) and (Y, D’) be metric spaces. Amap f: X — Y is said to
be a randomised embedding of X in Y with distortion ¢ and failure

probability ¢ if, for all p, q € X,

D(p,q)/c < D'(f(p),f(q)) < cD(p, q)

with probability 1 — 6.

Our embedding Eﬁ’ — ng is deterministic and has distortion 1 (is
isometric)... but we won'’t always be so lucky.
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Dimensionality reduction
» Many problems suffer from the so-called curse of

dimensionality: they become exponentially harder as the
dimension increases.
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Dimensionality reduction

» Many problems suffer from the so-called curse of
dimensionality: they become exponentially harder as the
dimension increases.

» We can mitigate this by exponentially reducing the dimension
using a randomised embedding.
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Dimensionality reduction

» Many problems suffer from the so-called curse of
dimensionality: they become exponentially harder as the
dimension increases.

» We can mitigate this by exponentially reducing the dimension
using a randomised embedding.

Johnson-Lindenstrauss Lemma

For any ¢, and any d’ < d, there is a randomised embedding
9 — 19" with distortion 1 + ¢ and failure probability e(~9'<*).
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Dimensionality reduction

» Many problems suffer from the so-called curse of
dimensionality: they become exponentially harder as the
dimension increases.

» We can mitigate this by exponentially reducing the dimension
using a randomised embedding.

Johnson-Lindenstrauss Lemma

For any ¢, and any d’ < d, there is a randomised embedding
9 — 19" with distortion 1 + ¢ and failure probability e(~9'<*).

Corollary

For any ¢ there is a randomised embedding ¢§ — ¢90°%"/<) of
points with distortion 1 + ¢ and constant failure probability.
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The embedding

We construct a d’ x d matrix M where each entry of M is random
and picked from a normal distribution N(0, 1), rescaled by 1/v/d".
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The embedding

We construct a d’ x d matrix M where each entry of M is random
and picked from a normal distribution N(0, 1), rescaled by 1/v/d".

» This is a continuous °? 1
probability distribution with i
probability density function Pe
1 ] N
p(x) = ——e 2 : :
™ X

iversity of

k¢ U
B BR

Ashley Montanaro
]

Metric Embeddings Slide 13/31



The embedding

We construct a d’ x d matrix M where each entry of M is random
and picked from a normal distribution N(0, 1), rescaled by 1/v/d".

0.5

» This is a continuous
probability distribution with
probability density function

p(x)

/| N

1 Y Nl

p(x) = fe—xz/? 0 X
T X
A A
, : P

; _d

Thensetp' =Mp= A A
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The embedding

We construct a d’ x d matrix M where each entry of M is random
and picked from a normal distribution N(0, 1), rescaled by 1/v/d".

0.5

» This is a continuous
probability distribution with
probability density function

p(x)

/| N

1 Y Nl

p(x) = Fe—xz/? 0 X
T X
A A
, : P

/) _d

Thensetp' =Mp= A A

This embedding can be performed in O(d d’) time per point.
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Example

We embed ¢3 — £}. This is basically the same as projecting onto a
random line.
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Example

We embed ¢3 — £}. This is basically the same as projecting onto a
random line.
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Example

We embed Eg — @. This is basically the same as projecting onto a
random line.

o
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Proof of correctness (sketch)

Johnson-Lindenstrauss Lemma

For any ¢ there is a randomised embedding /g — ¢¢" with distortion
1 + € and failure probability e2(~d'<®).
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Proof of correctness (sketch)

Johnson-Lindenstrauss Lemma

For any ¢ there is a randomised embedding /g — ¢¢" with distortion
1 + € and failure probability e2(~d'<®).

» We need to show that 2
Prul| Mp — Mgllz > (1+€)l|p — qllz] < €22,
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Proof of correctness (sketch)

Johnson-Lindenstrauss Lemma

For any ¢ there is a randomised embedding /g — ¢¢" with distortion
1 + € and failure probability e2(~d'<®).

» We need to show that 2
Prul| Mp — Mgllz > (1+€)l|p — qllz] < €22,

» Suffices to show that, for all x,
Prull|Mx|2 > (1 + €)||x]|2] < eX=9"<): j.e. that the expected
resulting length of a vector is sharply concentrated about its
mean.
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Proof of correctness (sketch)

Johnson-Lindenstrauss Lemma

For any ¢ there is a randomised embedding /g — ¢¢" with distortion
1 + € and failure probability e2(~d'<®).

» We need to show that 2
Prul| Mp — Mgllz > (1+€)l|p — qllz] < €22,

» Suffices to show that, for all x,
Prull|Mx|2 > (1 + €)||x]|2] < eX=9"<): j.e. that the expected
resulting length of a vector is sharply concentrated about its
mean.

> Set L= ||v|2, L' = |Mv|Z. Then E[L'] = L.
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Proof of correctness (sketch)

Johnson-Lindenstrauss Lemma

For any ¢ there is a randomised embedding /g — ¢¢" with distortion
1 + € and failure probability e2(~d'<®).

» We need to show that ,
Prull|Mp — Mal|2 > (1 +€)[lp — qll2] < €.
» Suffices to show that, for all x,
Prull|Mx|2 > (1 + €)||x]|2] < eX=9"<): j.e. that the expected
resulting length of a vector is sharply concentrated about its
mean.
» Set L= ||v||3, L' = ||[Mv|j3. Then E[L'] = L. Also, for any 8 > 1,
» Pril’ > BL] < O(L') e=L'%)  and
» Pril’ < L/B] < O(L') e~ o /)

Ashley Montanaro
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Notes on the J-L Lemma

» This result was proven in 1984 and has been rediscovered
several times, e.g. in the applied setting by Kaski in 1998.
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Notes on the J-L Lemma

» This result was proven in 1984 and has been rediscovered
several times, e.g. in the applied setting by Kaski in 1998.

» Ailon and Chazelle have recently given a version of this

embedding that uses ~ O(d log d) time per vector (rather than
O(d log®™" n))
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Notes on the J-L Lemma

» This result was proven in 1984 and has been rediscovered
several times, e.g. in the applied setting by Kaski in 1998.

» Ailon and Chazelle have recently given a version of this
embedding that uses ~ O(d log d) time per vector (rather than
O(d log®™" n))

» The fact that the elements of the matrix M are normally
distributed isn’t important: in fact you can put almost anything in
M — e.g. random +1 entries (easier to implement).
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Notes on the J-L Lemma

» This result was proven in 1984 and has been rediscovered
several times, e.g. in the applied setting by Kaski in 1998.

» Ailon and Chazelle have recently given a version of this
embedding that uses ~ O(d log d) time per vector (rather than
O(d log®™" n))

» The fact that the elements of the matrix M are normally
distributed isn’t important: in fact you can put almost anything in
M — e.g. random +1 entries (easier to implement).

» This is an example of the concentration of measure

phenomenon (random variables in high dimensions are
concentrated around their means).
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Applications

» Imagine we have a problem to solve with n points in d
dimensions, and an algorithm with running time T(n, d).
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Applications

» Imagine we have a problem to solve with n points in d
dimensions, and an algorithm with running time T(n, d).

» Thanks to the J-L Lemma, this gives an approximation
algorithm that runs in time T(n,log®") n) + O(ndlog®") n)
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Applications

» Imagine we have a problem to solve with n points in d
dimensions, and an algorithm with running time T(n, d).

» Thanks to the J-L Lemma, this gives an approximation
algorithm that runs in time T(n,log®") n) + O(ndlog®") n)

» This might be a polynomial or exponential speed-up, depending
onT.

Example:
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Applications

» Imagine we have a problem to solve with n points in d
dimensions, and an algorithm with running time T(n, d).

» Thanks to the J-L Lemma, this gives an approximation
algorithm that runs in time T(n,log®") n) + O(ndlog®") n)
» This might be a polynomial or exponential speed-up, depending
onT.
Example:

» Closest pair/diameter: O(n?d) time —
O((n?1og®" n + ndlog n)/e?) time.
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Applications

» Imagine we have a problem to solve with n points in d
dimensions, and an algorithm with running time T(n, d).

» Thanks to the J-L Lemma, this gives an approximation
algorithm that runs in time T(n,log®") n) + O(ndlog®") n)
» This might be a polynomial or exponential speed-up, depending
onT.
Example:

» Closest pair/diameter: O(n?d) time —
O((n?1og®" n + ndlog n)/e?) time.

This result can also be used for clustering high-dimensional data:
performance is similar to Principal Components Analysis (PCA) and
it's easier to implement.
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Nearest neighbour search

Problem: Pre-process a set of points S in R? so that queries of the
following sort can be answered efficiently:

» Given a point x, what is the nearest neighbour of x in S?
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Nearest neighbour search

Problem: Pre-process a set of points S in R? so that queries of the
following sort can be answered efficiently:

» Given a point x, what is the nearest neighbour of x in S?
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Approximate nearest neighbour search
Problem: Pre-process a set of points S in R9 so that queries of the
following sort can be answered efficiently:

» Given a point x, whose nearest neighbour in Sis y, output any
point z in S such that || x — z|| < ¢||x — y]||.
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Approximate nearest neighbour search
Problem: Pre-process a set of points S in R9 so that queries of the
following sort can be answered efficiently:

» Given a point x, whose nearest neighbour in Sis y, output any
point z in S such that || x — z|| < ¢||x — y]||.
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Approximate nearest neighbour search
Problem: Pre-process a set of points S in R9 so that queries of the
following sort can be answered efficiently:

» Given a point x, whose nearest neighbour in Sis y, output any
point z in S such that || x — z|| < ¢||x — y]||.

o /// b\\\
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Approximate nearest neighbour search
Problem: Pre-process a set of points S in R9 so that queries of the
following sort can be answered efficiently:

» Given a point x, whose nearest neighbour in Sis y, output any
point z in S such that || x — z|| < ¢||x — y]||.

o .n
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\
|

o
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Approximate nearest neighbour search

» The exact nearest-neighbour problem appears to be intractable
(conjecture: any data structure achieving poly(d) query time
must use space super-polynomial in n).
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Approximate nearest neighbour search

» The exact nearest-neighbour problem appears to be intractable
(conjecture: any data structure achieving poly(d) query time
must use space super-polynomial in n).

» Indyk and Motwani recently (1998) proposed a more efficient
approximate nearest neighbour search algorithm.
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Approximate nearest neighbour search

» The exact nearest-neighbour problem appears to be intractable
(conjecture: any data structure achieving poly(d) query time
must use space super-polynomial in n).

» Indyk and Motwani recently (1998) proposed a more efficient
approximate nearest neighbour search algorithm.

» Based on an algorithm which finds a (1 + €) nearest neighbour
in poly(d, log n, 1/¢) time using a data structure of size
O(1/¢€)9npolylog(n).
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Approximate nearest neighbour search

» The exact nearest-neighbour problem appears to be intractable
(conjecture: any data structure achieving poly(d) query time
must use space super-polynomial in n).

» Indyk and Motwani recently (1998) proposed a more efficient
approximate nearest neighbour search algorithm.

» Based on an algorithm which finds a (1 + €) nearest neighbour
in poly(d,logn, 1/¢) time using a data structure of size
O(1/¢€)9npolylog(n).

» The J-L Lemma allows this space bound to be reduced to
nO(log(1/9)/<*) _ an exponential reduction.
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Finite metric embeddings

» We now consider embeddings of finite metrics in norms.
» This can be visualised as mapping a graph into a vector space.
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Finite metric embeddings

» We now consider embeddings of finite metrics in norms.
» This can be visualised as mapping a graph into a vector space.

» For example, consider the following isometric embedding of a
graph into ¢3:
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Any finite metric can be embedded in 7,

Theorem (Frechet)

Any finite metric space (X, D) with | X| = n embeds isometrically into

0.
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Any finite metric can be embedded in 7,

Theorem (Frechet)
Any finite metric space (X, D) with | X| = n embeds isometrically into

0.

Proof:

» Enumerate X as X = {x1, ..., Xn}. Then our embedding will be
the mapping f : X — R" where f(p); = D(p, X;).
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Any finite metric can be embedded in 7,

Theorem (Frechet)

Any finite metric space (X, D) with | X| = n embeds isometrically into
o,
Proof:

» Enumerate X as X = {x1, ..., Xn}. Then our embedding will be
the mapping f : X — R" where f(p); = D(p, X;).

> Forany p,q € X, |£(p) — f(q) ]l = max; [f(p); — f(q)i| =
max; |D(p, x;) — D(q, x;)| < D(p, q) (“reverse” triangle inequality)
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Any finite metric can be embedded in 7,

Theorem (Frechet)

Any finite metric space (X, D) with | X| = n embeds isometrically into

/n .
Proof:

» Enumerate X as X = {xy,..., Xp}. Then our embedding will be
the mapping f : X — R" where f(p); = D(p, X;).

» Forany p,q € X, [[f(p) — f(q)|lc = max; |f(p); — f(q)il =
max; |D(p, x;) — D(q, x;)| < D(p, q) (“reverse” triangle inequality)

» On the other hand, |D(p, p) — D(q, p)| = D(q, p), so
1f(p) — f(9)ll« = D(p; q)-
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Embedding into />

» This embedding uses n dimensions.
» If we allow some distortion, we can do exponentially better.
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Embedding into />

» This embedding uses n dimensions.
» If we allow some distortion, we can do exponentially better.

Theorem (Bourgain)

For any 1 < p < 2, any finite metric space (X, D) with | X| = n can
2

be embedded into £5°9" ") with distortion O(log n) in time

O(n?log n).
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Embedding into />

» This embedding uses n dimensions.
» If we allow some distortion, we can do exponentially better.

Theorem (Bourgain)

For any 1 < p < 2, any finite metric space (X, D) with | X| = n can
2

be embedded into £5°9" ") with distortion O(log n) in time

O(n?log n).

The proof is based on similar ideas, but is more complex and
involves replacing the points x; by sets of points.

Ashley Montanaro
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Applications

An easy application: efficient storage & computation of shortest
paths.
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Applications

An easy application: efficient storage & computation of shortest
paths.

» Say a graph G can be embedded in Eg with distortion c for
some p, d.
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Applications

An easy application: efficient storage & computation of shortest
paths.

» Say a graph G can be embedded in Eg with distortion c for
some p, d.

» Then we can store the graph in space O(nd) and c-approximate
the shortest path between any two vertices in O(d) time.
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Applications

An easy application: efficient storage & computation of shortest
paths.

» Say a graph G can be embedded in Kf,’ with distortion c for
some p, d.

» Then we can store the graph in space O(nd) and c-approximate
the shortest path between any two vertices in O(d) time.

» e.g. imagine d = O(log n): we get space O(nlog n), query time
O(log n).
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Sparsest cut

A more complex example: approximating the sparsest cut of a
graph.
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Sparsest cut

A more complex example: approximating the sparsest cut of a
graph.

Problem. Given a graph G = (V, E) with | V| = n, find the minimum,
overallcuts V=S UT, of

BT
%5 =T8T
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Sparsest cut

A more complex example: approximating the sparsest cut of a
graph.

Problem. Given a graph G = (V, E) with | V| = n, find the minimum,
overallcuts V=S UT, of

[E(S, T)|

M= s
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Sparsest cut

A more complex example: approximating the sparsest cut of a
graph.

Problem. Given a graph G = (V, E) with | V| = n, find the minimum,
overallcuts V=S UT, of

BT
5= s
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Sparsest cut
A more complex example: approximating the sparsest cut of a
graph.
Problem. Given a graph G = (V, E) with | V| = n, find the minimum,
overallcuts V=S UT, of

IES.T)]
%5) = 51T

“A minimum cut that favours balanced partitions”. NP-hard to
compute.
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Approximating the sparsest cut

Theorem (Linial, London and Rabinovich)

The sparsest cut can be approximated to within an O(log n) factor in
polynomial time.
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Approximating the sparsest cut

Theorem (Linial, London and Rabinovich)

The sparsest cut can be approximated to within an O(log n) factor in
polynomial time.

Proof idea:

» Every cut defines a (semi-)metric where D(x,y) = 1if x and y
are separated by the cut, and 0 otherwise.
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Approximating the sparsest cut

Theorem (Linial, London and Rabinovich)

The sparsest cut can be approximated to within an O(log n) factor in
polynomial time.

Proof idea:

» Every cut defines a (semi-)metric where D(x,y) = 1if x and y
are separated by the cut, and 0 otherwise.

» Embed the (unknown!) optimal cut metric in ¢4, losing at most
O(log n) in the process.
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Approximating the sparsest cut

Theorem (Linial, London and Rabinovich)

The sparsest cut can be approximated to within an O(log n) factor in
polynomial time.

Proof idea:

» Every cut defines a (semi-)metric where D(x,y) = 1if x and y
are separated by the cut, and 0 otherwise.

» Embed the (unknown!) optimal cut metric in ¢4, losing at most
O(log n) in the process.

» The resulting optimisation problem can be solved efficiently by
linear programming.
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Exercises

There are many interesting problems related to embedding graphs
in norms. Here are some things to think about over the holidays (in
rough order of difficulty)...
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Exercises

There are many interesting problems related to embedding graphs
in norms. Here are some things to think about over the holidays (in
rough order of difficulty)...

Prove that:

1. Atree with n vertices can be isometrically embedded into ¢~
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Exercises

There are many interesting problems related to embedding graphs
in norms. Here are some things to think about over the holidays (in
rough order of difficulty)...

Prove that:
1. Atree with n vertices can be isometrically embedded into ¢~

2. The complete graph on n vertices can be isometrically
embedded into ¢1°% " and this is optimal.
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Exercises

There are many interesting problems related to embedding graphs
in norms. Here are some things to think about over the holidays (in
rough order of difficulty)...

Prove that:
1. Atree with n vertices can be isometrically embedded into ¢~

2. The complete graph on n vertices can be isometrically
embedded into ¢/°% " and this is optimal.

3. A cycle on nvertices cannot be embedded in a tree with
distortion lower than n — 1.
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Exercises

There are many interesting problems related to embedding graphs
in norms. Here are some things to think about over the holidays (in
rough order of difficulty)...

Prove that:
1. Atree with n vertices can be isometrically embedded into ¢~

2. The complete graph on n vertices can be isometrically
embedded into ¢/°% " and this is optimal.

3. A cycle on nvertices cannot be embedded in a tree with
distortion lower than n — 1.

4. A complete binary tree on n vertices can be embedded into ¢]

with distortion O(+/loglog n).
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Conclusion

» Metric embeddings are a powerful tool for finding efficient
algorithms.
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Conclusion

» Metric embeddings are a powerful tool for finding efficient
algorithms.

» Some high-dimensional problems in the ¢, norm can be solved
exponentially more quickly using the Johnson-Lindenstrauss
Lemma.
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Conclusion

» Metric embeddings are a powerful tool for finding efficient
algorithms.

» Some high-dimensional problems in the ¢, norm can be solved
exponentially more quickly using the Johnson-Lindenstrauss
Lemma.

> Any metric on n points can be embedded into £20°9° ™ with

2
O(log n) distortion.
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Conclusion

» Metric embeddings are a powerful tool for finding efficient
algorithms.

» Some high-dimensional problems in the ¢, norm can be solved
exponentially more quickly using the Johnson-Lindenstrauss
Lemma.

. , . O(log® n) . .

» Any metric on n points can be embedded into /, with

O(log n) distortion.

There are many interesting open problems in the field of metric
embeddings:

» Mathematical questions

» Theoretical CS

» Applications

» Implementation
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Further reading

» “Algorithmic applications of geometric embeddings” by Piotr
Indyk.

» “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions” by Alexandr Andoni and Piotr
Indyk.

» Several lecture courses: search for “metric embeddings”.

» “The geometry of graphs and some of its algorithmic
applications” by Linial, London and Rabinovich.
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Thanks and Merry Christmas!
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