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Outline

I What is a metric and why would we want to embed one?

I Exponential dimensionality reduction

I Embedding finite metrics and applications
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Metrics

A metric is a mathematical abstraction of the notion of distance.

A metric space M is a pair (X ,D), where X is a set of points and
D : X × X → [0,∞) is a distance function satisfying:

I D(p,q) = 0 if and only if p = q
I D(p,q) = D(q,p)

I Triangle inequality: D(p,q) + D(q, r) ≥ D(p, r)

Example:

I String edit distance: D(s, t) is the number of insertions,
deletions and substitutions needed to change s into t
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Finite metrics
Any metric on n points can be represented by a matrix M where
Mij = D(i , j), e.g.: 

0 1 3 2
1 0 4 1
3 4 0 3
2 1 3 0



A natural way of getting a finite metric is from the shortest path
metric over a graph (D(x , y) = length of shortest path from x to y ).
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Norms

A norm is a mathematical abstraction of the notion of length.

A normed vector space is a pair (V , ‖ · ‖), where V is a vector space
and ‖ · ‖ is a norm, i.e. a function V → [0,∞) satisfying:

I ‖x‖ = 0 if and only if x = 0
I For c ∈ R, ‖cx‖ = |c|‖x‖
I Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖

Norms give rise to metrics by setting D(x , y) = ‖x − y‖.
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Important norms

Some important examples are the `p norms: for v ∈ Rd ,

‖v‖p =

(
d∑

i=1

|vi |p
)1/p

In particular:
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I We call the space Rd , equipped with the `p norm, just `dp .
I Note that these norms can all be computed in time O(d).
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The diameter problem

Problem
Given a set S of n points in `dp , find a pair p,q ∈ S such that
‖p − q‖p is maximised.
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The diameter problem in `∞

I Testing every pair of points gives an O(dn2) algorithm.

I Not great when n is large and d is small (e.g. constant).

I But in the∞-norm we can do better!

max
p,q∈S

‖p − q‖∞ = max
p,q∈S

max
i
|pi − qi |

= max
i

(
max
p∈S

pi −min
q∈S

qi

)

I This gives an O(dn) algorithm for computing the diameter in `∞.

I But what if we want to use (say) the `1 norm?
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From `1 to `∞

We’ll construct a mapping f : Rd → Rd ′
such that:

I ‖f (p)− f (q)‖∞ = ‖p − q‖1
I d ′ = 2d

I f can be computed in time O(d2d).

Implies an O(nd) + O(nd2d) = O(nd2d) algorithm for computing
the diameter in `1.

Assuming constant dimension, this is linear time.
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From `1 to `∞

Our function f is defined elementwise. For each vector s ∈ {−1,1}d ,
define

fs(p) = s · p =
d∑

i=1

sipi

Then concatenate all the fs(p) for the 2d different s to form f (p).

We need to show that ‖f (p)− f (q)‖∞ = ‖p − q‖1.

I f is linear, so would suffice that ‖f (p − q)‖∞ = ‖p − q‖1.
I For any x , fs(x) is clearly maximised when si = sgn xi for all i .
I But for any x , ‖x‖1 =

∑
i(sgn xi)xi .

I So for the s such that si = sgn(p − q)i , fs(p − q) = ‖p − q‖1.
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Norm embeddings

This map f is an example of an embedding of `d1 in `2
d

∞.

Definition
Let (X ,D) and (Y ,D′) be metric spaces. A map f : X → Y is said to
be a randomised embedding of X in Y with distortion c and failure
probability δ if, for all p,q ∈ X ,

D(p,q)/c ≤ D′(f (p), f (q)) ≤ c D(p,q)

with probability 1− δ.

Our embedding `d1 → `2
d

∞ is deterministic and has distortion 1 (is
isometric)... but we won’t always be so lucky.
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Dimensionality reduction

I Many problems suffer from the so-called curse of
dimensionality: they become exponentially harder as the
dimension increases.

I We can mitigate this by exponentially reducing the dimension
using a randomised embedding.

Johnson-Lindenstrauss Lemma
For any ε, and any d ′ ≤ d , there is a randomised embedding
`d2 → `d

′

2 with distortion 1 + ε and failure probability eΩ(−d ′ε2).

Corollary

For any ε there is a randomised embedding `d2 → `
O(log n/ε2)
2 of n

points with distortion 1 + ε and constant failure probability.
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The embedding
We construct a d ′ × d matrix M where each entry of M is random
and picked from a normal distribution N(0,1), rescaled by 1/

√
d ′.

I This is a continuous
probability distribution with
probability density function

p(x) =
1√
2π

e−x2/2. 0-4 4

x

0

0.5

p(x)

Then set p′ = M p = d′

 · · ·
...

. . .
...

· · ·

p

d

This embedding can be performed in O(d d ′) time per point.
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Example
We embed `22 → `12. This is basically the same as projecting onto a
random line.

We see that distances between some points are approximately
preserved.
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Proof of correctness (sketch)

Johnson-Lindenstrauss Lemma
For any ε there is a randomised embedding `d2 → `d

′

2 with distortion
1 + ε and failure probability eΩ(−d ′ε2).

I We need to show that
PrM [‖Mp −Mq‖2 > (1 + ε)‖p − q‖2] ≤ eΩ(−d ′ε2).

I Suffices to show that, for all x ,
PrM [‖Mx‖2 > (1 + ε)‖x‖2] ≤ eΩ(−d ′ε2): i.e. that the expected
resulting length of a vector is sharply concentrated about its
mean.

I Set L = ‖v‖22, L′ = ‖Mv‖22. Then E[L′] = L. Also, for any β > 1,
I Pr[L′ > βL] < O(L′) e−Ω(L′β2), and
I Pr[L′ < L/β] < O(L′) e−Ω(L′/β2)
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Notes on the J-L Lemma

I This result was proven in 1984 and has been rediscovered
several times, e.g. in the applied setting by Kaski in 1998.

I Ailon and Chazelle have recently given a version of this
embedding that uses ≈ O(d log d) time per vector (rather than
O(d logO(1) n))

I The fact that the elements of the matrix M are normally
distributed isn’t important: in fact you can put almost anything in
M – e.g. random ±1 entries (easier to implement).

I This is an example of the concentration of measure
phenomenon (random variables in high dimensions are
concentrated around their means).
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Applications

I Imagine we have a problem to solve with n points in d
dimensions, and an algorithm with running time T (n,d).

I Thanks to the J-L Lemma, this gives an approximation
algorithm that runs in time T (n, logO(1) n) + O(nd logO(1) n)

I This might be a polynomial or exponential speed-up, depending
on T .

Example:

I Closest pair/diameter: O(n2d) time→
O((n2 logO(1) n + nd log n)/ε2) time.

This result can also be used for clustering high-dimensional data:
performance is similar to Principal Components Analysis (PCA) and
it’s easier to implement.
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Nearest neighbour search
Problem: Pre-process a set of points S in Rd so that queries of the
following sort can be answered efficiently:

I Given a point x , what is the nearest neighbour of x in S?
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Approximate nearest neighbour search
Problem: Pre-process a set of points S in Rd so that queries of the
following sort can be answered efficiently:

I Given a point x , whose nearest neighbour in S is y , output any
point z in S such that ‖x − z‖ ≤ c‖x − y‖.
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Approximate nearest neighbour search

I The exact nearest-neighbour problem appears to be intractable
(conjecture: any data structure achieving poly(d) query time
must use space super-polynomial in n).

I Indyk and Motwani recently (1998) proposed a more efficient
approximate nearest neighbour search algorithm.

I Based on an algorithm which finds a (1 + ε) nearest neighbour
in poly(d , log n,1/ε) time using a data structure of size
O(1/ε)dn polylog(n).

I The J-L Lemma allows this space bound to be reduced to
nO(log(1/ε)/ε2) – an exponential reduction.
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Finite metric embeddings

I We now consider embeddings of finite metrics in norms.
I This can be visualised as mapping a graph into a vector space.

I For example, consider the following isometric embedding of a
graph into `22:
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Any finite metric can be embedded in `∞

Theorem (Frèchet)

Any finite metric space (X ,D) with |X | = n embeds isometrically into
`n∞.

Proof:

I Enumerate X as X = {x1, . . . , xn}. Then our embedding will be
the mapping f : X → Rn where f (p)i = D(p, xi).

I For any p,q ∈ X , ‖f (p)− f (q)‖∞ = maxi |f (p)i − f (q)i | =
maxi |D(p, xi)−D(q, xi)| ≤ D(p,q) (“reverse” triangle inequality)

I On the other hand, |D(p,p)− D(q,p)| = D(q,p), so
‖f (p)− f (q)‖∞ = D(p,q).
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Embedding into `2

I This embedding uses n dimensions.
I If we allow some distortion, we can do exponentially better.

Theorem (Bourgain)

For any 1 ≤ p ≤ 2, any finite metric space (X ,D) with |X | = n can

be embedded into `O(log2 n)
p with distortion O(log n) in time

O(n2 log n).

The proof is based on similar ideas, but is more complex and
involves replacing the points xi by sets of points.
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Applications

An easy application: efficient storage & computation of shortest
paths.

I Say a graph G can be embedded in `dp with distortion c for
some p, d .

I Then we can store the graph in space O(nd) and c-approximate
the shortest path between any two vertices in O(d) time.

I e.g. imagine d = O(log n): we get space O(n log n), query time
O(log n).
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Sparsest cut

A more complex example: approximating the sparsest cut of a
graph.

Problem. Given a graph G = (V ,E) with |V | = n, find the minimum,
over all cuts V = S ∪ T , of

φ(S) =
|E(S,T )|
|S||T |
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Sparsest cut
A more complex example: approximating the sparsest cut of a
graph.
Problem. Given a graph G = (V ,E) with |V | = n, find the minimum,
over all cuts V = S ∪ T , of

φ(S) =
|E(S,T )|
|S||T |

“A minimum cut that favours balanced partitions”. NP-hard to
compute.
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Approximating the sparsest cut

Theorem (Linial, London and Rabinovich)

The sparsest cut can be approximated to within an O(log n) factor in
polynomial time.

Proof idea:
I Every cut defines a (semi-)metric where D(x , y) = 1 if x and y

are separated by the cut, and 0 otherwise.
I Embed the (unknown!) optimal cut metric in `1, losing at most

O(log n) in the process.
I The resulting optimisation problem can be solved efficiently by

linear programming.
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Exercises
There are many interesting problems related to embedding graphs
in norms. Here are some things to think about over the holidays (in
rough order of difficulty)...

Prove that:

1. A tree with n vertices can be isometrically embedded into `n−1
1 .

2. The complete graph on n vertices can be isometrically
embedded into `dlog2 ne

∞ , and this is optimal.

3. A cycle on n vertices cannot be embedded in a tree with
distortion lower than n − 1.

4. A complete binary tree on n vertices can be embedded into `n2
with distortion O(

√
log log n).
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Conclusion
I Metric embeddings are a powerful tool for finding efficient

algorithms.

I Some high-dimensional problems in the `2 norm can be solved
exponentially more quickly using the Johnson-Lindenstrauss
Lemma.

I Any metric on n points can be embedded into `O(log2 n)
2 with

O(log n) distortion.

There are many interesting open problems in the field of metric
embeddings:

I Mathematical questions
I Theoretical CS
I Applications
I Implementation
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Further reading

I “Algorithmic applications of geometric embeddings” by Piotr
Indyk.

I “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions” by Alexandr Andoni and Piotr
Indyk.

I Several lecture courses: search for “metric embeddings”.

I “The geometry of graphs and some of its algorithmic
applications” by Linial, London and Rabinovich.
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Thanks and Merry Christmas!
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