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Noncommutative generalisations

@ Limits of quantum random access codes [Ben-Aroya et al. ‘08]

@ Rapid mixing of quantum channels [Kastoryano+Temme "13]




Hypercontractivity on the boolean cube
Consider functions f : {0, 1}* — R.

o Set ||flly = (& X, fFx)P) """

@ For p € [0, 1], define the noise operator T, as follows:

(Tof)(x) = Ey~ sl f(y) ]

where the expectation is over strings y € {0, 1} obtained
from x by flipping each bit of x with independent
probability € = (1 —p)/2.
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o Set ||flly = (& X, fFx)P) """

@ For p € [0, 1], define the noise operator T, as follows:

(Tof)(x) = Ey~ sl f(y) ]

where the expectation is over strings y € {0, 1} obtained
from x by flipping each bit of x with independent
probability € = (1 —p)/2.

Hypercontractive inequality [Bonami 70] [Gross "75] [Beckner
751 [...1
For any f : {0, 1} — R, and any p and g such that

1<p<q<ooandp<\/’f,%},

ITofllg < [Ifllp-




One-way communication complexity

@ Alice and Bob want to determine some property f(x, y) of
their distributed inputs x, y, using the minimal amount of
communication.

@ All communication goes from Alice to Bob.
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Question: Can quantum communication be more efficient than
classical communication?
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There is a family of relational problems that can be solved
with O(logn) qubits of quantum communication, but requires
Q(+/n) bits of classical communication.




One-way communication complexity

Theorem [Bar-Yossef, Jayram and Kerenidis "08]

There is a family of relational problems that can be solved
with O(logn) qubits of quantum communication, but requires
Q(+/n) bits of classical communication.

@ Original proof used information theory methods.

@ [Gavinsky et al. '08] improved this to prove a similar
separation for a related partial boolean function. Their
proof used hypercontractivity.

@ [Buhrman, Regev, Scarpa, de Wolf '11] includes a
hypercontractive proof of the (simpler) result above.



The Hidden Matching problem

The problem we consider is defined as follows:
@ Alice gets x € {0, 1}".

@ Bob gets a perfect matching M on [n], i.e. a partition of
{1,...,n}into pairs.

@ Goal: output (i,],b) such that (i,j) € Mand b = x; & x;.



The Hidden Matching problem

The problem we consider is defined as follows:
@ Alice gets x € {0, 1}".

@ Bob gets a perfect matching M on [n], i.e. a partition of
{1,...,n}into pairs.

@ Goal: output (i,],b) such that (i,j) € Mand b = x; & x;.

Claim [Buhrman, Regev, Scarpa, de Wolf "11]

If x and M are picked uniformly at random, any classical
(wlog deterministic) protocol for Hidden Matching with ¢ bits
of communication has

Pr [b—xl@x]] ;—i—O(ﬁ)




Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.



Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.

@ The best Bob can do to guess x; & x; is output the value of
this function that occurs most often among x € A.



Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.

@ The best Bob can do to guess x; & x; is output the value of
this function that occurs most often among x € A.

@ Set B = [Exe Al(—1)%*%4]]: Bob’s advantage over guessing.



Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.

@ The best Bob can do to guess x; & x; is output the value of
this function that occurs most often among x € A.

@ Set B = [Exe Al(—1)%*%4]]: Bob’s advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. “07]

D Bi=0 ((log%;)Z) .

i<j




Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.

@ The best Bob can do to guess x; & x; is output the value of
this function that occurs most often among x € A.

@ Set B = [Exe Al(—1)%*%4]]: Bob’s advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. “07]

(G

i<j

Proof sketch of claim:
o Bij = [Exealxgjy ()l = 2"/IAD If ({7, jDI.



Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.

@ The best Bob can do to guess x; & x; is output the value of
this function that occurs most often among x € A.

@ Set B = [Exe Al(—1)%*%4]]: Bob’s advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. “07]

(G

i<j

Proof sketch of claim:
o Bij = [Exealxgjy ()l = 2"/IAD If ({7, jDI.

> Bi= |A|2 o> iy

i<j i<j




Proof ingredients

@ A typical short message from Alice specifies a large subset
A C {0, 1}" of her possible inputs.

@ The best Bob can do to guess x; & x; is output the value of
this function that occurs most often among x € A.

@ Set B = [Exe Al(—1)%*%4]]: Bob’s advantage over guessing.

Claim [Talagrand '96] [Gavinsky et al. “07]

(G

i<j

Proof sketch of claim:
o Bij = [Exealxgjy ()l = 2"/IAD If ({7, jDI.

) 92n A 2/(1+9)
X85 = e 607 < s ()

i<j i<j

for any 0 < & < 1, using KKL. Then minimise over 5.



Nonlocal games

A simple and natural way of exploring the power of quantum
correlations is via nonlocal games.
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@ Alice and Bob get inputs x, y, respectively, drawn from
some known distribution 7r.

@ They win the game if their outputs 4, b satisfy a known
predicate V(x,y,a,b).
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A simple and natural way of exploring the power of quantum
correlations is via nonlocal games.

X Y
B
a b

@ Alice and Bob get inputs x, y, respectively, drawn from
some known distribution 7r.

@ They win the game if their outputs 4, b satisfy a known
predicate V(x,y,a,b).
@ The players are allowed to communicate before the game

starts, to agree a strategy, but cannot communicate during
the game.
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Let the optimal probability of winning G be denoted by:
@ w(G), if the players are classical;

@ w*(G), if the players are allowed to share entanglement.

The CHSH game shows that, for some games, w*(G) > w(G).

@ Inputs x, y are chosen uniformly from {0, 1}.
@ The players win if their outputs a, b € {0, 1} satisfy
adb=nxy.

w(CHSH) = 3/4, but w*(CHSH) = cos?(7t/8) ~ 0.85.

Question
How large can the gap between w*(G) and w(G) be?
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Nonlocal games

Theorem [Buhrman, Regev, Scarpa, de Wolf "11]

Let n be an integer power of 2. Then there are two nonlocal
games HM and KV such that:

e w(HM) =1/2+ O((logn)/+/n), and w*(HM) = 1.
o w(KV)=0(1/n'—°"), and w*(KV) > 4/log’ n.

@ The quantum protocols use entangled states on C" @ C".

@ These separations are close to optimal.

The proofs of the classical lower bounds both use
hypercontractivity:

@ The HM game is a translation of Hidden Matching to the
setting of nonlocal games.

@ The KV game is based on work of [Khot and Vishnoi ‘05] on
the unique games conjecture.



Multiplayer nonlocal games

We can generalise the framework of nonlocal games to k > 2
players, each receiving an input from {1, ..., n}.
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games where each output 4; is a single bit, and whether the
players win depends only ona; @ ax @ - - - @ a.



Multiplayer nonlocal games

We can generalise the framework of nonlocal games to k > 2
players, each receiving an input from {1, ..., n}.

X1 X2 e Xk
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A particularly interesting such class of games is XOR games:
games where each output 4; is a single bit, and whether the
players win depends only ona; @ ax @ - - - @ a.

Question
What is the hardest k-player XOR game for classical players? J
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bounds on ming 3(G):
@ There exists an XOR game G for which 3(G) < n—(k=1)/2
[Ford and Gal "05].

e Any XOR game G has B(G) > 2~ 9% n=(-=1)/2 [Bohnenblust
and Hille "31].

A recent and substantial improvement:

Theorem [Defant, Popa and Schwarting "10] [Pellegrino and
Seoane-Sepulveda "12]

There exists a universal constant ¢ > 0 such that, for any XOR
game G as above, 3(G) = Q(k—n—k=1)/2),

This result can be proven using hypercontractivity.



XOR games and multilinear forms

A homogeneous polynomial f : (R")f — R is said to be a
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XOR games and multilinear forms

A homogeneous polynomial f : (R")f — R is said to be a
multilinear form if it can be written as

1 k 2 1.2 k
flx', ... x") = Zfll ,,,,, X, Xiy - X

for some multidimensional array FER" xR x --- x R",

Any XOR game G = (7, V) corresponds to a multilinear form f:

1 ky _ Ty, 1.2 k
flx, ..., X)) = Z Ty,ie Viy Xy Xy e X

The bias 3(G) is precisely ||f||co := maxyeqr1y [f (x)].
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A powerful inequality

Bohnenblust-Hille inequality [BH ‘31, DPS ‘10, PS "12]

For any multilinear form f : ( R")* — R, and any p > 2k/(k+1),

where C; may be taken to be O(k'82¢) ~ O(k!49).

Implies 3(G) = O(C_ n~k=1)/2) by choosing p = 2k/(k +1).
Proof is by a delicate induction on k, for k a power of 2.
@ Inductive step goes from k — k/2 via Holder’s inequality,

relating H}?H 2/ (k+1) to €2 norms of restricted versions of f.

@ Hypercontractivity lets us relate {, norms to ¢ sz -norms.
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Moving to the real n-sphere

o Let S":={x € R"": Y ,x? =1} be the real n-sphere.

@ Any smooth function f : S — R can be expanded in terms
of spherical harmonics: f = } ; Y, for degree k
polynomials Y} such that

JY]-(x)Yk(x)dx =0
forj #k.
o Set ||f[|, = ([ If(x)Pdx)"”.

@ Parseval’s equality: Hf||% =2 HYkH%
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Hypercontractivity on the real n-sphere

@ For p € [0, 1], define the Poisson semigroup P, as follows:

¥ =Y oY)
k=0
o Alternatively:
(Pof)x) = (1= 62) [ = pyl ")y

Hypercontractive inequality [Beckner '92]

Forany f:S" = R, and any pand gsuch that 1 <p <g < o0

and p < /15,

1Pofllg < [Iffly-




Hypercontractivity on the real n-sphere

As this framework is so similar to the case of the boolean cube,
many corollaries carry across without change. For example:

Corollary
For any degree d polynomial f : S — R, and any g > 2,

Ifllg < (7= D72]f2.

Proof is exactly the same as on the boolean cube.
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Communication complexity separation

@ We have seen that one-way quantum communication is
more powerful than one-way classical communication.

e What about one-way quantum vs. two-way classical?

Theorem [Klartag+Regev "11]

There is a partial function which can be computed with an
O(log n)-qubit message from Alice to Bob, but for which every
classical two-way protocol requires Q(n'/?) bits of
communication.

The problem:
e Alice gets a unit vector v € S"~!, Bob gets a subspace
H c R" of dimension n/2.
@ Promise: either v € H orv € H+.

@ Task: determine which is the case.
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Classical communication lower bound
Many technical steps. .. one key lemma:

Lemma (variant of [KlartagRegev '11])

Assume f : S""! — R has ||f|l1 =1, ||fllco = M. Expand
f =24 Yk Then

2eln M\ /2
Yill2 < .
il < (Z77)

Proof:

Ykl = 1Ty ' To Yill2 = 0~ I To Yill2 < o~ ITpf ll2 < o[£l
for p =1+ p?. Observing ||f|, < MP~! and optimising over p
gives the claimed result.

@ [Klartag+Regev '11] used a different noise operator and a
different hypercontractive inequality, but the eventual
result is essentially the same.
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@ Imagine we are given a quantum state promised to be
either p or o, with equal probability of each.

@ We want to determine which state we have, but are forced
to use just one fixed measurement for all p, o

@ We use the uniform POVM U putting equal weight on
each state {p) € C".

@ Set A = (p — 0)/2. Then the optimal success probability is

1 1
3 (10 [lwlanian) =3 1+ 1a1u).
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Theorem [Ambainis+Emerson ‘07, Matthews et al. "09]
There is a universal constant C such that

1Ay > CVir A2,
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Proving this using hypercontractivity

The proof is based on the “fourth moment method”:

3/2

(J (Wl ARD)2dp)
(f(plARY4d)

HNmznﬁwmwww>n

1/2°

@ It’s easy to compute

tr A2
nn+1)

J<II)IA|1|)>2d1b = tr <J d¢|¢)(¢|®2> A®? =

@ To bound the denominator, we use hypercontractivity.
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Proving this using hypercontractivity

We go from the complex to the real unit sphere:

@ Associate fp) with & € S#"~ 1.
e Claim: f(&) = (W|A) is a degree-2 polynomial in &.

So, by hypercontractivity,

Iflly = (J|<¢|A|¢>|P>1/p <(p-1) (J<¢|A|w>2)1/z.

Taking p = 4 and substituting in gives an overall bound

Il > (5 - ot1)) VirdZ
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The multipartite case

What about if p, o are multipartite states on (C™)®k and we
use as our measurement the uniform POVM on each party
separately?

Theorem [Matthews et al. 09, Lancien+Winter "13]
1/2

1Ally > C¥2 | D trl(trs A)?]
SCIk]

Claim: hypercontractivity gives us this result for free using
multiplicativity of the L, — L; norm!

Compare the original proof. ..



In the particular case of all the seven permutations in %, o4 = id, o5 = (14), oc = (23),

op = (1231), o¢ = (1432), 07 = (12)(34) and og = (14)(23), this becomes

T AR, @

BUn) = 3 A A A AL i,

e s repeaibesiion
= X [race &yl [(Tass &)1 0070

. " rephessson
< [(Mon 00 (s &L

where I's denotes the partial transposition on €.
We can rewrite this using the maximally entangled @7 = 3 [ £/}
7

Letting
notice that, for all j. . f, /', f. '

> (775

G

Trass ) and Ri= (P& 17)(17 & brs5)(P & 1), we

Nrerieer) (7

Z[” ’P,,I,

Likewise, letting K = BeD2E o6, Q i= (Trasc A)'* and § = (Q@ 1) (Ix @ brar) (QE15),
we have forall k. ¥, f. f', f. J':

e

L=y el

&

We now just have to make the following identifications:

)i (eadaenga). = (adien ). S
k= (o ca,ga), K= (badyienga). K
efi=fo f=fu F=h Fi=1s

and to notice that we can actually sum over j* and ¥ independently. We thus get:

(eauda.e2, 1),

bi,dises, 1),

T AT, @ s ghusenaufuf

e a2 1S s g s

®Usg) =

= 3 (Tresg RIERER (Moo SIEGRR

= Troesorer (Tresg R) (Traeg S)
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Defining P = (P2 17) (1705 111)) and @ := (Q@15)(17© X 1)), we see that R = PPt
s Hence R and § are positive semidefinite, and so are Trcsg i and Trgsg 5. Thus,
using the fact that, for positive semidefinite  and IV, Tr VIV < (Tx V) (Tr ), we obtain

Troegarar (Treeg R) (Trseg §)) < (Treapscarares R) (Treepscerarag S)
On right hand side,

Tr R = Trespecerss P*

N " 2
Yeopesareg ((Trass A))

= Trcepssorss (Trass A)
and likewise, Tr § = Trgeposs rog (Trase A)%. So, we eventually arrive at

T A U, @0+ Up) < [Trcmsearog (Traos )] [Tisupacores (Trace AF] . (A2)

{id, (14), (23), (1234), (1432). (12)(34), {N](’za))",wecandehneIhcfullnw\ngfacmmnﬂheglnb;
Hilbert space 7

With this inequality as a tool, we can now return to our initial problem: For all z € 2% =

A(m) Blx) = =
St
Dix) = Hy @)=
Jaen-amn Jatn-aam)
Fm= @ My 6= H
Jatn ot Jatmot0e

so that clearly, # = A(x) & B(z) & C(x) & D(x) © £(x) ® F(x) @ G(x). Hence, using successively
the two inequalities (A1) and (A2), we have:

gﬂ ()< 5 {ET,. (a%) + 21 (AMUER)}

= < 72‘ {% [ (a8 [ (o 2)
o3[ (mw,xw)A)l] [1 (i) }

B S S

l {3 nu[,,WHA)]Z%[,.,(]WW]A)T}

POl LI

where in the last lines we have made use of the symmetry between ¢” and ¢ on the one hand,
and that between (") and C(a") on the other, when o ranges over &€




Noncommutative generalisations

There are at least two sensible ways in which one could
generalise the hypercontractive inequality on the boolean cube
to a noncommutative setting:

@ Matrix-valued functions on the boolean cube:

f:{O, 1}” —)Md

e Linear operators on (C2)®" (the space of n qubits).

Both of these ideas work and lead to interesting consequences.
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The hypercontractive inequality when g = 2:
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Matrix-valued functions
The hypercontractive inequality when g = 2:

2/p

> (p—1"If(s Z If (x)

SCln] xG{O 1}

for any 1 < p < 2. In the matrix-valued case we have:

Theorem [Ben-Aroya, Regev and de Wolf "08]

Y VSPGB < (5 X I

SCln] xe{0,1}"

2/p

for any 1 < p < 2, where || - ||, is the Schatten p-norm and

S foxs(x)

xe{0,1}"

are now matrices.



Applications

One example: proving limitations on quantum random access
codes [Ben-Aroya, Regev, de Wolf "08].

@ We want to encode x € {0, 1} in a state p € Mpn such that
we can recover any k of the n bits with high probability.
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Applications

One example: proving limitations on quantum random access
codes [Ben-Aroya, Regev, de Wolf "08].

@ We want to encode x € {0, 1} in a state p € Mpn such that
we can recover any k of the n bits with high probability.

@ Claim: even predicting €, x;, for an arbitrary k-subset S,
is difficult on average.

@ If f:{0,1}" — Mpyn is our encoding function, the success
probability is controlled by

A~

1B @, x=0 M) — B gy, x,=1 IMilll1 = [[f(S)]]1-

o [IFS)I] < (C,;m)k/z.

Proof: use hypercontractive inequality with carefully chosen p.

o Claim:




A different notion of noncommutativity

@ Instead of functions f : {0, 1} — R, we consider Hermitian
operators on the space of n qubits.

@ Then a natural generalisation of the noise operator on one
bit is the qubit depolarising channel:

Dp(M) = (1— p)(trM)é + pM.
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A different notion of noncommutativity

@ Instead of functions f : {0, 1} — R, we consider Hermitian
operators on the space of n qubits.

@ Then a natural generalisation of the noise operator on one
bit is the qubit depolarising channel:

Dp(M) = (1— p)(trM)é + pM.

Hypercontractive inequality [King '12] [AM-+Osborne "10]

For any Hermitian operator M € B((C?)®"), and any p and g

suchthatlgpéqgooandpé\/z,zi/

1D Ml < [|M]lp-

v

(IKing '12] actually proves hypercontractivity for all semigroups
of unital qubit channels)
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Application: norm and tail bounds

@ Many (though not all!) of the corollaries of
hypercontractivity on the boolean cube go through
immediately.

@ The right analogue of degree d polynomials turns out to
be d-local operators on (C2)®".

Norm and tail bounds

Let M be a d-local Hermitian operator on n qubits such that
|IM||2 = 1. Then:

o M|, < (g—1)"2forallg > 2.

W < exp(—df/?/(2¢)).

y

A weaker (but much simpler) version of quantum central limit
theorems, e.g. [Hartmann et al. 04].

@ Question: is there a quantum version of the KKL theorem?



Application: rapid mixing

@ A quantum Markov process is a family of channels of the
form
Eilp) =e*.

@ We want to find the mixing time of &: the minimum ¢
such that
|€(p) — o1 <€

for all p, where o = lim;_,, E¢(p).



Application: rapid mixing

@ A quantum Markov process is a family of channels of the
form
Eilp) = el

@ We want to find the mixing time of &: the minimum ¢
such that
|€(p) — o1 <€

for all p, where o = lim;_,, E¢(p).

[Kastoryano+Temme ‘13]: hypercontractive (= log-Sobolev)
inequalities imply significantly improved mixing time bounds.

@ e.g. an exponential improvement over a more naive bound
for the d-dimensional depolarising channel.
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Conclusions

A little bit of noise can be very powerful. ..

Further reading

AM, Some applications of hypercontractive inequalities in
quantum information theory

JMP, vol. 53, 122206, 2012

arXiv:1208.0161

and references therein.

Thanks!



A special case of a conjecture

The following beautiful conjecture (a generalisation of KKL)
would imply efficient simulations of quantum query
algorithms by classical algorithms on most inputs:

COI‘lj ecture [Aaronson and Ambainis "11]

For all degree d polynomials f : {£1}" — [-1, 1], there exists j
such that [;(f) > poly(Var(f)/d).

@ The above result proves the special case of this conjecture
where f is a multilinear form whose coefficients are all
equal (in absolute value).

@ Few other special cases known. One example: symmetric
functions f [Batkurs "12].



The Khot-Vishnoi game

@ Parametrised by N =2" and n € [0,1/2].

o Let H be subgroup of Z) containing Hadamard
codewords (strings x such that x, =z ® s for some
s €{0,1}").

@ Alice gets uniformly random coset of H defined by a
bit-string x.

@ Bob gets coset defined by y = x @© ¢, where ¢; = 1 with
independent probability 1.

@ Alice outputs a € H ® x, Bob outputs b € H @ y such that
adb=e.

@ The number of possible inputs to each player is N/n and
the number of possible outputs for each player is n.



Communication complexity separation

An O(logn)-qubit quantum protocol is easy; the difficult part
is proving the classical lower bound.
The key technical component:

Lemma (informal) [Klartag+Regev "11]

Let A C §" 1 have measure o(A) > e Pick an

(n — 1)-dimensional subspace H uniformly at random. Then
og(ANH) =~ o(A) with high probability.

@ Via an inductive argument, this is used to show that for
any subsets A, B such that (A), o(B) > e=<""*

4

o((Ax B)N7J) = C'o(A)o(B).

@ A x B is a rectangle representing the inputs identified by
Alice and Bob’s communication so far; J is the set of
inputs for which they should output “yes”.



A key technical lemma

Lemma [Klartag+Regev "11]
Let f, g satisfy [f(x)dx = [ g(x)dx = 1. Then

Jf(x)g(]/)dﬁx,y) =1+0 (10% Ifllco log H8||oo>

n

where the integral is taken over orthonormal vectors x, y.

Expand f and g in terms of spherical harmonics Y, Y,é, then

[ gt ) = 3w [vatovias

k>0

k/2
for some {p} such that ug =1, |yl < (C%) . So

] [ g ) —1\ 5 Yl Y2l

k>0





