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Introduction

What can we do with our quantum computers?

This talk:
1 Classic applications
2 More recent applications
3 Applications with no quantum computer required

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 209 papers
on quantum algorithms alone, so this is necessarily a partial
view. . .

http://math.nist.gov/quantum/zoo/
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Computational complexity

In computer science, we measure different algorithms or
computational models by their computational complexity.

We compare the scaling of resources (usually time or
space) used by different algorithms to solve a problem.

The crucial distinction is usually between:
algorithms which run in time which is polynomial in the
input size (i.e. the runtime is O(nk) for some fixed k > 1
on an input of size n bits)
and algorithms which run in time exponential in the input
size (i.e. time O(2nδ) for some δ > 0).

The “big-O” notation hides arbitrary multiplicative / additive
constants.
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Quantum time complexity

How do we measure the complexity of algorithms which run
on a quantum computer?

We usually use the quantum circuit model: we imagine a
quantum computation as built from a sequence of
elementary operations (“quantum gates”), each acting on
a small number of qubits.

U =

A

B

C
D

E

F

Then the time complexity of the algorithm is (roughly)
modelled by the number of quantum gates used.

Sometimes it is reasonable to measure the complexity of
the algorithms by the number of queries to the input used.
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Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem that underlies Internet security is
based around the hardness of this task.
That is, if we can factorise large integers efficiently, we can
break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).



Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer executing 109 instructions per
second (comparable to today’s desktop PCs) in 16
minutes.

The fastest computer on the Top500 supercomputer list
(∼ 3.4× 1016 operations per second) in ∼ 1.2× 1017 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)
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Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded error).
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Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in NP, i.e. where we can verify the
solution efficiently.

For example, in the Circuit SAT problem we would like
to find an input to a circuit on n bits such that the output
is 1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2): applications to design automation, circuit
equivalence, model checking, . . .
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Applications of Grover’s algorithm

An important generalisation of Grover’s algorithm is known
as amplitude amplification.

Amplitude amplification [Brassard et al ’00]

Assume we are given access to a “checking” function f , and a
probabilistic algorithm A such that

Pr[A outputs w such that f (w) = 1] = ε.

Then we can find w such that f (w) = 1 with O(1/
√
ε) uses of f .

Gives a quadratic speed-up over classical algorithms based on
the use of f as a black box.



Applications of Grover’s algorithm

These primitives can be used to obtain many speedups over
classical algorithms, e.g.:

Finding the minimum of n numbers in O(
√

n) time [Dürr
and Høyer ’96]

Determining connectivity of an n-vertex graph in O(n3/2)
time [Dürr et al ’04]

Finding a collision in a 2-1 function f : [n]→ [n] in O(n1/3)
time [Brassard et al ’98]

Finding a maximal matching in a bipartite graph with V
vertices and E edges in O(V

√
E log V) time [Ambainis and

Špalek ’05]

Approximating the `1 distance between probability
distributions on n elements in O(

√
n) time [Bravyi et al ’09]

. . .
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Quantum simulation
The most important early application of quantum computers
is likely to be quantum simulation (see later today).

Problem
Given a Hamiltonian H describing a physical system, and an
initial state |ψ0〉 of that system, produce the state

|ψt〉 = e−iHt|ψ0〉.

Given such an output state, measurements can be performed
to determine quantities of interest about the state.

No efficient classical algorithm is known for this task (in
full generality), but efficient quantum algorithms exist for
many physically reasonable cases.

Applications: quantum chemistry, superconductivity,
metamaterials, high-energy physics, . . . [Georgescu et al ’13]
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“Solving” linear equations

A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al ’08].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis ’10].
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Notes on this algorithm

The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
BPP = BQP!

More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne ’08]
[Berry ’10]

Data fitting [Wiebe et al ’12]

Space-efficient matrix inversion [Ta-Shma ’13]
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Quantum walks

A quantum walk on a graph is a quantum generalisation of a
classical random walk.

A continuous-time quantum walk for time t on a graph
with adjacency matrix A is the application of the unitary
operator e−iAt.

Continuous-time quantum walks can be efficiently
implemented as quantum circuits using Hamiltonian
simulation.



Quantum walks

Consider the graph formed by gluing two binary trees with N
vertices together, e.g.:



Quantum walks

Now add a random cycle in the middle:



Quantum walk on the glued trees graph

Theorem [Childs et al ’02]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).

Any classical algorithm given black-box access to the
graph requires O(N1/6) queries to find the exit.

Other applications of continuous-time quantum walks:

Spatial search [Childs and Goldstone ’03]

Evaluation of boolean formulae [Farhi et al ’07] [Childs et al ’07]
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Element distinctness

Problem
Given a set of n integers, are they all distinct?

Classically, we need to look at all n integers to solve this
problem.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis ’03]

Element Distinctness can be solved using O(n2/3) queries.

The algorithm is based on discrete-time quantum walks.
Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.
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The algorithm is based on discrete-time quantum walks.
Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of Zn satisfying any
property: uses O(nk/(k+1)) queries.



Some examples
The same quantum walk framework lends itself to many
different search problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al ’03] [Jeffery et al ’12]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek ’04]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5



Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak ’05]
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Yet more algorithms

There are a number of other quantum algorithms which I
don’t have time to go into:

Hidden subgroup problems (e.g. [Bacon et al ’05])
Number-theoretic problems (e.g. [Fontein and Wocjan ’11], . . . )
Formula evaluation (e.g. [Reichardt and Špalek ’07])
Tensor contraction (e.g. [Arad and Landau ’08])
Hidden shift problems (e.g. [Gavinsky et al ’11])
Adiabatic optimisation (e.g. [Farhi et al ’00])
. . .

. . . as well as the entire field of quantum communication
complexity.



Quantum computing without a quantum
computer

Although we don’t have a large-scale quantum computer yet,
ideas from quantum computation and quantum information
theory have already paid dividends:

The burgeoning field of Hamiltonian complexity and
QMA-completeness has characterised the hardness of
ground-state energy estimation problems for a variety of
physical systems (e.g. [Kitaev, Shen and Vyalyi ’02] [Schuch and
Verstraete ’09] [Cubitt and AM ’13])

Understanding multiple-prover quantum Merlin-Arthur
proof systems has given new lower bounds on the
classical complexity of computing tensor and matrix
norms [Harrow and AM ’10]

New limitations on classical data structures, codes and
formulas (see e.g. [Drucker and de Wolf ’09])
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Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!



Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!



Summary and further reading

There are many quantum algorithms, solving many different
problems, using many different techniques.

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam ’08]

“Quantum walk based search algorithms” [Santha ’08]

“Quantum algorithms” [Mosca ’08]

“New developments in quantum algorithms” [Ambainis ’10]

Thanks!



Primitive: Phase estimation

Phase estimation [Cleve et al ’97] [Kitaev ’95]

Given access to a unitary U and an eigenvector |ψ〉 such that
U|ψ〉 = e2πiφ|ψ〉, we can estimate φ up to additive error ε with
O(1/ε) uses of U.

We apply the following circuit with n = O(log 1/ε):

|0〉 H . . . •

QFT−1
...

|0〉 H • . . .

|0〉 H • . . .


|ψ〉 U20

U21 . . . U2n−1

n

and then measure the first n qubits.
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