
Quantum search with advice

Ashley Montanaro

Department of Computer Science, University of Bristol, UK

arXiv:0908.3066

arXiv:0908.3066

Quantum computing in a nutshell

A quantum computer is a machine which uses quantum
physics to achieve a speed-up, or other advantage, over any
possible standard (“classical”) computer which uses only the
laws of classical physics.

Unstructured search

Perhaps the most basic problem in computer science: search of
an unstructured list for a single “marked” element.

8 8 8 8 8 8 8 8 83

It’s obvious that, in the worst case, any classical algorithm
must query the list at least Ω(n) times (even if we allow a
constant probability of error).

Unstructured search

Perhaps the most basic problem in computer science: search of
an unstructured list for a single “marked” element.

? ? ? ? ? ? ? ? ? ?

It’s obvious that, in the worst case, any classical algorithm
must query the list at least Ω(n) times (even if we allow a
constant probability of error).

Unstructured search

Perhaps the most basic problem in computer science: search of
an unstructured list for a single “marked” element.

? ? ? ? ? ? ? ? ? ?8

It’s obvious that, in the worst case, any classical algorithm
must query the list at least Ω(n) times (even if we allow a
constant probability of error).

Unstructured search

Perhaps the most basic problem in computer science: search of
an unstructured list for a single “marked” element.

? ? ? ? ? ? ? ? ? ?88

It’s obvious that, in the worst case, any classical algorithm
must query the list at least Ω(n) times (even if we allow a
constant probability of error).

Unstructured search

Perhaps the most basic problem in computer science: search of
an unstructured list for a single “marked” element.

? ? ? ? ? ? ? ? ? ?88 3

It’s obvious that, in the worst case, any classical algorithm
must query the list at least Ω(n) times (even if we allow a
constant probability of error).

Unstructured search

Perhaps the most basic problem in computer science: search of
an unstructured list for a single “marked” element.

? ? ? ? ? ? ? ? ? ?88 3

It’s obvious that, in the worst case, any classical algorithm
must query the list at least Ω(n) times (even if we allow a
constant probability of error).

Quantum search

Remarkably, with a quantum computer we
can do much better: using Grover’s algorithm
we can find the marked element using O(

√
n)

queries in the worst case.

Some notes on this result:

In this model, we are only interested in minimising the
number of queries used.

If we are promised that there is exactly one marked item,
Grover’s algorithm succeeds with certainty.

Grover’s algorithm is provably optimal: no quantum
algorithm that achieves the same success probability in
the worst case can do better by even one query.

So is this all we can say?

Quantum search

Remarkably, with a quantum computer we
can do much better: using Grover’s algorithm
we can find the marked element using O(

√
n)

queries in the worst case.

Some notes on this result:

In this model, we are only interested in minimising the
number of queries used.

If we are promised that there is exactly one marked item,
Grover’s algorithm succeeds with certainty.

Grover’s algorithm is provably optimal: no quantum
algorithm that achieves the same success probability in
the worst case can do better by even one query.

So is this all we can say?

Quantum search

Remarkably, with a quantum computer we
can do much better: using Grover’s algorithm
we can find the marked element using O(

√
n)

queries in the worst case.

Some notes on this result:

In this model, we are only interested in minimising the
number of queries used.

If we are promised that there is exactly one marked item,
Grover’s algorithm succeeds with certainty.

Grover’s algorithm is provably optimal: no quantum
algorithm that achieves the same success probability in
the worst case can do better by even one query.

So is this all we can say?

Quantum search

Remarkably, with a quantum computer we
can do much better: using Grover’s algorithm
we can find the marked element using O(

√
n)

queries in the worst case.

Some notes on this result:

In this model, we are only interested in minimising the
number of queries used.

If we are promised that there is exactly one marked item,
Grover’s algorithm succeeds with certainty.

Grover’s algorithm is provably optimal: no quantum
algorithm that achieves the same success probability in
the worst case can do better by even one query.

So is this all we can say?

Quantum search

Remarkably, with a quantum computer we
can do much better: using Grover’s algorithm
we can find the marked element using O(

√
n)

queries in the worst case.

Some notes on this result:

In this model, we are only interested in minimising the
number of queries used.

If we are promised that there is exactly one marked item,
Grover’s algorithm succeeds with certainty.

Grover’s algorithm is provably optimal: no quantum
algorithm that achieves the same success probability in
the worst case can do better by even one query.

So is this all we can say?

Quantum search of structured data

Most databases we want to search in the real world have some
kind of structure.

We would like to find a simple model to encapsulate this.

Some ways we could try to build this in:

Give the quantum algorithm access to classical heuristics
as a black box [Cerf et al ’98, Hogg ’96, ...].
Impose a partial order on the data [AM ’09].
This talk: say that we are given advice about the database.

Quantum search of structured data

Most databases we want to search in the real world have some
kind of structure.

We would like to find a simple model to encapsulate this.

Some ways we could try to build this in:

Give the quantum algorithm access to classical heuristics
as a black box [Cerf et al ’98, Hogg ’96, ...].

Impose a partial order on the data [AM ’09].
This talk: say that we are given advice about the database.

Quantum search of structured data

Most databases we want to search in the real world have some
kind of structure.

We would like to find a simple model to encapsulate this.

Some ways we could try to build this in:

Give the quantum algorithm access to classical heuristics
as a black box [Cerf et al ’98, Hogg ’96, ...].
Impose a partial order on the data [AM ’09].

This talk: say that we are given advice about the database.

Quantum search of structured data

Most databases we want to search in the real world have some
kind of structure.

We would like to find a simple model to encapsulate this.

Some ways we could try to build this in:

Give the quantum algorithm access to classical heuristics
as a black box [Cerf et al ’98, Hogg ’96, ...].
Impose a partial order on the data [AM ’09].
This talk: say that we are given advice about the database.

Search with advice

As well as the list, we are given access to a probability
distribution µ = (py) that hints where the marked element is
likely to be.

? ? ? ? ? ? ? ? ? ?

p1

p2 p3 p4 p5 p6
p7 p8 p9 p10

We have py = Pr[marked element is at position y].

Formal problem definition

Problem: Search with Advice

Input: A function f : {1, . . . , n}→ {0, 1} that takes the value 1 on
precisely one input x, and an “advice” probability distribution
µ = (py), y ∈ {1, . . . , n}, where py is the probability that f (y) = 1.

Output: The marked element x.

We want to minimise the expected number of queries to
find x, under the distribution µ.

Thus we are solving an average-case search problem.

Going to an average-case model allows the possibility of
exponential speed-ups [Ambainis & de Wolf ’01].

Formal problem definition

Problem: Search with Advice

Input: A function f : {1, . . . , n}→ {0, 1} that takes the value 1 on
precisely one input x, and an “advice” probability distribution
µ = (py), y ∈ {1, . . . , n}, where py is the probability that f (y) = 1.

Output: The marked element x.

We want to minimise the expected number of queries to
find x, under the distribution µ.

Thus we are solving an average-case search problem.

Going to an average-case model allows the possibility of
exponential speed-ups [Ambainis & de Wolf ’01].

The rest of this talk

A quantum algorithm for Search with Advice

Proof of optimality of the algorithm

A different model where advice is expensive

Application to power law distributions

The model

For now, we assume that the probability distribution µ is
known beforehand, and can be used to design the
algorithm.

Let TA(x) denote the expected number of queries to f
used by an algorithm A, when x is the marked element.

Let TA(µ) be the expected number of queries to f used by
A under distribution µ:

TA(µ) =

n∑
x=1

pxTA(x).

Minimising over all algorithms, define the deterministic
and quantum (resp.) average-case query complexities of µ:

D(µ) = min
A classical

TA(µ), Q(µ) = min
A quantum

TA(µ).

The model

For now, we assume that the probability distribution µ is
known beforehand, and can be used to design the
algorithm.

Let TA(x) denote the expected number of queries to f
used by an algorithm A, when x is the marked element.

Let TA(µ) be the expected number of queries to f used by
A under distribution µ:

TA(µ) =

n∑
x=1

pxTA(x).

Minimising over all algorithms, define the deterministic
and quantum (resp.) average-case query complexities of µ:

D(µ) = min
A classical

TA(µ), Q(µ) = min
A quantum

TA(µ).

The model

For now, we assume that the probability distribution µ is
known beforehand, and can be used to design the
algorithm.

Let TA(x) denote the expected number of queries to f
used by an algorithm A, when x is the marked element.

Let TA(µ) be the expected number of queries to f used by
A under distribution µ:

TA(µ) =

n∑
x=1

pxTA(x).

Minimising over all algorithms, define the deterministic
and quantum (resp.) average-case query complexities of µ:

D(µ) = min
A classical

TA(µ), Q(µ) = min
A quantum

TA(µ).

The model

For now, we assume that the probability distribution µ is
known beforehand, and can be used to design the
algorithm.

Let TA(x) denote the expected number of queries to f
used by an algorithm A, when x is the marked element.

Let TA(µ) be the expected number of queries to f used by
A under distribution µ:

TA(µ) =

n∑
x=1

pxTA(x).

Minimising over all algorithms, define the deterministic
and quantum (resp.) average-case query complexities of µ:

D(µ) = min
A classical

TA(µ), Q(µ) = min
A quantum

TA(µ).

Classical algorithms

Assume that py is non-increasing with y (so the most
likely place for the marked element to be is at the start of
the list, etc.).

Then the optimal classical algorithm to find x is simply to
query f (1) through f (n) in turn.

So the classical average-case query complexity can be
written down as

D(µ) =

n∑
x=1

px x.

Sometimes much better than naive Grover search – can we
do better with a new quantum algorithm?

Classical algorithms

Assume that py is non-increasing with y (so the most
likely place for the marked element to be is at the start of
the list, etc.).

Then the optimal classical algorithm to find x is simply to
query f (1) through f (n) in turn.

So the classical average-case query complexity can be
written down as

D(µ) =

n∑
x=1

px x.

Sometimes much better than naive Grover search – can we
do better with a new quantum algorithm?

Classical algorithms

Assume that py is non-increasing with y (so the most
likely place for the marked element to be is at the start of
the list, etc.).

Then the optimal classical algorithm to find x is simply to
query f (1) through f (n) in turn.

So the classical average-case query complexity can be
written down as

D(µ) =

n∑
x=1

px x.

Sometimes much better than naive Grover search – can we
do better with a new quantum algorithm?

Classical algorithms

Assume that py is non-increasing with y (so the most
likely place for the marked element to be is at the start of
the list, etc.).

Then the optimal classical algorithm to find x is simply to
query f (1) through f (n) in turn.

So the classical average-case query complexity can be
written down as

D(µ) =

n∑
x=1

px x.

Sometimes much better than naive Grover search – can we
do better with a new quantum algorithm?

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 2

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 2 3

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 2 3 4

Algorithm A: search with a known
probability distribution

1 Assume the probability distribution is in non-increasing
order.

2 Divide the list into blocks that increase in size
exponentially (with ratio c, for some constant c).

3 Run Grover search on each block in turn.

4 Stop when the marked item is found.

Example (with c = 2):

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

1 2 3 4 5

Performance

Proposition

The average number of queries used by Algorithm A, choosing
c = e ≈ 2.718, on an advice distribution µ = (px) is upper bounded
by

π e
n∑

x=1

px
√

x.

Proof sketch:

Searching the m’th block uses O(cm/2) queries.
When x is the marked item, at most O(log x) blocks are
searched by the algorithm.
So O(

√
x) queries are used on input x.

Performance

Proposition

The average number of queries used by Algorithm A, choosing
c = e ≈ 2.718, on an advice distribution µ = (px) is upper bounded
by

π e
n∑

x=1

px
√

x.

Proof sketch:

Searching the m’th block uses O(cm/2) queries.
When x is the marked item, at most O(log x) blocks are
searched by the algorithm.
So O(

√
x) queries are used on input x.

Optimality (1)

This algorithm is in fact optimal, up to a constant factor. To
prove this, we need the following new result:

Proposition
Let A be a quantum search algorithm such that TA(x) 6 T for
all x, for some T. Then

T >
0.206

arcsin 1/
√

n
− 0.316 > 0.206

√
n − 1.

This is an average-case variant of known worst-case
Ω(
√

n) lower bounds on quantum search.

It’s known that one can actually achieve an expected
query complexity that is somewhat less than the usual
worst-case query complexity guaranteed by Grover’s
algorithm [Boyer et al ’98, Zalka ’99].

Optimality (1)

This algorithm is in fact optimal, up to a constant factor. To
prove this, we need the following new result:

Proposition
Let A be a quantum search algorithm such that TA(x) 6 T for
all x, for some T. Then

T >
0.206

arcsin 1/
√

n
− 0.316 > 0.206

√
n − 1.

This is an average-case variant of known worst-case
Ω(
√

n) lower bounds on quantum search.

It’s known that one can actually achieve an expected
query complexity that is somewhat less than the usual
worst-case query complexity guaranteed by Grover’s
algorithm [Boyer et al ’98, Zalka ’99].

Optimality (1)

This algorithm is in fact optimal, up to a constant factor. To
prove this, we need the following new result:

Proposition
Let A be a quantum search algorithm such that TA(x) 6 T for
all x, for some T. Then

T >
0.206

arcsin 1/
√

n
− 0.316 > 0.206

√
n − 1.

This is an average-case variant of known worst-case
Ω(
√

n) lower bounds on quantum search.

It’s known that one can actually achieve an expected
query complexity that is somewhat less than the usual
worst-case query complexity guaranteed by Grover’s
algorithm [Boyer et al ’98, Zalka ’99].

Optimality (2)

Proposition
Let µ = (px), x ∈ [n] be an arbitrary non-increasing probability
distribution. Then

Q(µ) > 0.206
n∑

x=1

px
√

x − 1.

Proof sketch:

By previous proposition, there must exist a y such that
TA(y) > 0.206

√
n − 1.

Similarly, there must exist y ′ 6= y such that
TA(y ′) > 0.206

√
n − 1 − 1.

Iterating this argument and rearranging gives the result.

Optimality (2)

Proposition
Let µ = (px), x ∈ [n] be an arbitrary non-increasing probability
distribution. Then

Q(µ) > 0.206
n∑

x=1

px
√

x − 1.

Proof sketch:

By previous proposition, there must exist a y such that
TA(y) > 0.206

√
n − 1.

Similarly, there must exist y ′ 6= y such that
TA(y ′) > 0.206

√
n − 1 − 1.

Iterating this argument and rearranging gives the result.

Unknown probability distribution

We can also consider a model where we don’t know the
advice probability distribution at the start.

Model: can create the state |µ〉 =
∑

x
√px|x〉, at the cost of

one query. So we can “quantum sample” from µ.

In some cases, quantum sampling can be efficient – such
as when (px) is efficiently integrable [Grover & Rudolph ’02].

Note that querying in accordance with classical sampling
is no better than querying uniformly at random!

Unknown probability distribution

We can also consider a model where we don’t know the
advice probability distribution at the start.

Model: can create the state |µ〉 =
∑

x
√px|x〉, at the cost of

one query. So we can “quantum sample” from µ.

In some cases, quantum sampling can be efficient – such
as when (px) is efficiently integrable [Grover & Rudolph ’02].

Note that querying in accordance with classical sampling
is no better than querying uniformly at random!

Unknown probability distribution

We can also consider a model where we don’t know the
advice probability distribution at the start.

Model: can create the state |µ〉 =
∑

x
√px|x〉, at the cost of

one query. So we can “quantum sample” from µ.

In some cases, quantum sampling can be efficient – such
as when (px) is efficiently integrable [Grover & Rudolph ’02].

Note that querying in accordance with classical sampling
is no better than querying uniformly at random!

Unknown probability distribution

We can also consider a model where we don’t know the
advice probability distribution at the start.

Model: can create the state |µ〉 =
∑

x
√px|x〉, at the cost of

one query. So we can “quantum sample” from µ.

In some cases, quantum sampling can be efficient – such
as when (px) is efficiently integrable [Grover & Rudolph ’02].

Note that querying in accordance with classical sampling
is no better than querying uniformly at random!

Unknown probability distribution

Let T∗A(µ) denote the expected number of queries used by
some algorithm A on distribution µ in this model.

We present a new quantum algorithm B that achieves

T∗B(µ) = K

 ∑
x,px>1/n

√
px

 + L
√

n

 ∑
x,px61/n

px

 + M

for some constants K, L, M.

Sometimes significantly better than any classical
algorithm (even one that knows µ at the start).

The new algorithm is based on amplitude amplification.

Unknown probability distribution

Let T∗A(µ) denote the expected number of queries used by
some algorithm A on distribution µ in this model.

We present a new quantum algorithm B that achieves

T∗B(µ) = K

 ∑
x,px>1/n

√
px

 + L
√

n

 ∑
x,px61/n

px

 + M

for some constants K, L, M.

Sometimes significantly better than any classical
algorithm (even one that knows µ at the start).

The new algorithm is based on amplitude amplification.

Amplitude amplification [Brassard et al ’02]

Input: Function f : [n]→ {0, 1} such that f takes the value 1 on
precisely one input x; oracle operator Oµ : |0〉 7→ |µ〉;
inverse O−1

µ ; positive integer k (number of iterations)
Output: The marked element x, or fail

create initial state |µ〉 = Oµ|0〉;
apply operator −OµI|0〉O−1

µ I|x〉 k times to |µ〉;
measure in computational basis, obtaining outcome y;
if f(y)=1 then

return y;
else

return fail;
end

Lemma
Applying the above algorithm with k iterations returns the location
of the marked element with probability sin2((2k + 1) arcsin√px),
using k + 1 queries to Oµ, k queries to O−1

µ , and k + 1 queries to f .

Amplitude amplification [Brassard et al ’02]

Input: Function f : [n]→ {0, 1} such that f takes the value 1 on
precisely one input x; oracle operator Oµ : |0〉 7→ |µ〉;
inverse O−1

µ ; positive integer k (number of iterations)
Output: The marked element x, or fail
create initial state |µ〉 = Oµ|0〉;
apply operator −OµI|0〉O−1

µ I|x〉 k times to |µ〉;
measure in computational basis, obtaining outcome y;
if f(y)=1 then

return y;
else

return fail;
end

Lemma
Applying the above algorithm with k iterations returns the location
of the marked element with probability sin2((2k + 1) arcsin√px),
using k + 1 queries to Oµ, k queries to O−1

µ , and k + 1 queries to f .

Amplitude amplification [Brassard et al ’02]

Input: Function f : [n]→ {0, 1} such that f takes the value 1 on
precisely one input x; oracle operator Oµ : |0〉 7→ |µ〉;
inverse O−1

µ ; positive integer k (number of iterations)
Output: The marked element x, or fail
create initial state |µ〉 = Oµ|0〉;
apply operator −OµI|0〉O−1

µ I|x〉 k times to |µ〉;
measure in computational basis, obtaining outcome y;
if f(y)=1 then

return y;
else

return fail;
end

Lemma
Applying the above algorithm with k iterations returns the location
of the marked element with probability sin2((2k + 1) arcsin√px),
using k + 1 queries to Oµ, k queries to O−1

µ , and k + 1 queries to f .

Algorithm B: unknown distribution

Input: Function f : [n]→ {0, 1} such that f takes the value 1 on
precisely one input x; oracle operator Oµ : |0〉 7→ |µ〉;
inverse O−1

µ ; real k > 1
Output: The marked element x

for j = 0 to blogk
√

nc do
sample from distribution µ;
if marked element found then

return marked element;
end
pick i uniformly at random from integers {0, . . . , bkjc− 1};
perform i iterations of amplitude amplification;
if marked element found then

return marked element;
end

end
perform exact Grover search for one marked element on [n];
return marked element;

Algorithm B: unknown distribution

Input: Function f : [n]→ {0, 1} such that f takes the value 1 on
precisely one input x; oracle operator Oµ : |0〉 7→ |µ〉;
inverse O−1

µ ; real k > 1
Output: The marked element x
for j = 0 to blogk

√
nc do

sample from distribution µ;
if marked element found then

return marked element;
end
pick i uniformly at random from integers {0, . . . , bkjc− 1};
perform i iterations of amplitude amplification;
if marked element found then

return marked element;
end

end
perform exact Grover search for one marked element on [n];
return marked element;

Results (unknown probability distribution)

Proposition

On input x, when called with k ≈ 1.162, Algorithm B uses an
expected number of at most min{83/√px + 4/3, 53

√
n} queries to

each of f , Oµ, O−1
µ .

Are there any “natural” advice distributions to which we
could apply these results?

Results (unknown probability distribution)

Proposition

On input x, when called with k ≈ 1.162, Algorithm B uses an
expected number of at most min{83/√px + 4/3, 53

√
n} queries to

each of f , Oµ, O−1
µ .

Are there any “natural” advice distributions to which we
could apply these results?

Power law distributions

Let µ = (px), x ∈ [n] be a probability distribution where px ∝ xk

for some constant k < 0. Then

D(µ) =


Θ(n) [−1<k<0]

Θ(n/ log n) [k=−1]

Θ(nk+2) [−2<k<−1]

Θ(log n) [k=−2]

Θ(1) [k<−2]

, Q(µ) =


Θ(
√

n) [−1<k<0]

Θ(
√

n/ log n) [k=−1]

Θ(nk+3/2) [−3/2<k<−1]

Θ(log n) [k=−3/2]

Θ(1) [k<−3/2]

Corollary
There exists a probability distribution µ such that
D(µ) = Ω(n1/2−ε) for arbitrary ε > 0, but Q(µ) = O(1).

A super-exponential average-case query complexity
separation!

Power law distributions

Let µ = (px), x ∈ [n] be a probability distribution where px ∝ xk

for some constant k < 0. Then

D(µ) =


Θ(n) [−1<k<0]

Θ(n/ log n) [k=−1]

Θ(nk+2) [−2<k<−1]

Θ(log n) [k=−2]

Θ(1) [k<−2]

, Q(µ) =


Θ(
√

n) [−1<k<0]

Θ(
√

n/ log n) [k=−1]

Θ(nk+3/2) [−3/2<k<−1]

Θ(log n) [k=−3/2]

Θ(1) [k<−3/2]

Corollary
There exists a probability distribution µ such that
D(µ) = Ω(n1/2−ε) for arbitrary ε > 0, but Q(µ) = O(1).

A super-exponential average-case query complexity
separation!

Power law distributions px ∝ xk

For each k, query complexity is Θ(nα) for some α (ignoring log
factors). Plotting α against k gives

k

α

−1
2

−1−3
2

−2−5
2

−3

1
2

1

Dotted red line: best possible classical algorithm
Solid green line: quantum, known probability distribution
Dashed blue line: quantum, unknown probability
distribution

Power law distributions px ∝ xk

For each k, query complexity is Θ(nα) for some α (ignoring log
factors). Plotting α against k gives

k

α

−1
2

−1−3
2

−2−5
2

−3

1
2

1

Dotted red line: best possible classical algorithm

Solid green line: quantum, known probability distribution
Dashed blue line: quantum, unknown probability
distribution

Power law distributions px ∝ xk

For each k, query complexity is Θ(nα) for some α (ignoring log
factors). Plotting α against k gives

k

α

−1
2

−1−3
2

−2−5
2

−3

1
2

1

Dotted red line: best possible classical algorithm
Solid green line: quantum, known probability distribution

Dashed blue line: quantum, unknown probability
distribution

Power law distributions px ∝ xk

For each k, query complexity is Θ(nα) for some α (ignoring log
factors). Plotting α against k gives

k

α

−1
2

−1−3
2

−2−5
2

−3

1
2

1

Dotted red line: best possible classical algorithm
Solid green line: quantum, known probability distribution
Dashed blue line: quantum, unknown probability
distribution

Conclusions

We’ve seen that quantum search can dramatically
outperform classical search in a model where we’re given
advice about where to look.

Moving to an average-case model allows us to obtain
(super-)exponential speed-ups.

These speed-ups are obtained for (fairly) natural advice
distributions.

Applying easy(ish) classical algorithmic techniques to
quantum algorithms can lead to significant speed-ups.

Applications?

Conclusions

We’ve seen that quantum search can dramatically
outperform classical search in a model where we’re given
advice about where to look.

Moving to an average-case model allows us to obtain
(super-)exponential speed-ups.

These speed-ups are obtained for (fairly) natural advice
distributions.

Applying easy(ish) classical algorithmic techniques to
quantum algorithms can lead to significant speed-ups.

Applications?

The end

Further reading:

The paper: arxiv.org/abs/0908.3066

An introduction to quantum computing for A-level
students:
www.cs.bris.ac.uk/˜montanar/gameshow.pdf

A more detailed introduction: Richard Jozsa’s lecture
notes, www.cs.bris.ac.uk/Teaching/Resources/
COMSM0214/

Thanks for your time!

arxiv.org/abs/0908.3066
www.cs.bris.ac.uk/~montanar/gameshow.pdf
www.cs.bris.ac.uk/Teaching/Resources/COMSM0214/
www.cs.bris.ac.uk/Teaching/Resources/COMSM0214/

The end

Further reading:

The paper: arxiv.org/abs/0908.3066

An introduction to quantum computing for A-level
students:
www.cs.bris.ac.uk/˜montanar/gameshow.pdf

A more detailed introduction: Richard Jozsa’s lecture
notes, www.cs.bris.ac.uk/Teaching/Resources/
COMSM0214/

Thanks for your time!

arxiv.org/abs/0908.3066
www.cs.bris.ac.uk/~montanar/gameshow.pdf
www.cs.bris.ac.uk/Teaching/Resources/COMSM0214/
www.cs.bris.ac.uk/Teaching/Resources/COMSM0214/

