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1. The polynomial method. This question aims to build expertise in working with polyno-
mials for boolean functions.

(a) Prove that any function f : {0, 1}n → R has a unique representation as a multilinear
polynomial.

(b) Write down the polynomials representing the ANDn, ORn and PARITYn functions and
hence verify that deg(ANDn) = deg(ORn) = deg(PARITYn) = n.

(c) Show that d̃eg(PARITYn) = n, and hence that any quantum query algorithm computing
PARITYn with success probability 2/3 on every input requires Ω(n) queries to the input.
(Hint: reduce PARITYn to a univariate function and consider the behaviour of any
polynomial approximating this function.)

(d) Show that any quantum algorithm computing the ORn function exactly must make at
least n queries to the input, and hence can achieve no speed-up over classical algorithms.
(Hint: consider the state of the computer just before the final measurement.)

2. Factoring via phase estimation. Fix two coprime positive integers x and N such that
x < N , and let Ux be the unitary operator defined by Ux|y〉 = |xy (mod N)〉. Let r be the
order of x mod N (the minimal t such that xt ≡ 1). For 0 ≤ s ≤ r − 1, define the states

|ψs〉 :=
1√
r

r−1∑
k=0

e−2πisk/r |xk (mod N)〉.

(a) Verify that Ux is indeed unitary.

(b) Show that, for arbitrary integer n ≥ 0, U2n
x can be implemented in time poly(n) (not

poly(2n)!).

(c) Show that each state |ψs〉 is an eigenvector of Ux with eigenvalue e2πis/r.

(d) Show that

1√
r

r−1∑
s=0

|ψs〉 = |1〉.

(e) Thus show that, if the phase estimation algorithm with n qubits is applied to Ux using
|1〉 as an “eigenvector”, the algorithm outputs an estimate of s/r accurate up to n bits,
for s ∈ {0, . . . , r − 1} picked uniformly at random, with constant probability.

(f) Argue, following Section 6 of the first set of lecture notes, that this implies that the
phase estimation algorithm can be used to factorise an integer N in poly(logN) time.
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3. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with ‖A‖ ≤ K, ‖B‖ ≤ K for some K ≤ 1. Show
that

e−iA/2e−iBe−iA/2 = e−i(A+B) +O(K3)

(this is the so-called Strang splitting). Use this to give a more efficient approximation
of k-local Hamiltonians by quantum circuits than the algorithm given in the notes, and
calculate its complexity.

(b) Let H be a Hamiltonian which can be written as H = UDU †, where U is a unitary
matrix that can be implemented by a quantum circuit running in time poly(n), and
D =

∑
x d(x)|x〉〈x| is a diagonal matrix such that the map |x〉 7→ e−id(x)t|x〉 can be

implemented in time poly(n) for all x. Show that e−iHt can be implemented in time
poly(n).

4. Other definitions of quantum walks. In some sense, random walks require less space
than quantum walks. A random walk on a graph for t steps can be concisely expressed as
applying the t’th power of a matrix M to a vector. However, quantum walks as defined in this
course use an additional coin. A simpler way to define a quantum walk in such a way that
it respects the structure of a graph G with n vertices would be as repeated application of an
n-dimensional unitary matrix U such that Uxy = 0 if and only if x and y are not connected.
In other words, if A is the adjacency matrix of G (Axy = 1 if x and y are connected, Axy = 0
otherwise), Uxy 6= 0⇔ Axy = 1. Call such quantum walks concise.

(a) Consider the line with n vertices (i.e. vertices are numbered between 1 and n; vertices
x and y are connected if |x − y| = 1). Show that no concise quantum walk can exist
on this graph when n is odd, and that when n is even, any concise quantum walk only
involves interactions between positions (2k − 1, 2k) for integer k ≥ 1.

(b) However, show that the hypercube does admit a concise quantum walk with non-trivial
behaviour. (Hint: the adjacency matrix An of the dimension n hypercube can be written
as

An =

(
An−1 I2n−1

I2n−1 An−1

)
,

where Id is the d-dimensional identity matrix.)

An alternative way to define a “concise” quantum walk on a graph, which is closer
in spirit to classical continuous-time random walks, is as follows. For a graph with
adjacency matrix A, and an arbitrary real time t, simply define the unitary matrix
U(t) = e−iAt, and define the amplitude of being at vertex y, given that the walk started
at x and proceeded for time t, as 〈y|U(t)|x〉.

(c) Show that the adjacency matrix of the n-dimensional hypercube can be written as An =∑n
j=1X

(j), where X(j) denotes the operator which is a tensor product of X = ( 0 1
1 0 )

acting on the j’th qubit, and the identity elsewhere.

(d) Hence show that U(t) = e−iAnt factorises into a tensor product of 2×2 unitary matrices.

(e) Hence show that there is a constant time t at which 〈1n|U(t)|0n〉 = 1, up to an overall
phase, implying that this notion of quantum walk also admits fast hitting from vertices
0n to 1n on the hypercube.
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5. Optional (but fun): quantum oracle interrogation. In this question, you will prove
the following result of Wim van Dam.

Theorem 1. Given oracle access to bits of an unknown n-bit string x, there is a quantum
algorithm that learns x completely with success probability at least 0.999 using n/2 + O(

√
n)

queries, for any x.

This success probability can in fact be taken to be any constant strictly less than 1. Of course,
classically we need precisely n queries to learn x with this worst-case success probability.

(a) Show that, for any x ∈ {0, 1}n, given the n qubit state

|ψx〉 :=
1

2n/2

∑
y∈{0,1}n

(−1)x·y|y〉,

there is a quantum algorithm that determines x with certainty using no additional queries
to the bits of x. (Here x · y =

∑
i xiyi is the inner product of x and y modulo 2.)

(b) For any 0 ≤ r ≤ n, consider the state

|ψrx〉 :=
1√
R

∑
y∈{0,1}n,|y|≤r

(−1)x·y|y〉,

where R =
∑r

i=0

(
n
i

)
. Show that, for some r = n/2 +O(

√
n), |〈ψx|ψrx〉|2 ≥ 0.999.

(c) Show that the state |ψrx〉 can be produced using r queries to bits of x.

(d) Use parts (a)-(c) to prove Theorem 1.
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