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Introduction

In this talk I will describe an algorithm that solves the
following problem.

Problem
Given a quantum state and a sequence of accept/reject
measurements such that either:

1 At least one of the measurements accepts the state with
high probability;

2 All of the measurements accept with low probability,
determine which is the case.

I will then discuss applications to property testing, and in
particular an exponential reduction in quantum query
complexity for testing isomorphism under group actions.
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Quantum mechanics in a nutshell

For the purposes of this talk:

A state ψ of a quantum system is a unit vector.

A two-outcome measurement M is a pair {P, I − P} where
P is a projector onto a subspace.

M accepts with probability ‖Pψ‖2 and otherwise rejects.

If M accepts (resp. rejects), the new state of the system is

Pψ
‖Pψ‖

, resp.
(I − P)ψ
‖(I − P)ψ‖

.
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The problem

Restating the previous problem mathematically:

Problem
We have a quantum state ψ and a sequence of measurements
M1, . . . ,Mn, corresponding to projectors P1, . . . ,Pn.

We are promised that either:
1 There exists i such that ‖Piψ‖2 = Ω(1) (“yes” case);
2 For all i, ‖Piψ‖2 = o(1/n) (“no” case).

Our task is to determine which is the case.

This problem can be seen as a quantum version of computing
the OR of the measurement outcomes.

Obvious “solution”: Try M1, then M2, then . . . , then Mn.
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The quantum anti-Zeno effect

Set
ψk =

(
cos
(
πk
2n

)
, sin

(
πk
2n

))T

and set Mk = {I −ψkψ
⊥
k ,ψkψ

⊥
k } (first outcome: acceptance,

second outcome: rejection).

If we have ψk and apply the measurement Mk+1, the
probability of rejection is precisely(

cos
( π

2n

))2
= 1 − O(1/n2)

and the residual state following rejection is ψk+1.

So if we perform M1, . . . ,Mn on initial state
(

1
0

)
= ψ0,

then Pr[ever accept] = O(1/n).

But if the final measurement Mn were performed on
(

1
0

)
,

it would accept with certainty.
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Combating the quantum anti-Zeno effect

We give two procedures with similar parameters that combat
this effect and solve the above problem:

One procedure is based on Marriott-Watrous gap
amplification and has better constants and a more elegant
correctness proof.
The other procedure has more direct intuition and is
easier to describe in a talk. . .

The intuition behind the second procedure:
Testing measurements in order doesn’t work if the final
state is far away from the initial state.
So why not just test for this disturbance?
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A quantum OR bound by testing disturbance

Algorithm (informal)
Repeat the following O(n) times:

1 With probability O(1/n), do a disturbance test on the
current state and return the result.

2 Pick k at random and perform measurement Mk. Accept if
the measurement accepts.

Reject.

The disturbance test accepts whp if the current state is far from
the initial state, and rejects whp if it is close to the initial state.

Proof intuition: In a “yes” case, if the current state is close to
the initial state, the test in step 2 will accept whp. Otherwise,
the test in step 1 will accept whp. So in either case we accept
with prob. Ω(1/n) in each iteration.
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Application to property testing
We can apply this test to the problem of testing isomorphism
of functions under a group action [Babai & Chakraborty ’10].

Let G be a permutation group acting on a finite set X.
f , g : X→ Y are isomorphic if there exists σ ∈ G such that

g(x) = f (σ(x)) for all x ∈ X.

f and g are ε-far from isomorphic if, for all σ ∈ G,

|{x ∈ X : g(x) 6= f (σ(x))}| > ε|X|.

An algorithm is an ε-tester for G-isomorphism if it
distinguishes between these two cases with success
probability at least 2/3.

Theorem
For any set of permutations G, there is a quantum ε-tester for
G-isomorphism which makes O((log |G|)/ε) queries.
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Consequences

Assume ε = Ω(1). Then we have the following query
complexity bounds:

Problem G X Classical Quantum
Boolean function iso. Sn {0, 1}n Ω̃(2n/2)1 Õ(n)
Boolean fn linear iso. GLn(F2) {0, 1}n Ω(2n/2) O(n2)

Graph isomorphism Sn [n]×[n] Õ(n5/4)2 Õ(n)
Hidden subgroup G G Ω(

√
|G|)3 O(log |G|)

1[Alon et al. ’13] 2[Fischer and Matsliah ’08] 3[Friedl et al. ’09]

An Õ(n7/6)-query quantum algorithm was previously
given by [Chakraborty et al. ’10].

Note that the quantum algorithms achieving the
complexities above are not time-efficient.



Consequences

Assume ε = Ω(1). Then we have the following query
complexity bounds:

Problem G X Classical Quantum
Boolean function iso. Sn {0, 1}n Ω̃(2n/2)1 Õ(n)
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Connecting the OR bound to property testing

How can our algorithm be used for testing isomorphism
under group actions?

With one query to f and g, we can construct a quantum
state ψ corresponding to querying f and g on all inputs in
superposition.

We can also write down a measurement Mh, for h ∈ G,
which tests ψ for isomorphism under h with bounded
error.

Taking the AND over k copies of ψ reduces the failure
prob. of Mh to O(2−k).

So we can apply the quantum algorithm to k = O(log |G|)
copies of ψ and the sequence of measurements {Mh}.



Connecting the OR bound to property testing

How can our algorithm be used for testing isomorphism
under group actions?

With one query to f and g, we can construct a quantum
state ψ corresponding to querying f and g on all inputs in
superposition.

We can also write down a measurement Mh, for h ∈ G,
which tests ψ for isomorphism under h with bounded
error.

Taking the AND over k copies of ψ reduces the failure
prob. of Mh to O(2−k).

So we can apply the quantum algorithm to k = O(log |G|)
copies of ψ and the sequence of measurements {Mh}.



Connecting the OR bound to property testing

How can our algorithm be used for testing isomorphism
under group actions?

With one query to f and g, we can construct a quantum
state ψ corresponding to querying f and g on all inputs in
superposition.

We can also write down a measurement Mh, for h ∈ G,
which tests ψ for isomorphism under h with bounded
error.

Taking the AND over k copies of ψ reduces the failure
prob. of Mh to O(2−k).

So we can apply the quantum algorithm to k = O(log |G|)
copies of ψ and the sequence of measurements {Mh}.



Connecting the OR bound to property testing

How can our algorithm be used for testing isomorphism
under group actions?

With one query to f and g, we can construct a quantum
state ψ corresponding to querying f and g on all inputs in
superposition.

We can also write down a measurement Mh, for h ∈ G,
which tests ψ for isomorphism under h with bounded
error.

Taking the AND over k copies of ψ reduces the failure
prob. of Mh to O(2−k).

So we can apply the quantum algorithm to k = O(log |G|)
copies of ψ and the sequence of measurements {Mh}.



Connecting the OR bound to property testing

How can our algorithm be used for testing isomorphism
under group actions?

With one query to f and g, we can construct a quantum
state ψ corresponding to querying f and g on all inputs in
superposition.

We can also write down a measurement Mh, for h ∈ G,
which tests ψ for isomorphism under h with bounded
error.

Taking the AND over k copies of ψ reduces the failure
prob. of Mh to O(2−k).

So we can apply the quantum algorithm to k = O(log |G|)
copies of ψ and the sequence of measurements {Mh}.



Other consequences

We obtain some other consequences too, e.g.:

Efficient testing of properties of quantum states. If P is a
finite subset of the unit sphere, there is a quantum ε-tester
for membership in P using O((log |P|)/ε2) copies of the
input state.

Testing genuine multipartite entanglement of a state of n
systems using O(n/ε2) copies of the state.

De-Merlinizing quantum communication protocols,
correcting a claimed result of [Aaronson ’06].
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Summary and further reading

Given a quantum state and a sequence of measurements,
we can test whether one of them accepts whp.

This has applications to property testing, including
exponential reductions in quantum query complexity.

Open questions:
Can we find time-efficient quantum algorithms for these
property testing problems?

Are there other applications of the quantum OR bound?
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