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Abstract

It is known that random quantum channels exhibit significant violations of multiplicativity
of maximum output p-norms for any p > 1. In this work, we show that a weaker variant of
multiplicativity nevertheless holds for these channels. For any constant p > 1, given a random
quantum channel N (i.e. a channel whose Stinespring representation corresponds to a random
subspace S), we show that with high probability the maximum output p-norm of N⊗n decays
exponentially with n. The proof is based on relaxing the maximum output∞-norm of N to the
operator norm of the partial transpose of the projector onto S, then calculating upper bounds
on this quantity using ideas from random matrix theory.

1 Introduction

For many years, some of the most vexatious open problems of quantum information theory have
concerned maximum output p-norms of quantum channels. If N is a quantum channel (i.e. com-
pletely positive, trace-preserving map), the maximum output p-norm of N is defined as

‖N‖1→p := max{‖N (ρ)‖p, ρ ≥ 0, tr ρ = 1},

where ‖X‖p := (tr |X|p)1/p is the Schatten p-norm. (The notation νp(N ) is also used for ‖N‖1→p.
Technically, ‖N‖1→p is actually defined as sup{‖N (X)‖p/‖X‖1}, where the supremum is taken
over all non-zero Hermitian operators X, but it can be shown that this definition is equivalent [2].)
It was a long-standing conjecture in quantum information theory [3] that, for any two quantum
channels N1, N2,

‖N1 ⊗N2‖1→p
?
= ‖N1‖1→p‖N2‖1→p,

at least for p fairly close to 1. This is equivalent to the question of additivity of minimum output
Rényi p-entropies, which are defined in terms of maximum output p-norms as

Hmin
p (N ) :=

1

1− p
log ‖N‖p1→p.

The minimum output (von Neumann) entropy Hmin(N ) is obtained by taking the limit p→ 1 [3].
This case of the additivity question was of particular interest due to its connections with many
other additivity problems in quantum information theory [34].
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All of these multiplicativity/additivity conjectures are now known to be false. First, Werner
and Holevo found a counterexample to multiplicativity for p > 4.79 [35]. Some years later, the
conjecture was falsified in the range p > 2 by Winter [36], which was swiftly extended to 1 < p < 2
by Hayden [26]. These works were combined as [27], which also includes the remaining case p = 2.
One can generalise the conjectures to p < 1 (where ‖ · ‖p is of course no longer a norm), and in this
setting Cubitt et al [21] falsified additivity of minimum output Rényi p-entropies for p ≈ 0. Finally,
Hastings showed that the minimum output entropy is not additive [25]. Following this, Aubrun,
Szarek and Werner showed that the results of Hayden, Winter and Hastings can be obtained from
Dvoretzky’s theorem in the language of asymptotic geometric analysis [5, 6].

As well as the limit p → 1, another important special case of the multiplicativity question is
p = ∞, which turns out to be closely related to a number of other quantities studied in quan-
tum information theory, as we now discuss. Any quantum channel performing a map from a
dA-dimensional quantum system A to a dB-dimensional quantum system B can be written as
N (ρ) = trE V ρV

† for some isometry V : CdA → CdB ⊗ CdE (a form known as the Stinespring
dilation). The operator M = V V † projects onto a subspace S ⊆ CdB ⊗ CdE . For our purposes, we
can simply identify N with either V , S or M .

Let SEP ⊂ B(CdA ⊗CdB ) be the set of dA× dB-dimensional separable quantum states. For any
operator M ∈ B(CdA ⊗ CdB ) such that 0 ≤M ≤ I, the quantity

hSEP(M) := max
ρ∈SEP

trMρ

is known as the support function of the separable states, evaluated at M . This quantity has the
following connection to maximum output p-norms:

Fact 1. Let N be a quantum channel with corresponding isometry V , and set M = V V †. Then

hSEP(M) = ‖N‖1→∞.

This fact can easily be proven using the Schmidt decomposition, and indeed can be generalised to
arbitrary operators 0 ≤M ≤ I [29] (see [24] for a proof). The quantity hSEP is crucially important
in the study of multiple-prover quantum Merlin-Arthur games [28, 24], which we now briefly discuss.
The complexity class QMA(2) is informally defined as the class of decision problems which can be
solved by a polynomial-time quantum verifier (Arthur) given access to two unentangled quantum
states (or “proofs”) produced by two all-powerful but potentially malicious provers (Merlin A and
Merlin B). Consider an instance of a QMA(2) problem for which Arthur should output “no”. If M
denotes Arthur’s measurement operator corresponding to a “yes” outcome, the maximal probability
with which the two Merlins can convince Arthur to (incorrectly) output “yes” is precisely hSEP(M).
Therefore, projectors M such that hSEP(M⊗n) = hSEP(M)n correspond to measurement operators
occurring in two-prover quantum Merlin-Arthur games which obey perfect parallel repetition, i.e.
where Arthur can simply repeat the protocol n times in parallel to reduce a failure probability of s
to a failure probability of sn. The failure of multiplicativity for ‖N‖1→∞ implies that such a precise
form of parallel repetition cannot hold in general; however, it could still be the case that a weaker
form of parallel repetition holds, where hSEP(M⊗n) necessarily decreases exponentially with n.

hSEP also turns out to have many other connections to important quantities in quantum infor-
mation theory and tensor optimisation (see [24] for some examples).

2



1.1 Counterexamples to multiplicativity

The known counterexamples to multiplicativity fall into two classes: explicit and randomised.
The known explicit counterexamples are a channel of Werner and Holevo [35], which acts on d-
dimensional square matrices ρ by the map

ρ 7→ 1

d− 1

(
(tr ρ)I − ρT

)
,

and the channel whose corresponding subspace in the Stinespring form is the antisymmetric sub-
space of Cd⊗Cd [22]. This latter channel violates multiplicativity for all p > 2, and is of particular
interest due both to its simplicity and the fact that it displays a very strong violation of multi-
plicativity when p =∞. Indeed, if Panti denotes the projector onto the antisymmetric subspace, it
holds that

hSEP(Panti) =
1

2
, but hSEP(P⊗2

anti) ≥
1

2

(
1− 1

d

)
.

The counterexamples of Hayden and Winter [36, 26, 27] are random constructions. In particular,
the construction used to falsify p-norm multiplicativity for all p > 1 is to choose the first channel
N ’s corresponding subspace S ⊂ Cd ⊗ Cd at random from the set of all subspaces of dimension
r = O(d1+1/p) (i.e. according to Haar measure on the unitary group), and to take N̄ as the second
channel.

In the case p =∞, the violation of multiplicativity displayed by this construction is also near-
maximal. In other words,

‖N ⊗ N̄‖1→∞ ≈ ‖N‖1→∞.

(One can show that, for any channels N1 and N2, ‖N1 ⊗ N2‖1→p ≤ ‖N1‖1→p [3].) While the
example of the antisymmetric subspace implies that there exists a channel N such that one can
achieve a much larger output p-norm by using an entangled state as input to N⊗2 than is possible
using only product states, it leaves open the question of the general behaviour of ‖N⊗n‖1→p for
larger n. To the author’s knowledge, two extreme situations are still possibilities: on the one hand,
it might hold that

‖N⊗n‖1→p
?
≤ ‖N‖n/21→p

for all N ; alternatively, there might be no universal constant α such that, for all channels N ,

‖N⊗n‖1→p ≤ ‖N‖αn1→p.

The former possibility would imply that the largest possible violation of multiplicativity is quite
mild, and in the case p =∞ that a form of parallel repetition holds for two-prover quantum Merlin-
Arthur games; the latter would mean that severe violations are possible and parallel repetition fails.

Interestingly, for the antisymmetric subspace it turns out that the former possibility is closer
to the truth. In a beautiful and technical recent work, Christandl, Schuch and Winter [10, 11] have
shown that there is a constant C > 0 such that

hSEP(P⊗nanti) ≤ 2−Cn,

implying that a weak variant of multiplicativity does indeed hold for this channel.
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1.2 New results

The main result of this work is that, even though random quantum channels do not obey multi-
plicativity, their violations of multiplicativity are in some sense also very weak.

Definition 2. A quantum channel N obeys weak p-norm multiplicativity with exponent α if, for
all n ≥ 1,

‖N⊗n‖1→p ≤ ‖N‖αn1→p.

Observe that, for any p > 1,

‖N⊗n‖1→p ≤ ‖N⊗n‖1−1/p
1→∞ ,

which follows from the (matrix) Hölder inequality ‖X‖pp ≤ ‖X‖1‖X‖p−1
∞ for any X. So, if N obeys

weak∞-norm multiplicativity with exponent α, N also obeys weak p-norm multiplicativity for any
p > 1, with exponent α(1− 1/p).

Our main result can be summarised informally as follows (a more technical version is given as
Theorem 9 below).

Theorem 3. Let N be a quantum channel whose corresponding subspace is a random dimension
r subspace of CdA ⊗ CdB , set m := min{r, dA, dB}, and assume m ≥ 2(log2 max{dA, dB})3/2 and
r = o(dAdB). Then the probability that N does not obey weak∞-norm multiplicativity with exponent
1/2− o(1) (if r ≥ dB/dA), or 1− o(1) (if r ≤ dB/dA) is exponentially small in m.

Note that we have switched notation slightly from CdB ⊗ CdE to CdA ⊗ CdB , and will use this
notation henceforth. In Theorem 3, and throughout the rest of the paper, our notion of a random
dimension r subspace S ⊆ CdA ⊗ CdB is as follows: the projector M onto S is formed by starting
with the projector M0 onto an arbitrary fixed dimension r subspace S0 ⊆ CdA ⊗ CdB , and taking
M = UM0U

†, where U is a random unitary operator (i.e. U is picked according to the Haar
measure on the unitary group U(dAdB)). We usually think of r, dA and dB as all growing, but not
necessarily at the same rate.

Theorem 3 implies that, for random channelsN satisfying some mild dimensionality constraints,
with high probability

‖N⊗n‖1→p ≤ ‖N‖(1/2−o(1))(1−1/p)n
1→p ,

so random channels obey weak p-norm multiplicativity with exponent (1/2− o(1))(1− 1/p). Note
that the results of Hayden and Winter imply that when r ≈ dA = dB, with high probability

‖N ⊗ N̄‖1→∞ ≈ ‖N‖1→∞.

It was also observed by Hastings [25] that picking the subspace corresponding to N by replacing
the random unitary U with an operator picked according to Haar measure on the orthogonal group
O(dAdB) gives a channel such that, when r ≈ dA = dB,

‖N⊗2‖1→∞ ≈ ‖N‖1→∞.

Thus Theorem 3 is perhaps essentially the strongest multiplicativity result one could expect for
the maximum output ∞-norm of random quantum channels (although note that it is not in fact
known whether multiplicativity is violated by two copies of a random channel N ).

We remark that our results also apply without change to the setting where, instead of taking n
copies of a fixed random channel N , one takes n independently picked random channels N1, . . . ,Nn
(where n is fixed) and compares ‖N1 ⊗ · · · ⊗ Nn‖1→p with (‖N1‖1→p . . . ‖Nn‖1→p)α.
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1.3 The case of the von Neumann entropy

In certain regimes, our results also imply a weak additivity result for the von Neumann entropy1.
Recall that for a quantum channel N , the minimum output Rényi ∞-entropy of N is defined by
taking the limit as Hmin

∞ (N ) = − log ‖N‖1→∞. A corollary of Theorem 8 below is that there is a
universal constant C such that the probability that the regularised minimum output ∞-entropy of
a random quantum channel N does not satisfy

1

n
Hmin
∞ (N⊗n) ≥

{
1
2 (log dA + log dB − log r)− C if r ≥ dB/dA
log dA − C if r ≤ dB/dA

is exponentially small in m := min{r, dA, dB}, assuming that m ≥ 2(log2 max{dA, dB})3/2. As
1
nH

min(N⊗n) ≥ 1
nH

min
∞ (N⊗n) for all channels N by monotonicity of Rényi entropies, any upper

bound on Hmin(N ) implies a limitation on the extent of possible additivity violations for Hmin(N ).
In particular, as Hmin(N ) is always upper bounded by log dA, we obtain a weak additivity result
for the minimum output von Neumann entropy when r is not too large with respect to dB. For
example, if r = dA = dB, we obtain that

1

n
Hmin(N⊗n) ≥ 1

2
Hmin(N )− C

with high probability. If r ≤ dB/dA, we get the stronger result that with high probability

1

n
Hmin(N⊗n) ≥ Hmin(N )− C.

1.4 Organisation and proof strategy

The remainder of this paper is devoted to the proof of Theorem 3. Conceptually, the proof is
simple: we find a general upper bound on hSEP(M) (for arbitrary M) which is multiplicative, and
then show that this upper bound is not too far from the truth when M corresponds to a random
quantum channel. The upper bound we use is the operator norm of the partial transpose of M ,
‖MΓ‖∞, and the main technical contribution of this paper is to prove tail bounds on this quantity,
which is carried out using the method of moments from random matrix theory. Note that we have
not attempted to optimise the constants and lower order terms which occur in our bounds, which
could probably be substantially improved.

The next section discusses the proof strategy and some related work, and states a more formal
version of Theorem 3. The following section contains the proofs of the main technical results and
lemmas. The paper finishes in Section 4 with some conclusions and suggestions for future work.

2 Maximum overlap with separable states and PPT

Our proof of Theorem 3 will be based on a general upper bound strategy for hSEP(M). Maximising
over the set of separable states is a daunting task, and a useful relaxation is to maximise over the
larger set of PPT states (bipartite quantum states ρ such that ρΓ ≥ 0, where Γ denotes the partial
transpose operation, i.e. the transpose operation performed only on the second subsystem) and
consider

hPPT(M) := max
ρ∈PPT

trMρ.

1I would like to thank Fernando Brandão for pointing this out.
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An upper bound can be put on this quantity as follows.

Proposition 4. hPPT(M) ≤ ‖MΓ‖∞.

Proof. By definition, we have

hPPT(M) = max
ρ, ρ≥0,

ρΓ≥0, tr ρ=1

trMρ = max
σ, σ≥0,

σΓ≥0, trσΓ=1

trMσΓ,

and for any density matrix σ, trMσΓ = trMΓσ ≤ ‖MΓ‖∞.

This upper bound is often very weak (and for example may be much bigger than 1), but for
some operators M it does give something non-trivial. Observe that if M projects onto a subspace
S ⊆ CdA ⊗ CdB , ‖MΓ‖∞ is not the same as max|ψ〉∈S ‖ψΓ‖∞. Indeed, for any state |ψ〉 we have

‖ψΓ‖∞ ≤ ‖ψΓ‖2 = ‖ψ‖2 = 1,

whereas ‖MΓ‖∞ may be considerably higher.

A key property of ‖MΓ‖∞ which we will use is that it is multiplicative.

Observation 5. For any operators M , N , ‖(M ⊗N)Γ‖∞ = ‖MΓ ⊗NΓ‖∞ = ‖MΓ‖∞‖NΓ‖∞.

Thus, if we can show that ‖MΓ‖∞ ≤ δ for some δ, we immediately have that hSEP(M⊗n) ≤ δn.
If δ is small enough, this can be used to prove that M obeys weak ∞-norm multiplicativity. We
formalise this as the following observation.

Observation 6. For any projector M , if ‖MΓ‖∞ ≤ hSEP(M)α for some constant 0 < α ≤ 1, M ’s
corresponding quantum channel obeys weak ∞-norm multiplicativity with exponent α.

Of course, for many operators M , ‖MΓ‖∞ is much larger than 1. However, we will see that for
random quantum channels, with high probability this strategy does lead to a non-trivial bound.
Let M be the projector onto a subspace picked at random from the set of dimension r subspaces
of CdA ⊗ CdB , i.e. M is formed by taking the projector M0 onto a fixed dimension r subspace
S0 ⊆ CdA ⊗CdB , and conjugating M0 by a Haar-random unitary. Then we have the following easy
lower bound on hSEP(M).

Proposition 7. Let M be the projector onto an r-dimensional subspace of CdA ⊗ CdB . Then

hSEP(M) ≥ max

{
r

dAdB
,

1

dA

}
.

Proof. For the first part, pick a random product state |ψ〉 = |ψA〉 ⊗ |ψB〉 by choosing each of |ψA〉
and |ψB〉 uniformly at random (according to Haar measure). On average this achieves

Eψ[trMψ] = trM(EψA
ψA)⊗ (EψB

ψB) =
r

dAdB
.

The second part follows from the correspondence with quantum channels. Any state output from
the channel which corresponds to M must have largest eigenvalue at least 1/dA, so hSEP(M) ≥
1/dA.

On the other hand, we will prove the following upper bound.
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Theorem 8. Fix dA ≤ dB and r such that m := min{dA, r} ≥ 2(log2 dB)3/2, and let M be the
projector onto a random dimension r subspace of CdA⊗CdB . Then there exists a universal constant
C such that, if r ≥ dB/dA,

E‖MΓ‖∞ ≤
Cr1/2

d
1/2
A d

1/2
B

,

and if r ≤ dB/dA,

E‖MΓ‖∞ ≤
C

dA
.

Further, for any δ > 0, there exists a universal constant C ′ such that if r ≥ dB/dA then

Pr

[
‖MΓ‖∞ ≥ δ

28r1/2

d
1/2
A d

1/2
B

]
≤ C ′m16/3δ−(m/2)2/3

,

and if r ≤ dB/dA then

Pr

[
‖MΓ‖∞ ≥ δ

28

dA

]
≤ C ′m16/3δ−(m/2)2/3

.

Combining Proposition 7 and Theorem 8, we obtain Theorem 3, which we now state more
formally.

Theorem 9. Fix dA ≤ dB and r such that m := min{dA, r} ≥ 2(log dB)3/2, and let M be the
projector onto a random dimension r subspace of CdA⊗CdB . Then there exists a universal constant
C such that if r ≥ dB/dA, then

Pr
[
‖MΓ‖∞ ≥ hSEP(M)1/2−ε

]
≤ Cm16/32−(m/2)2/3

,

where ε = 9
log2(dAdB/r)

, and if r ≤ dB/dA, then

Pr
[
‖MΓ‖∞ ≥ hSEP(M)1−ε′

]
≤ Cm16/32−(m/2)2/3

,

where ε′ = 9
log2 dA

.

Proof. If r ≥ dB/dA, using Proposition 7 and taking δ = 2 in Theorem 8, we obtain

Pr[‖MΓ‖∞ ≥ hSEP(M)1/2−ε] ≤ Pr

[
‖MΓ‖∞ ≥

(
r

dAdB

)1/2−ε
]

= Pr

[
‖MΓ‖∞ ≥

29r1/2

d
1/2
A d

1/2
B

]
≤ C ′m16/32−(m/2)2/3

,

and a similar argument holds for r ≤ dB/dA.
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2.1 Related work

Important intuition that some version of Theorem 8 should hold comes from recent work by
Aubrun [4], who studied the asymptotic spectrum of partially transposed Wishart matrices (also
see [19] for some interesting related work). Such matrices, which are a natural model for random
mixed quantum states, can be formed as follows. Let G be a d× r matrix whose entries are picked
independently from the complex normal distribution N(0, 1), and set W = 1

dGG
†; we say that W

is a (d, r)-Wishart matrix2. Then one of Aubrun’s results can be stated as follows. For a fixed
constant 0 < α < 1, let Wd be a (d2, bαd2c)-Wishart matrix, understood as acting on the bipartite
space Cd ⊗ Cd, and set Yd = WΓ

d . Then

lim
d→∞

Pr[|λmax(Yd)−
√
α(2 +

√
α)| > ε] = 0.

As r = αd2, this implies that with high probability, λmax(Yd) = O(
√
r/d) for large d. As the

columns of G are approximately orthogonal for large d, one might expect that the operator norm
of the partial transpose of the projector onto a random r-dimensional subspace of Cd ⊗ Cd should
behave similarly to that of Yd; the present work demonstrates that this is indeed true.

As well as the final bound we obtain being of a similar order to that of Aubrun, the reader
familiar with [4] will notice that we need to prove some analogous combinatorial lemmas. However,
it does not seem clear that the results given here could be obtained as a formal consequence
of [4], or indeed vice versa; it would be interesting to determine whether this is the case. We also
note two minor technical differences between this work and [4]: Aubrun’s result is only stated for
dA = dB = d (some recent work by Banica and Nechita removes this restriction [8]), and only for α
constant (so r grows as a constant fraction of d). By contrast, here dA, dB and r can be essentially
arbitrary, although the bound we obtain becomes trivial if r is too large as a fraction of dAdB.

Some very recent work by Collins, Fukuda and Nechita [13] also uses related techniques to
those which we use here to prove Theorem 8 (e.g. calculations with Weingarten functions [20], see
Section 3.2 below). The goal of [13] was to find the state which, when input to a tensor product of
two random quantum channels (either the same channel, or a channel and its conjugate), achieves
minimal output entropy. A sequence of recent papers by Collins and Nechita [15, 16, 17, 18] carries
out a number of interesting quantum information-theoretic calculations using Weingarten functions.
This method seems to be a powerful tool which may be expected to find many other applications
in quantum information.

The rest of this paper is devoted to the proof of Theorem 8, which we now begin.

3 Proof of Theorem 8: moments of partially transposed projectors

As before, let M0 be the projector onto an arbitrary fixed r-dimensional subspace of CdA ⊗ CdB ,
where dA ≤ dB, and let M = UM0U

† be the result of applying a Haar-random unitary operator to
M0. Also let

Dd(π) :=
d∑

i1,...,ik=1

|iπ(1)〉|iπ(2)〉 . . . |iπ(k)〉〈i1| . . . 〈ik|

be the representation of the permutation π ∈ Sk which acts on k systems of dimension d by
permuting the systems; in the case d = dAdB, we simply omit d and write D(π) := DdAdB (π). Let

2Note that we use a different normalisation to [4].
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κ ∈ Sk be the permutation that maps i 7→ i + 1 for i = 1, . . . , k − 1, and maps k 7→ 1. For any
permutation π, let c(π) be the number of cycles in π.

In order to put good upper bounds on ‖MΓ‖∞, it suffices to understand E tr[(MΓ)k] for arbitrary
even k. Observe that

E tr[(MΓ)k] = EU tr[((UM0U
†)Γ)k]

= tr[EUD(κ)((U⊗kM⊗k0 (U †)⊗k)Γ)]

= tr[D(κ)ΓM (k)],

where for brevity we write
M (k) := EU [U⊗kM⊗k0 (U †)⊗k].

The second equality above is the observation that tr[Xk] = trD(κ)X⊗k (indeed, this holds for any
permutation π ∈ Sk such that c(π) = 1).

Theorem 8 will follow easily from the following result.

Theorem 10. There is a universal constant C such that, for any k satisfying 2k3/2 ≤ min{dA, r},

tr[D(κ)ΓM (k)] ≤

{
Ck826krk/2d

−k/2+1
A d

−k/2+1
B if r ≥ dB/dA

Ck826kd−k+1
A dB otherwise.

Proof of Theorem 8 (assuming Theorem 10). For any even k ≥ 2,

E‖MΓ‖∞ ≤ (E[tr(MΓ)k])1/k,

and taking k to be the largest even number smaller than (m/2)2/3, where m := min{dA, r} and we
assume that m ≥ 2(log2 dB)3/2, we obtain that there is a universal constant C ′ such that

E‖MΓ‖∞ ≤
C ′r1/2

d
1/2
A d

1/2
B

if r ≥ dB/dA,

and

E‖MΓ‖∞ ≤
C ′

dA
otherwise,

which is the first part of Theorem 8. (Note that we took m ≥ 2(log2 dB)3/2 in order to kill off terms

of the form d
1/k
B .) The concentration bound follows from Markov’s inequality, which implies that,

for any even k ≥ 2 and any x > 0,

Pr[‖MΓ‖∞ ≥ x] = Pr
[
‖MΓ‖k∞ ≥ xk

]
≤ E[tr(MΓ)k]

xk
;

and once again taking k to be the largest even number smaller than (m/2)2/3, we obtain

Pr

[
‖MΓ‖∞ ≥ δ

28r1/2

d
1/2
A d

1/2
B

]
≤ Ck8dAdB

(4δ)k
≤ C ′m16/3δ−(m/2)2/3

if r ≥ dB/dA, and similarly

Pr

[
‖MΓ‖∞ ≥ δ

28

dA

]
≤ Ck8dAdB

(4δ)k
≤ C ′m16/3δ−(m/2)2/3

if r ≤ dB/dA.
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We now proceed to prove Theorem 10. By Schur-Weyl duality, as M (k) commutes with local
unitaries and permutations of the k systems, it can be expanded in terms of permutations D(π) as

M (k) =
∑
π∈Sk

απD(π)

for some coefficients απ. When k is small with respect to dAdB, the matrices {D(π)} are almost
orthonormal with respect to the normalised Hilbert-Schmidt inner product, i.e.

1

(dAdB)k
tr[D(π)†D(σ)] ≈ 0 if π 6= σ.

It has been pointed out by Harrow that one can prove a number of interesting results in quantum
information based on this philosophy [23]. In our case, because of this near-orthonormality we
ought to have

απ ≈
tr[M (k)D(π−1)]

tr[D(π−1)D(π)]
=

rc(π)

(dAdB)k
;

the following key technical lemma, which we prove in Section 3.2, makes this approximate equality
quantitative.

Lemma 11. Assume k ≤ (r/2)2/3. Then there is a universal constant C such that

|απ| ≤ Ck24k rc(π)

(dAdB)k
.

Now it holds that

tr[D(κ)ΓM (k)] =
∑
π∈Sk

απ tr[D(κ)ΓD(π)] =
∑
π∈Sk

d
c(κπ)
A d

c(κ−1π)
B απ

≤ Ck24k
∑
π∈Sk

d
c(κπ)−k
A d

c(κ−1π)−k
B rc(π), (1)

where the second equality is the fact that

tr[D(κ)ΓD(π)] = tr[(DdA(κ)⊗DdB (κ)T )(DdA(π)⊗DdB (π))]

= tr[DdA(κ)DdA(π)] tr[DdB (κ−1)DdB (π)]

= d
c(κπ)
A d

c(κ−1π)
B ,

and the inequality is Lemma 11. In order to upper bound the quantity (1), we will use the following
lemma3, which we also prove afterwards, in Section 3.1.

Lemma 12. For any π, σ ∈ Sk,

c(π−1σ) + c(σ) ≤ k + c(π).

Further, for any π ∈ Sk and any integer δ ≥ 0, there are at most 4k−1k3δ/2+1 permutations σ ∈ Sk
such that

c(π−1σ) + c(σ) = k + c(π)− δ.
3Related combinatorial results appear in the literature, for example in [4]. However, the precise statement we

need here does not seem to have been written down.
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The exact constants in this lemma are not so important; what matters is that, when i + j ≈
k + c(π), there are not too many permutations σ such that c(π−1σ) = i, c(σ) = j (i.e. there are
O(4k poly(k)) of them, rather than Ω(k!)). Now define

N(a, b, c) := |{π ∈ Sk : c(κπ) = a, c(κ−1π) = b, c(π) = c}|

and rewrite (1) as

tr[D(κ)ΓM (k)] ≤ Ck24k

dkAd
k
B

∑
a,b,c∈{1,...,k}

N(a, b, c)daAd
b
Br

c.

By Lemma 12, we have N(a, b, c) = 0 whenever

a+ b > k + 2, a+ c > k + 1, or b+ c > k + 1.

Call the triple (a, b, c) valid when none of these events occur. Further, we have the bound from
Lemma 12 that for all valid triples,

N(a, b, c) ≤ 4k−1k(3/2)(k+2−max{a+b,a+c,b+c})+1.

We therefore obtain the upper bound

tr[D(κ)ΓM (k)] ≤ Ck424k

dkAd
k
B

max
(a,b,c) valid

{
4kk(3/2)(k−max{a+b,a+c,b+c})+4daAd

b
Br

c
}
.

Now observe that, as long as k3/2 ≤ min{dA, r}, this maximum will be achieved when at least
one of the validity inequalities is saturated, because otherwise we could increase the maximum by
at least a factor of min{dA, r}/k3/2, by increasing at least one of (a, b, c). Thus the upper bound
simplifies to

tr[D(κ)ΓM (k)] ≤ Ck826k

dkAd
k
B

max
(a,b,c) valid

{
daAd

b
Br

c
}
. (2)

We have seen that the triple (a, b, c) satisfies the linear inequalities 2 ≤ a+b ≤ k+2, 2 ≤ a+c ≤ k+1,
2 ≤ b + c ≤ k + 1. Therefore, the optimal value of the following simple linear program gives an
upper bound on log max(a,b,c) valid d

a
Ad

b
Br

c:

maximise (log dA)a+ (log dB)b+ (log r)c

subject to 2 ≤ a+ b ≤ k + 2

2 ≤ a+ c ≤ k + 1

2 ≤ b+ c ≤ k + 1,

a, b, c ≥ 0.

Performing standard manipulations gives the dual:

minimise (k + 1)u+ + (k + 1)v+ + (k + 2)w+ − 2(u− + v− + w−)

subject to u+ w ≥ log dA

v + w ≥ log dB

u+ v ≥ log r,

11



where the notation w+ (resp. w−) is used for the positive (resp. negative) part of x, i.e. w+ =
max{w, 0}, w− = −min{w, 0}. Observe that the following dual solution saturates all three in-
equalities:

u =
1

2
(log dA − log dB + log r) , v =

1

2
(− log dA + log dB + log r) , w =

1

2
(log dA + log dB − log r) .

As r ≤ dAdB and dA ≤ dB, in this solution v and w are always non-negative. If it additionally
holds that r ≥ dB/dA, so log dB ≥ log dA + log r, u is also non-negative, so we achieve an objective
value of

(k + 1)u+ (k + 1)v + (k + 2)w =
1

2
((k + 2) log dA + (k + 2) log dB + k log r) .

On the other hand, if r ≤ dB/dA, consider the solution

u = 0, v = log dB − log dA, w = log dA.

It is easy to verify that u, v, w ≥ 0 and this solution achieves an objective value of

log dA + (k + 1) log dB.

These two solutions correspond to upper bounds in (2) of

tr[D(κ)ΓM (k)] ≤

{
Ck826krk/2d

−k/2+1
A d

−k/2+1
B if r ≥ dB/dA

Ck826kd−k+1
A dB otherwise.

This completes the proof of Theorem 10.

3.1 Proof of Lemma 12: combinatorics of permutations

Our next task is to prove the above combinatorial lemma, which we restate for convenience.

Lemma 12 (restated). For any π, σ ∈ Sk,

c(π−1σ) + c(σ) ≤ k + c(π).

Further, for any π ∈ Sk and any integer δ ≥ 0, there are at most 4k−1k3δ/2+1 permutations σ ∈ Sk
such that

c(π−1σ) + c(σ) = k + c(π)− δ.

The proof will rely on some previously known combinatorial results regarding permutations; we
first review some basic ideas in this area. Consider the Cayley graph whose vertices are elements
of Sk and where two vertices π, σ are connected if and only if there exists a transposition τ such
that τπ = σ. For any permutations π, σ, let d(π, σ) be the shortest-path metric with respect to
this graph (i.e. the minimum number of transpositions required to change π into σ). This is indeed
a metric as d(π, σ) ≤ d(π, ρ) + d(ρ, σ) for any ρ ∈ Sk. Also observe that d(π, σ) = d(σ, π) and
d(π, σ) = d(π−1σ, e), where e denotes the identity permutation.

Let τ be a transposition exchanging elements i and j. If π is given in cycle notation as π =
(c1)(c2) . . . (c`), where each cp is a sequence of integers, then the permutation τπ takes one of
two forms depending on whether the transposed elements are in the same cycle or not. Let c =
(c1, . . . , cm) and d = (d1, . . . , dm′) be two cycles in π. If elements ci and cj are transposed, c splits
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into two cycles (c1, . . . , ci−1, cj , . . . , cm) and (ci, . . . , cj−1). If elements ci and dj are transposed,
cycles c and d are joined to produce the cycle (c1, . . . , ci−1, dj , dj+1, . . . , dm′ , d1, . . . , dj−1, ci, . . . , cm).
Thus performing a transposition τ always either increases or decreases the number of cycles by
exactly 1, and in each case the result preserves the ordering of elements within the original cycles.

This implies that, for any π ∈ Sk, d(π, e) = k − c(π), because `− 1 transpositions are required
to split a cycle of length ` into ` cycles of length 1, and this can be achieved. This immediately
implies the first part of Lemma 12 (which is well-known). Simply use the triangle inequality:

c(π−1σ) + c(σ) = k − d(π, σ) + k − d(e, σ) ≤ 2k − d(e, π) = k + c(π). (3)

Also note that, if (τ1, . . . , τm) is a sequence of transpositions such that

τm . . . τ1π = σ,

it holds that m− d(π, σ) is a multiple of 2.

We now turn to the second part of Lemma 12. We first observe that the special case δ = 0 has
a simple (and well-known, e.g. see [32]) proof.

Lemma 13. For any permutation π ∈ Sk,

|{σ : c(π−1σ) + c(σ) = k + c(π)}| ≤ Ck,

where Ck is the k’th Catalan number

Ck :=
1

k + 1

(
2k

k

)
.

Proof. The number of permutations σ ∈ Sk such that c(π−1σ) + c(σ) = k + c(π) is equal to

|{σ : d(π, σ) + d(σ, e) = d(π, e)}|, (4)

or in other words the same as the number of permutations which lie on a shortest path (“geodesic”)
between π and e. Any such permutation must be obtained from π by a sequence of transpositions,
each of which splits a cycle of π in two. Permutations on the shortest path between a cycle of
length ` and the identity are known to be isomorphic to non-crossing partitions of {1, . . . , `} [9],
which are counted by the Catalan numbers C`. Therefore, an overall upper bound on (4) is

c(π)∏
i=1

Cci ≤ Ck,

where ci is the length of the i’th cycle of π and we use the simple upper bound CaCb ≤ Ca+b, valid
for all integers a, b ≥ 1.

For the more complicated case of δ > 0, we will rely on a result of Adrianov [1]. This work
enumerates the so-called bicoloured unicellular maps with m white and n black vertices and k
edges, one of which is marked; this is known to be equivalent to the problem of counting pairs of
permutations π, σ ∈ Sk such that c(π) = m, c(σ) = n and πσ is a fixed cycle of length k [1]. For
π ∈ Sk, write

Ng(π) := |{σ : c(πσ−1) + c(σ) = k + c(π)− 2g}| = |{σ : d(π, σ) + d(σ, e) = d(π, e) + 2g}|.

By Lemma 13 and the above arguments, Ng(π) = 0 for all g < 0 and for non-integer g. Also set
Bg(k) := Ng(κ), where κ ∈ Sk is an arbitrary cycle of length k. Then the following result holds.
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Theorem 14 (Adrianov [1], Corollary 3). Bg(k) satisfies the recurrence

(k + 1)Bg(k) = 2(2k − 1)Bg(k − 1) + (k − 2)(k − 1)2Bg−1(k − 2)

with initial conditions
B0(1) = 1, B0(2) = 2, Bg(k) = 0 for g < 0.

Using Theorem 14, we now complete the proof of Lemma 12. We have

Bg(k) ≤ 4Bg(k − 1) + (k − 1)2Bg−1(k − 2),

and we now apply induction on g to upper bound this quantity. For g = 0, we have B0(k) ≤ 4k−1

(agreeing with the known exact values B0(k) = Ck). For any g > 0 we have Bg(1) = 0, and more
generally

Bg(k) ≤ 4
(
4Bg(k − 2) + (k − 2)2Bg−1(k − 3)

)
+ (k − 1)2Bg−1(k − 2)

≤ · · · ≤
k−1∑
i=1

4k−i−1i2Bg−1(i− 1).

We now use the inductive hypothesis that Bg−1(k) ≤ 4k−1k3(g−1) for all k, which implies that

Bg(k) ≤
k−1∑
i=1

4k−i−1i24i−2(i− 1)3(g−1) ≤ 4k−3
k−1∑
i=1

i3g−1

≤ 4k−3

∫ k

1
x3g−1dx ≤ 4k−3k

3g

3g
≤ 4k−1k3g.

We use this to show that, for any k ≥ 2, any π ∈ Sk and any permutation κ ∈ Sk which consists of
one cycle of length k,

g∑
h=0

Nh(π) ≤
g∑

h=0

Nh(κ) ≤ 4k−1k3g+1. (5)

The argument for the first inequality is as follows. Let κ′ be a cycle of length k which minimises
d(κ′, π). Then, for any permutation σ such that d(π, σ) + d(σ, e) = d(π, e) + 2g, it holds that

d(κ′, σ) + d(σ, e) ≤ d(κ′, π) + d(π, σ) + d(σ, e) = d(κ′, π) + d(π, e) + 2g = d(κ′, e) + 2g,

where the second equality holds because π is on the shortest path between κ′ and e. Thus σ
contributes to Nh(κ′) for some h ≤ g. Just looking at one term in the sum on the left-hand side of
(5), we have that Ng(π) ≤ 4k−1k3g+1 for all π ∈ Sk. To complete the proof of Lemma 12, simply
observe that

|{σ : c(π−1σ) + c(σ) = k + c(π)− δ}| = Nδ/2(π)

for even δ, and |{σ : c(π−1σ) + c(σ) = k + c(π)− δ}| = 0 for odd δ.

3.2 Proof of Lemma 11: permutations and Weingarten functions

Let A be the symmetric matrix defined by Aπσ = dc(π
−1σ)−k, for π, σ ∈ Sk. Given some matrix M

such that M =
∑

π∈Sk
απDd(π), A determines the coefficients απ as follows:

trMDd(σ) =
∑
π∈Sk

απd
c(πσ) = dk

∑
π∈Sk

Aσ−1παπ.
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Letting v and w be the vectors defined by

vσ =
1

dk
trMDd(σ

−1), wπ = απ,

this is equivalent to the claim that Aw = v. Thus, if A−1 exists, we can determine the απ coefficients
by computing A−1v. Note that A is approximately equal to the identity when d is large with respect
to k, as its off-diagonal entries rapidly decay [23].

In order to evaluate the entries of A−1, we define the Weingarten function [20]

Wg(π) :=
1

(k!)2

∑
λ`k

(fλ)2

sλ(1×d)
χλ(π).

This expression uses standard notation from the representation theory of the symmetric group
(see [7] for an accessible introduction). The sum is over partitions λ of {1, . . . , k}; fλ is the
number of standard Young tableaux with shape λ; χλ(π) is the character of the symmetric group
corresponding to partition λ, evaluated at π; and finally sλ(1×d) is the Schur function corresponding
to the partition λ, which has the explicit expression

sλ(1×d) =
fλ

k!

∏
(i,j)∈λ

(d+ j − i).

Then we have the following lemma, which is well-known but we prove for completeness in Appendix
A.

Lemma 15.
A−1
πσ = dk Wg(π−1σ).

For small k, one can use this expression to calculate the coefficients απ exactly, but as k increases
the Weingarten function becomes cumbersome to work with. In order to address this, we now give
a general upper bound on this function.

Lemma 16. For any k ≤ d2/3,

|Wg(π)| ≤ 3Ck−1

2
dc(π)−2k,

where Ck−1 is the (k − 1)’th Catalan number.

The reader familiar with the work [20] may wonder why we do not use the seemingly tighter
bound given there that

Wg(π) = dc(π)−2k(Moeb(π) +O(d−2)),

where Moeb(π) is a function which can be shown to be upper bounded by Ck−1; the reason is that
the O(d−2) term in this bound hides an unspecified dependence4 on k. Also note that the very
recent work [14] gives an elegant alternative upper bound on the Weingarten function, but this
bound does not seem to suffice for us to obtain tight results.

To prove Lemma 16, we will use a result of Matsumoto and Novak [33, 30, 31] which states
that the Weingarten function can be expanded in terms of primitive factorisations in the symmetric
group. This will allow us to use combinatorial bounds on such factorisations to obtain corresponding
bounds on the Weingarten function. A primitive factorisation of a permutation π ∈ Sk is a sequence
of transpositions (s1, t1), . . . , (s`, t`) such that the product (s1, t1) . . . (s`, t`) = π and t1 ≤ t2 ≤ · · · ≤
t`. Define w`(π) to be the number of primitive factorisations of π into ` transpositions.

4I would like to thank Carlos González Guillén for pointing this out.
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Theorem 17 ([33, 30, 31]). For any k ≤ d, and any π ∈ Sk,

Wg(π) =
1

dk

∞∑
`=0

w`(π)

(
−1

d

)`
.

Note that this expansion implies that w`(π) depends only on the cycle type of π. Also observe
that, by the same argument as used in Section 3.1, w`(π) = 0 unless ` = k − c(π) + 2g, for integer
g ≥ 0. In the case where π is a cycle of length k (called a k-cycle in what follows), Wg(π) can be
evaluated explicitly.

Theorem 18 ([12, 31]). Fix k ≤ d and let κ ∈ Sk be an arbitrary k-cycle. Then

Wg(κ) =
(−1)k+1Ck−1

d(d2 − 12) . . . (d2 − (k − 1)2)
,

where Ck−1 is the (k − 1)’th Catalan number.

Proof of Lemma 16. We first show that, for arbitrary π ∈ Sk, and arbitrary integer g ≥ 0,

wk−c(π)+2g(π) ≤ wk−1+2g(κ), (6)

where κ is an arbitrary k-cycle. For any permutation π, there exists a k-cycle κπ such that κπ can be
obtained from π using d(κπ, π) primitive transpositions (simply apply the sequence of transpositions
(j1, k)(j2, k) . . . (jc(π)−1, k) to π, where {j1, . . . , jc(π)−1} contains one element from each of the cycles
of π, except the cycle containing k). Thus each distinct primitive factorisation of π of length a
gives a distinct primitive factorisation of κπ of length exactly a+ c(π)− 1, which proves inequality
(6). Hence we have

|Wg(π)| =
1

dk

∞∑
`=1

w`(π)d−` = dc(π)−2k
∞∑
g=0

wk−c(π)+2gd
−2g ≤ dc(π)−2k

∞∑
g=0

wk−1+2g(κ)d−2g

= dc(π)−1|Wg(κ)|,

where the inequality is (6). Now we can upper bound

d2k−1|Wg(κ)| = Ck−1

(1− 12/d2) . . . (1− (k − 1)2/d2)
≤ Ck−1

1− 1
d2

∑k−1
i=1 i

2
≤ 3Ck−1

2
,

where we use k3 ≤ d2. This completes the proof of Lemma 16.

Lemma 16 gives that

|A−1
πσ | ≤

3Ck−1

2
dc(π

−1σ)−k (7)

for all π, σ ∈ Sk. We now use this to obtain an upper bound on the coefficients occurring in the
decomposition of the specific matrix M (k) in terms of permutations, and hence prove Lemma 11.
In fact, we prove the following lemma, from which Lemma 11 immediately follows by observing
that Ck−1 ≤ 4k−1/k.
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Lemma 19. Let M0 be the projector onto a fixed r-dimensional subspace of Cd, let k be an arbitrary
integer satisfying 1 ≤ k ≤ (r/2)2/3, and set

M (k) = EU [U⊗kM⊗k0 (U †)⊗k].

Write M (k) =
∑

π∈Sk
απDd(π). Then

|απ| ≤ 3Ck−1k
24k−1 r

c(π)

dk
.

Proof. As tr[M (k)Dd(π
−1)] = rc(π) for all π ∈ Sk, by (7) we have

απ =
1

dk

∑
σ∈Sk

A−1
πσr

c(σ) ≤ 3Ck−1

2

∑
σ∈Sk

dc(π
−1σ)−2krc(σ).

Rewriting the sum and using Lemma 12, we obtain

|απ| ≤
3Ck−1

2
d−2k

k∑
i=1

di
∑

σ,c(π−1σ)=i

rc(σ)

=
3Ck−1

2
d−2k

k∑
i=1

di
∑
j

rj |{σ : c(π−1σ) = i, c(σ) = j}|

≤ 3Ck−1

2
d−2k

k∑
i=1

di
k+c(π)−i∑
j=1

rj4k−1k(3/2)(k+c(π)−(i+j))+1

= 3Ck−1d
−2k22k−3k(3/2)(k+c(π))+1

k∑
i=1

(
d

k3/2

)i k+c(π)−i∑
j=1

( r

k3/2

)j
≤ 3Ck−1d

−2k4k−1k(3/2)(k+c(π))+1
k∑
i=1

(
d

k3/2

)i ( r

k3/2

)k+c(π)−i

= 3Ck−1d
−2kk4k−1rk+c(π)

k∑
i=1

(
d

r

)i
≤ 3Ck−1d

−2kk24k−1rk+c(π)

(
d

r

)k
= 3Ck−1d

−kk24k−1rc(π).

Most of these steps are self-explanatory; in the third inequality we use the fact that r/2 ≥ k3/2,
and in the fourth the fact that r ≤ d.

4 Conclusion

We have shown that random channels obey weak multiplicativity with high probability. When
combined with the results of Christandl, Schuch and Winter [10, 11] on the antisymmetric sub-
space, this implies that two of the constructions of channels which display the strongest known
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two-copy multiplicativity violations are in fact weakly multiplicative when the number of copies
increases. This naturally leads one to conjecture that in fact all channels satisfy some form of weak
multiplicativity (see [25] for a similar conjecture). However, note that the proof strategy used here
fails badly for the antisymmetric subspace, as

PΓ
anti =

1

2

(
I − FΓ

)
=

1

2
(I − dΦ) ,

where F is the flip (swap) operator which interchanges two systems and Φ is a maximally entangled
state. Hence we have ‖PΓ

anti‖∞ = (d − 1)/2, which does not provide a useful upper bound on
hSEP(Panti). It would be very interesting to find a single proof strategy which works in both cases.

It is also interesting to observe that our main result that random channels obey weak p-norm
multiplicativity with exponent (1/2 − o(1))(1 − 1/p) becomes weaker as p → 1, whereas known
violations of multiplicativity are strongest at p = ∞. It is therefore tempting to conjecture that
this exponent could be improved to 1/2 − o(1) for all p > 1, or even to (1/2 − o(1))f(p) for some
function f(p) which decreases with p.
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A Proof of Lemma 15: Exact expression for A−1

We finally prove Lemma 15.

Lemma 15 (restated).

A−1
πσ =

dk

(k!)2

∑
λ`k

χλ(π−1σ)
(fλ)2

sλ(1×d)
= dk Wg(π−1σ).

Proof. We simply verify that

(A−1A)πσ =
∑
τ∈Sk

A−1
πτAτσ

=
1

(k!)2

∑
τ∈Sk

(∑
λ`k

χλ(π−1τ)
(fλ)2

sλ(1×d)

)
dc(τ

−1σ)

=
1

(k!)2

∑
λ,µ`k

(fλ)2

sλ(1×d)
sµ(1×d)

∑
τ∈Sk

χλ(π−1τ)χµ(τ−1σ)

=
1

k!

∑
λ,µ`k

fλ

sλ(1×d)
sµ(1×d)χλ(π−1σ)δλµ

=
1

k!

∑
λ`k

fλχλ(π−1σ) = δπσ.
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The third equality above is the well-known relation
∑

µ`k sµ(1×d)χµ(π) = dc(π) [7], and the fourth

and sixth are character orthogonality relations (observing that fλ = χλ(e)).
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