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Distinguishing quantum states

We will consider a basic question in quantum measurement theory.

Question

Consider a known ensemble E of n quantum states {|ψi〉} with a priori
probabilities pi. Given an unknown state |ψ?〉, picked at random from
E , what is the optimal probability Popt(E) of identifying |ψ?〉? That is,

Popt(E) = max
M

n∑
i=1

pi〈ψi|Mi|ψi〉

where we maximise over all POVMs M = {Mi}.
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Previous work

This problem has been considered by many authors since the
1970s, under titles like “quantum hypothesis testing”, “quantum
detection”, “quantum state discrimination” etc.

Many other optimality criteria have also been considered (e.g.:
maximise information gain).

Helstrom derived an analytic expression for Popt(E) in the case
where E contains 2 states 1.

In general, producing an analytic expression for Popt(E) appears
to be intractable (although good numerical solutions can be
found2)

We are therefore led to producing lower bounds on Popt(E).

1C. Helstrom, Quantum detection and estimation theory (1978)
2Y. Eldar, A. Megretski, G. Verghese, quant-ph/0205178 (2002)
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This talk

I will discuss:

1 Part I: the distinguishability of quantum states
1 Using a specific measurement to lower bound Popt(E)
2 Two lower bounds on Popt(E): a “local” bound and a “global”

bound
3 Extending the lower bounds to mixed states

2 Part II: random quantum states
1 Random quantum states and random matrix theory
2 Lower bounds on the distinguishability of random quantum states
3 Application: how mixed is my subsystem?
4 Application: the “oracle identification problem” in quantum

computation

Ashley Montanaro The distinguishability of random quantum states



Notation

I will use the following notation throughout the talk:

E = {|ψi〉}: the ensemble of states to distinguish

pi: the a priori probability of the i’th state

n = |E|: the number of states in E
d: the dimension of the states in E

S: the d × n state matrix S = (
√

p1|ψ1〉
√

p2|ψ2〉 · · ·
√

pn|ψn〉)
ρ: the density matrix ρ =

∑
i pi|ψi〉〈ψi|

G: the Gram matrix Gij =
√

pi
√pj〈ψi|ψj〉

PM(E): the probability of success of measurement M applied to
E
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Part I: the distinguishability of quantum states

1 Using a specific measurement to lower bound Popt(E)

2 Two lower bounds on Popt(E): a “local” bound and a “global”
bound

3 Extending the lower bounds to mixed states
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Methods

The lower bounds are obtained by putting a lower bound on the
probability of success of a specific measurement that can be
defined for any ensemble of states, the Pretty Good Measurement
(PGM)3.

For pure states, the PGM is defined by the set of measurement
operators {|µi〉〈µi|}, where |µi〉 =

√
piρ

−1/2|ψi〉.
It’s easy to show that this always gives a valid measurement
(
∑

i |µi〉〈µi| = I)

3P. Hausladen, W. Wootters (1994)
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The canonical nature of the PGM

The PGM has a number of desirable properties, including that:

It can be defined analytically for any ensemble of states
It’s almost optimal for any ensemble E 4:

Ppgm(E) ≥ Popt(E)2

For us, the important fact is that it’s easy to analyse.

Key fact
Let G be the rescaled Gram matrix of the ensemble E ,
Gij =

√pi pj〈ψi|ψj〉. Then the probability of success of the PGM is

Ppgm(E) =
n∑

i=1

pi|〈ψi|µi〉|2 =
n∑

i=1

(
√

G)2
ii

Our two lower bounds will be based on lower bounding this sum.

4H. Barnum and E. Knill, quant-ph/0004088 (2000)
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The pairwise inner product bound

The first lower bound is based on a strategy used by Hausladen et
al.5

The strategy is to put a lower bound on the square root function
by an “easier” function (a parabola)

Works because
√

x ≥ ax + bx2 ⇒ (
√

G)ii ≥ aGii + b
∑

j |Gij|2.

Red:
√

x. Blue: 3
2 x− 1

2 x2

5P. Hausladen, R. Jozsa, B. Schumacher, W. Wootters (1996)
Ashley Montanaro The distinguishability of random quantum states



The pairwise inner product bound

We can improve their bound by producing (for a given set of
states) a set of optimal parabolae.

For each i, we look for a and b such that
√

x ≥ ax + bx2 for
x ≥ 0, and aGii + b

∑
j |Gij|2 is maximised.

Only basic calculus is required to find these values of a and b,
and substituting in gives the result:

Pairwise inner product bound

Let E be an ensemble of n states {|ψi〉} with a priori probabilities pi.

Then Ppgm(E) ≥
n∑

i=1

p2
i∑n

j=1 pj|〈ψi|ψj〉|2
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The eigenvalue bound

The second lower bound is based on a global measure of
distinguishability of the states in E : the eigenvalues {λi} of the Gram
matrix G.

n∑
i=1

(
√

G)ii =
n∑

i=1

√
λi (1)

⇒

(
n∑

i=1

(
√

G)ii

)2

=

(
n∑

i=1

√
λi

)2

(2)

⇒ n
n∑

i=1

(
√

G)2
ii ≥

(
n∑

i=1

√
λi

)2

(3)

⇒ Ppgm(E) ≥ 1
n

(
n∑

i=1

√
λi

)2

(4)

In terms of the trace norm, Ppgm(E) ≥ 1
n‖S‖2

1 = 1
n (
∑

i σi(S))2.
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Comparison with previous bounds

Previous authors (e.g. Burnashev and Holevo 6) have used
bounds based on similar principles.

But the bounds here are stronger, especially for low values of
Ppgm(E), and always give a non-trivial value.

Assuming the states in E have equal probabilities:

Comparison of bounds

Previously known lower bound New lower bound
Ppgm(E) ≥ 1− 1

n

∑
i 6=j |〈ψi|ψj〉|2 Ppgm(E) ≥ 1

n

∑n
i=1

1Pn
j=1 |〈ψi|ψj〉|2

Ppgm(E) ≥ 2√
n tr(

√
G)− 1 Ppgm(E) ≥ 1

n tr(
√

G)2

6M. V. Burnashev and A. S. Holevo, On reliability function of quantum
communication channel, quant-ph/9703013
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A local bound and a global bound

It is interesting to note that the inner product bound only
considers the pairwise distinguishability between states, while
the eigenvalue bound is based on global features of the ensemble.

We might therefore expect the latter to be stronger...

Consider an ensemble of n states, each pair of which have the
same inner product, k ∈ R+. Then it is possible to show that:

The inner product bound gives an almost trivial bound:
Ppgm(E) ≥ O(1/n)
The eigenvalue bound gives a strong bound:
Ppgm(E) ≥ (1− k)− o(1)

(NB: in this trivial case we can actually diagonalise the Gram
matrix and calculate the probability of success of the PGM
exactly)
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Mixed states

We have only considered the distinguishability of pure states.
It turns out that we can give a lower bound on the
distinguishability of mixed states too...

If we have an ensemble of states {ρi}, and we know their
eigendecompositions ρi =

∑
k λik|eik〉〈eik|, then we can relate the

problem of distinguishing the {ρi} to distinguishing the |eik〉.

Even if we don’t know the eigendecompositions, we can convert
the inner product bound to a bound based on the pairwise
fidelities of the states in E .

Pairwise fidelity bound

Let E be an ensemble of n states {ρi} with a priori probabilities pi.

Then Ppgm(E) ≥
n∑

i=1

p2
i tr(ρ2

i )∑n
j=1 pj F(ρi, ρj)
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Part II: random quantum states

1 Random quantum states and random matrix theory
2 Lower bounds on the distinguishability of random quantum

states
3 Application: how mixed is my subsystem?
4 Application: the “oracle identification problem” in quantum

computation
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Random quantum states

We will now apply the eigenvalue bound to the case where the
states in E are random.
To be precise, for all i:

|ψi〉 is distributed uniformly at random on the d-dimensional
complex unit sphere (according to Haar measure)
pi = 1/n (the states are equiprobable)

We will calculate the expected probability of success of
identifying |ψ?〉 in this case.

So we are given a state picked at random from a known set of states
which are themselves randomly picked, and asked to determine which
random state our randomly picked state actually is ,
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Random quantum states

How do we produce a state |ψ〉 distributed uniformly at random?

Generate a vector v whose components vi are complex
Gaussians, then set |ψ〉 = v/‖v‖.

i.e. vi’s real and complex parts are independently normally
distributed with variance 1/2; both parts have probability density
function 1

2
√

π
e−x2/2 and E(|vi|2) = 1.

This works because of the spherical symmetry of the multivariate
normal distribution.

It turns out that the normalisation step becomes “almost”
unnecessary in high dimension (qv): rescaling v by 1/

√
d will

give a complex vector whose norm is approximately 1.

So the state matrix S is (almost!) a rescaled matrix of Gaussians:
Sij ∼ Ñ(0, 1/nd), and we need to calculate E(1

n‖S‖2
1).

Ashley Montanaro The distinguishability of random quantum states



Random quantum states

How do we produce a state |ψ〉 distributed uniformly at random?

Generate a vector v whose components vi are complex
Gaussians, then set |ψ〉 = v/‖v‖.

i.e. vi’s real and complex parts are independently normally
distributed with variance 1/2; both parts have probability density
function 1

2
√

π
e−x2/2 and E(|vi|2) = 1.

This works because of the spherical symmetry of the multivariate
normal distribution.

It turns out that the normalisation step becomes “almost”
unnecessary in high dimension (qv): rescaling v by 1/

√
d will

give a complex vector whose norm is approximately 1.

So the state matrix S is (almost!) a rescaled matrix of Gaussians:
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Random matrix theory

Random matrix theory deals with the properties of matrices
whose entries are random variables.

In particular, infinite-dimensional random matrix theory allows
us to answer questions like “what is the limiting density of the
eigenvalues of a family of n× n random matrices, as n →∞?”.

By density, we mean the function f (x) which integrates to
F(x) = 1

n (#eigenvalues < x)
It’s not a priori obvious that such a limit should exist!

Statisticians have long studied the density of eigenvalues of the
matrix G = SS†, where S is a random matrix: under certain
conditions, it’s given by the Marčenko-Pastur law 7.

This is the equivalent of the famous Wigner semicircle law for
random Hermitian matrices...

7V. A. Marčenko and L. A. Pastur (1967)
Ashley Montanaro The distinguishability of random quantum states



Random matrix theory

Random matrix theory deals with the properties of matrices
whose entries are random variables.
In particular, infinite-dimensional random matrix theory allows
us to answer questions like “what is the limiting density of the
eigenvalues of a family of n× n random matrices, as n →∞?”.

By density, we mean the function f (x) which integrates to
F(x) = 1

n (#eigenvalues < x)
It’s not a priori obvious that such a limit should exist!

Statisticians have long studied the density of eigenvalues of the
matrix G = SS†, where S is a random matrix: under certain
conditions, it’s given by the Marčenko-Pastur law 7.

This is the equivalent of the famous Wigner semicircle law for
random Hermitian matrices...
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The Marčenko-Pastur law

The Marčenko-Pastur law gives the limiting density of the eigenvalues
of a sample covariance matrix G = SS† under very weak conditions.

Marčenko-Pastur law
Let Rr be a family of d × n matrices with n ≥ d and d/n → r ∈ (0, 1]
as n, d →∞, where the entries of Rr are i.i.d. complex random
variables with mean 0 and variance 1. Then, as n, d →∞, the
eigenvalues of the rescaled matrix 1

n RrR
†
r tend almost surely to a

limiting distribution with density

pr(x) =

√
(x− A2)(B2 − x)

2πrx

for A2 ≤ x ≤ B2 (where A = 1−
√

r, B = 1 +
√

r), and density 0
elsewhere.

We can easily tweak this result to tell us the density of the singular
values of Rr instead!
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The Marčenko-Pastur law

The Marčenko-Pastur law gives the limiting density of the eigenvalues
of a sample covariance matrix G = SS† under very weak conditions.
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Experimental results

Who says theorists don’t know how to do experiments? ,

Blue: singular value density predicted by Marčenko-Pastur law
Red: empirical singular value distribution of a 500x500 matrix
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Applying the Marčenko-Pastur law

We can use the M-P law to give us the expected trace norm of a
random matrix, again under very weak conditions.

Expected trace norm

Let Rr be a family of d × n matrices with k/m → r ∈ (0, 1] as
n, d →∞, where k = min(n, d) and m = max(n, d), and the entries
of Rr are i.i.d. complex random variables with mean 0 and variance 1.
Then, as n, d →∞, the expected trace norm of Rr tends almost surely
to

E(‖Rr‖1) =
m3/2

π

∫ B

A

√
(y2 − A2)(B2 − y2) dy

where A = 1−
√

r, B = 1 +
√

r.
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Applying the Marčenko-Pastur law (2)

We want to evaluate the following integral:∫ B

A

√
(y2 − A2)(B2 − y2) dy

Unfortunately, this is an elliptic integral with no analytic solution. But
we can find a good lower bound on the integral...

Elliptic integral lower bound

Let 0 ≤ r ≤ 1 and A = 1−
√

r, B = 1 +
√

r. Then∫ B

A

√
(y2 − A2)(B2 − y2) dy ≥ rπ

√
1− r

(
1− 64

9π2

)
with equality at r = 0, r = 1.

(The proof is quite long and involves representing the integral as the
difference of two hypergeometric series and performing several
transformations on these hypergeometric series...)
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The asymptotic lower bound

Main theorem
Let E be an ensemble of n equiprobable d-dimensional quantum states
{|ψi〉} with n/d → r ∈ (0,∞) as n, d →∞, and let the components
of |ψi〉 in some basis be i.i.d. complex random variables with mean 0
and variance 1/d. Then, as n, d →∞,

E(Ppgm(E)) ≥
{ 1

r

(
1− 1

r

(
1− 64

9π2

))
if n ≥ d

1− r
(
1− 64

9π2

)
otherwise

and in particular E(Ppgm(E)) > 0.720 when n ≤ d.
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Comparison with numerical results (1)
(0 ≤ n ≤ 2d)
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Figure: Asymptotic bound on Ppgm(E) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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Comparison with numerical results (2)
(0 ≤ n ≤ 10d)
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Figure: Asymptotic bound on Ppgm(E) vs. numerical results (averaged over
10 runs) for ensembles of n = 50r 50-dimensional uniformly random states.
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A finite-dimensional lower bound

The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states?

Also, I glossed over the issue of normalising the states we
produce...

There are two “bad events” that we have to take into account:
1 The eigenvalue distribution in finite dimension d will not be given

by the M-P law, but some approximation
2 The normalisation of the states might perturb the state matrix

excessively
Actually, both of these problems can be overcome:

1 There is a convergence result bounding the rate at which the
eigenvalues converge to the M-P law

2 We can produce a tail bound that says that the normalisation step
makes little difference

Ashley Montanaro The distinguishability of random quantum states



A finite-dimensional lower bound

The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states?

Also, I glossed over the issue of normalising the states we
produce...

There are two “bad events” that we have to take into account:
1 The eigenvalue distribution in finite dimension d will not be given

by the M-P law, but some approximation
2 The normalisation of the states might perturb the state matrix

excessively

Actually, both of these problems can be overcome:
1 There is a convergence result bounding the rate at which the

eigenvalues converge to the M-P law
2 We can produce a tail bound that says that the normalisation step

makes little difference

Ashley Montanaro The distinguishability of random quantum states



A finite-dimensional lower bound

The M-P law holds in the asymptotic limit. Can we find a lower
bound on the expected distinguishability of an ensemble of
finite-dimensional random states?

Also, I glossed over the issue of normalising the states we
produce...

There are two “bad events” that we have to take into account:
1 The eigenvalue distribution in finite dimension d will not be given

by the M-P law, but some approximation
2 The normalisation of the states might perturb the state matrix

excessively
Actually, both of these problems can be overcome:

1 There is a convergence result bounding the rate at which the
eigenvalues converge to the M-P law

2 We can produce a tail bound that says that the normalisation step
makes little difference

Ashley Montanaro The distinguishability of random quantum states



A finite-dimensional lower bound (2)

Convergence rate to the M-P law:

We can use a convergence result 8 that gives that the expected
probability of success we calculated needs adjusting by a term of
order O(d−5/48).

Effect of replacing the normalisation step with rescaling:

The norm of the original d-dimensional vector v is sharply
concentrated around its expected value9:
Pr[|‖v‖2 − 1| ≥ ε] < 2e−dε2/12

⇒ Each column of the state matrix S will be close to the vector
we would get by blindly rescaling v

⇒ The probability that the trace norm of S is far from the
“blindly rescaled” matrix S′ is exponentially small in d

8Z. D. Bai, 1993
9C. H. Bennett, P. Hayden, D. Leung, P. Shor, A. Winter (2003)
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Convergence in low dimension

Empirical probability of success of the PGM applied to n states in n
dimensions (averaged over 100 runs).
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Concentration of measure

So far we’ve only calculated the expected distinguishability of a
set of random states.

How close are most states to this expected value?

Concentration of measure results allow us to answer this
question!

Concentration of measure

Let p be a point in Rd picked in accordance with standard Gaussian
measure (i.e. E(p2

i ) = 1). Then

Pr[|f (p)− E(f )| ≥ ε] ≤ 2e−ε
2/2η2

(5)

where η is the Lipschitz constant of f ,
η = supx,y |f (x)− f (y)|/‖x− y‖2.
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Concentration of measure (2)

So we identify the state matrix S with a (rescaled)
2nd-dimensional vector of real Gaussians and consider the
“distinguishability” function f (S) = 1

n‖S‖2
1: then η ≤ 2‖S‖2.

Plugging this in, and considering the finite-dimensional
“correction factors” discussed previously, after some fiddly
algebra we end up with:

Probability of success in finite dimension
Let E be an ensemble of n equiprobable d-dimensional quantum states
picked uniformly at random. Set
p = 1

r

(
1− 1

r

(
1− 64

9π2

))
− O(n−5/48) if n ≥ d, and

p = 1− r
(
1− 64

9π2

)
− O(d−5/48) otherwise. Then, for any ε ≤ p/2,

Pr[Ppgm(E) ≤ p− 2ε] ≤ 2
(
(n + 1)e−dε4/K + e−ndε2/5

)
where K is a constant ≤ 300.
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Why study random states anyway?

Almost all states are random!

Other reasons:

Random states provide an interesting case where we can
determine the distinguishability of an ensemble based only on
two parameters: n and d.

We can get very tight analytic results in this case: even for low
dimensions, the bound seems to be within 1% of the observed
probability of success of the PGM.

These results allow one to say: my states are like random states
⇒ they’re (quite) distinguishable.

But what if we don’t care about quantum measurement theory?
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Application: how mixed is my subsystem?

There is another interpretation of these results which doesn’t
come from quantum measurement.
It turns out that 1

n‖S‖2
1 gives the fidelity of the Gram matrix G

with the n-dimensional maximally mixed state I/n.
where the fidelity F(ρ, σ) = (tr

√
ρ1/2 σ ρ1/2)2

We may thus interpret the lower bound on the distinguishability
of a set of states as how close its Gram matrix is to the
maximally mixed state.
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Application: how mixed is my subsystem?

Let ρn,d be the density matrix obtained by picking a pure state
uniformly at random from a n× d-dimensional Hilbert space,
and tracing out the n-dimensional portion of it.

It’s easy to show that ρn,d ≈ 1
n

∑n
i=1 |ψi〉〈ψi|, where |ψi〉 is picked

uniformly at random in the d-dimensional space

It’s possible to show that the non-zero eigenvalues of ρn,d are the
same as those of the Gram matrix of a set of n equiprobable
d-dimensional random states10

Using this, one can show that 1
d‖S‖2

1 gives the approximate
fidelity of ρn,d with I/d!

The previous results thus predict the distance of ρn,d from the
maximally mixed state very closely.

(Popescu, Short, and Winter previously obtained a similar result
by different methods)

10R. Jozsa, J. Schlienz, quant-ph/9911009
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Application: oracle identification

Problem
Given an unknown Boolean function f , picked uniformly at random
from a set S of N Boolean functions on n bits, identify f with the
minimum number of uses of f .

This is a particular case of the oracle identification problem
studied by Ambainis et al11.

We consider the case where we are allowed a bounded
probability of error in our quest to identify f .

Many important problems fit into this framework (eg.
unstructured search).

11A. Ambainis et al, Quantum identification of Boolean oracles, quant-ph/0403056
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Oracle identification: classical

A classical algorithm must make at least log N queries
(each query can only reduce the size of the search space by half)

Note that being allowed some probability of error < 1/2 is
useless for classical algorithms.
We can actually show a classical upper bound of O(log N)
queries in the random oracle case.

(because in this case every query will reduce the search space by
almost half whp)
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Oracle identification: quantum

We will show that, when 2n is large relative to N, for almost all sets of
functions f can be identified with a constant number of quantum
queries.

Consider the following single-query quantum “algorithm”:
1 Create the state |ψf 〉 = 1√

2n

∑
x(−1)f (x)|x〉 using one query to f .

2 Use the PGM to distinguish the states in the ensemble
E = {|ψf 〉}.

When the functions are random, the state matrix
S = ({|ψf 〉/

√
N}) is random, in the sense that the M-P law can

be applied to it.

Why? Because each entry of
√

N 2nS is i.i.d. with mean 0 and
expected value 1.
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Oracle identification: quantum (2)

So the results here can be used to put the same lower bound on
the probability of success of distinguishing these states.

And in particular, the input size and the number of functions
determine this probability (unlike the classical case where we
can’t use all the input)...

Concentration of measure can be used again (but on the
hypercube this time) to show that this bound holds for almost all
sets of functions.

In fact, the proof is easier as there is no difficulty with
normalisation.

When the probability of success is a constant > 1/2, we can
repeat the algorithm a constant number of times for an arbitrarily
good probability of success.
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Summary and further work

Good lower bounds have been obtained on the probability of
distinguishing pure quantum states.
These bounds can be applied to distinguishing random quantum
states. For example:

For large n, n random states in n dimensions can be distinguished
with probability > 0.72.
Almost all sets of 2n Boolean functions on n bits can be
distinguished with a constant number of quantum queries.

Possible future directions:

Upper bounds on Ppgm(E)?

Multiple copies?

Further applications to quantum computation?
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The End

Further reading:
“On the distinguishability of random quantum states”
Communications in Mathematical Physics, to appear
quant-ph/0607011

Thanks for your time!
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