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Consider the task of verifying that a given quantum device, designed to produce a particular
entangled state, does indeed produce that state. One natural approach would be to characterise
the output state by quantum state tomography; or alternatively to perform some kind of Bell test,
tailored to the state of interest. We show here that neither approach is optimal amongst local
verification strategies for two qubit states. We find the optimal strategy in this case and show
that quadratically fewer total measurements are needed to verify to within a given fidelity than in
published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also
give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that
the strategy be constructed from local, non-adaptive and non-collective measurements only incurs
a constant-factor penalty over a strategy without these restrictions.

Efficient and reliable quantum state preparation is a
necessary step in the maturation of all quantum technolo-
gies. However, characterisation and verification of such
devices is typically a time-consuming and computation-
ally difficult process. For example, tomographic recon-
struction of a state of 8 ions required taking ∼ 650, 000
measurements over 10 hours, and a statistical analy-
sis that took far longer [1]; verification of a state of a
small number of qubits in photonics is similarly challeng-
ing [2, 3]. One may instead resort to non-tomographic
methods to verify that a device reliably outputs a par-
ticular state, but such methods typically either: (a) as-
sume that the verifier already knows that the output
state is within some special family of states, for exam-
ple in compressed sensing [4, 5] or matrix product state
tomography [6]; or (b) extract only partial information
about the state, such as when estimating entanglement
witnesses [7, 8].

Here, we derive the optimal local verification strategy
for common entangled states. We also compare its per-
formance to the bounds for non-adaptive quantum state
tomography in [9] and the fidelity estimation protocol
in [10]. In particular, we demonstrate non-adaptive veri-
fication strategies for arbitrary two-qubit states and sta-
bilizer states of N qubits that are constructed from lo-
cal measurements and require quadratically fewer copies
to verify to within a given fidelity than are required for
these previous protocols. Moreover, the requirement that
the measurements be local incurs only a constant factor
penalty over the best non-local strategy, even if collective
and adaptive measurements are allowed.

Premise. Colloquially, a quantum state verification
protocol is a procedure for gaining confidence that the
output of some device is a particular state rather than
any other. However, for any scheme involving measure-
ments on a finite number of copies of the output state,
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one can always find an alternative state within some suf-
ficiently small distance that is guaranteed to fool the ver-
ifier. Furthermore, the outcomes of measurements are, in
general, probabilistic and a verification protocol collects
a finite amount of data; and so any statement about veri-
fication can only be made as a hypothesis test with some
finite statistical power. The only meaningful statement
to make in this context is the statistical inference that
the state output from a device sits within a ball of a cer-
tain small radius (given some metric) of the correct state,
with some statistical confidence. Thus the outcome of a
state verification protocol is typically a statement like:
“the device outputs copies of a state that has 99% fidelity
with the target, with 90% probability”. Note that this is
different to the setting of state tomography; a verification
protocol answers the question: “Is the state |ψ〉?” rather
than the more involved tomographic question: “Which
state do I have?”. Hence, unlike tomography, a verifi-
cation protocol may give no information about the true
state if the protocol fails.

We now outline the framework for verification proto-
cols that we consider. Take a verifier with access to some
set of allowed measurements, and a device that produces
states σ1, σ2, . . . σn which are supposed to all be equal
to |ψ〉, but may in practice be different from |ψ〉 or each
other. We have the promise that either σi = |ψ〉〈ψ| for
all i, or 〈ψ|σi|ψ〉 ≤ 1 − ε for all i. The verifier’s goal
is to determine which is the case with worst-case failure
probability δ.

The verification protocol proceeds as follows. For each
σi, the verifier randomly draws a binary-outcome projec-
tive measurement {Pj ,1− Pj} from a prespecified set S
with some probability µij . Label the outcomes “pass” and
“fail”; in a “pass” instance the verifier continues to state
σi+1, otherwise the protocol ends and the verifier con-
cludes that the state was not |ψ〉. If the protocol passes
on all n states, then the verifier concludes that the state
was |ψ〉. We impose the constraint that every Pj ∈ S
always accepts in the case that σi = |ψ〉〈ψ|, ∀i (i.e. that
|ψ〉 is in the “pass” eigenspace of every projector Pj ∈ S).
This may appear to be a prohibitively strong constraint,
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but we later demonstrate that it is both achievable for
the sets of states we consider and is always asymptoti-
cally favourable to the verifier.

The maximal probability that the verifier passes on
copy i is

Pr[Pass on copy i] = max
σ

〈ψ|σ|ψ〉≤1−ε
tr(Ωiσ), (1)

where Ωi =
∑
j µ

i
jPj . However, the verifier seeks to min-

imise this quantity for each Ωi and hence it suffices to
take a fixed set of probabilities and projectors {µj , Pj},
independent of i. Then the verifier-adversary optimisa-
tion is

min
Ω

max
σ

〈ψ|σ|ψ〉≤1−ε
tr(Ωσ) := 1−∆ε, (2)

where Ω =
∑
j µjPj . We call Ω a strategy. ∆ε is the

expected probability that the state σ fails a single mea-
surement. Then the maximal worst-case probability that
the verifier fails to detect that we are in the “bad” case
that 〈ψ|σi|ψ〉 ≤ 1− ε for all i is (1−∆ε)

n, so to achieve
confidence 1− δ it is sufficient to take

n ≥ ln δ−1

ln((1−∆ε)−1)
≈ 1

∆ε
ln δ−1. (3)

Protocols of this form satisfy some useful operational
properties:

A. Non-adaptivity. The strategy is fixed from the out-
set and depends only on the mathematical descrip-
tion of |ψ〉, rather than the choices of any prior
measurements or their measurement outcomes.

B. Future-proofing. The strategy prescription is inde-
pendent of the infidelity ε, and gives a viable strat-
egy for any choice of ε. Thus an experimentalist
verifying a state |ψ〉 is able to arbitrarily decrease
the infidelity ε within which verification succeeds by
simply taking more total measurements according
to the strategy prescription, rather than modifying
the details of the strategy itself. Also, the experi-
mentalist is free to choose an arbitrary ε > 0 and be
guaranteed that the strategy still works in verifying
|ψ〉.

One may consider more general non-adaptive verifica-
tion protocols given S and {σi}, where measurements
do not output “pass” with certainty given input |ψ〉, and
the overall determination of whether to accept or reject is
based on a more complicated estimator built from the rel-
ative frequency of “pass” and “fail” outcomes. However,
we show in the Supplemental Material that strategies
of this type require, asymptotically, quadratically more
measurements in ε than those where |ψ〉 is always ac-
cepted. We will also see that the protocol outlined above
achieves the same scaling with ε and δ as the globally op-
timal strategy, up to a constant factor, and so any other
strategy (even based on non-local, adaptive or collective

measurements) would yield only at most constant-factor
improvements.

It is straightforward to show, given no constraints on
the verifier’s measurement prescription, that the optimal
strategy is to just project on to |ψ〉. In this case, the
fewest number of measurements needed to verify to confi-
dence 1−δ and fidelity 1−ε is nopt = −1

ln(1−ε) ln 1
δ ≈

1
ε ln 1

δ

(see the Supplemental Material). However, in general
the projector |ψ〉〈ψ| will be non-local. Non-local mea-
surements have the disadvantage of being harder to im-
plement experimentally. This is particularly problem-
atic in quantum optics, where deterministic, unambigu-
ous discrimination of a complete set of Bell states is im-
possible [11–13]. Thus, for each copy there is a fixed
probability of the measurement returning a “null” out-
come; hence, regardless of the optimality of the verifica-
tion strategy, just the probability of successfully carrying
out the protocol decreases exponentially with the number
of measurements. Instead, we seek optimal measurement
strategies that satisfy some natural properties that make
them both physically realisable and useful to a real-world
verifier. We optimise over strategies with the following
properties:

1. Locality. S contains only measurements corre-
sponding to local observables, acting on a single
copy of the output state.

2. Projective measurement. S contains only binary-
outcome, projective measurements, rather than
more elaborate POVMs.

3. Trust. The physical operation of each measurement
device is faithful to its mathematical description; it
behaves exactly as expected.

We highlight the trust requirement for two reasons:
first, in order to distinguish from self-testing proto-
cols [14–16], where this property is not assumed; and
second, to clarify that we assume that there is no exper-
imental error in the measurement process.

Given this prescription and the set of physically-
motivated restrictions, we now derive the optimal ver-
ification strategy for some important classes of states.
To illustrate our approach, we start with the case of a
Bell state before generalising to larger classes of states.

Bell state verification. Consider the case of verifying
the Bell state |Φ+〉 = 1√

2
(|00〉 + |11〉). If we maintain a

strategy where all measurements accept |Φ+〉 with cer-
tainty, then it must be the case that Ω|Φ+〉 = |Φ+〉.
The optimisation problem for the verifier-adversary pair
is then given by ∆ε:

∆ε = max
Ω

min
σ

〈ψ|σ|ψ〉≤1−ε
tr[Ω(|Φ+〉〈Φ+| − σ)]. (4)

However, it is shown in the Supplemental Material that
it is never beneficial for the adversary to: (a) choose a
non-pure σ; or (b) to pick a σ such that 〈ψ|σ|ψ〉 < 1− ε.



3

Rewrite σ = |ψε〉〈ψε|, where |ψε〉 =
√

1− ε|Φ+〉+
√
ε|ψ⊥〉

for some state |ψ⊥〉 such that 〈Φ+|ψ⊥〉 = 0. Then,

∆ε = max
Ω

min
|ψ⊥〉

ε(〈Φ+|Ω|Φ+〉 − 〈ψ⊥|Ω|ψ⊥〉)

− 2
√
ε(1− ε)Re〈Φ+|Ω|ψ⊥〉. (5)

Given that Ω|Φ+〉 = |Φ+〉, we can simplify by noting
that 〈Φ+|Ω|Φ+〉 = 1 and 〈Φ+|Ω|ψ⊥〉 = 0. Thus,

∆ε = max
Ω

min
|ψ⊥〉

ε(1− 〈ψ⊥|Ω|ψ⊥〉)

= ε(1−min
Ω

max
|ψ⊥〉
〈ψ⊥|Ω|ψ⊥〉), (6)

where the verifier has access to Ω and the adversary con-
trols |ψ⊥〉. Given that |Φ+〉 is itself an eigenstate of Ω,
the worst-case scenario for the verifier is for the adver-
sary to choose |ψ⊥〉 as the eigenstate of Ω with the next
largest eigenvalue. If we diagonalise Ω we can write Ω =
|Φ+〉〈Φ+| +

∑3
j=1 νj |ψ⊥j 〉〈ψ⊥j |, where 〈Φ+|ψ⊥j 〉 = 0 ∀j.

The adversary picks the state |ψ⊥max〉 with correspond-
ing eigenvalue νmax = maxj νj . Now, consider the trace
of Ω: if tr(Ω) < 2 then the strategy must be a convex
combination of local projectors, at least one of which is
rank 1. However, the only rank 1 projector that satisfies
P+|Φ+〉 = |Φ+〉 is P+ = |Φ+〉〈Φ+|, which is non-local;
and therefore tr(Ω) ≥ 2. Combining this with the ex-
pression for Ω above gives tr(Ω) = 1 +

∑
j νj ≥ 2. It is

always beneficial to the verifier to saturate this inequal-
ity, as any extra weight on the subspace orthogonal to
|Φ+〉 can only increase the chance of being fooled by the
adversary. Thus the verifier is left with the optimisation

min νmax = min max
k

νk,
∑
k

νk = 1. (7)

It is clear that this expression is optimised for νj = 1
3 , j =

1, 2, 3. In this case, Ω = 1
3 on the subspace orthogonal

to the state |Φ+〉. Then we can rewrite Ω as

Ω =
1

3
(P+
XX + P+

−Y Y + P+
ZZ), (8)

where P+
XX is the projector onto the positive eigensub-

space of the tensor product of Pauli matrices XX (and
likewise for −Y Y and ZZ). The operational interpre-
tation of this optimal strategy is then explicit: for each
copy of the state, the verifier randomly chooses a mea-
surement setting from the set {XX,−Y Y,ZZ} all with
probability 1

3 , and accepts only on receipt of outcome
“+1” on all n measurements. Note that we could have
expanded Ω differently, for example by conjugating each
term in the above expression by any local operator that
leaves |Φ+〉 alone; the decomposition above is only one
of a family of optimal strategies. As for scaling, we know
that ∆ε = ε(1 − νmax) = 2ε

3 , and the number of mea-
surements needed to verify the Bell state |Φ+〉 is then

nopt =
[
ln
(

3
3−2ε

)]−1

ln 1
δ ≈

3
2ε ln 1

δ . Note that this is

only worse than the optimal non-local strategy by a fac-
tor of 1.5.

In comparison, consider instead verifying a Bell state
by performing a CHSH test. Then even in the case
of trusted measurements, the total number of mea-
surements scales like O

(
1
ε2

)
[17], which is quadrati-

cally worse than the case of measuring the stabilizers
{XX,−Y Y,ZZ}. This suboptimal scaling is shared by
the known bounds for non-adaptive quantum state to-
mography with single-copy measurements in [9] and fi-
delity estimation in [10]. See [18–20] for further dis-
cussion of this scaling in tomography. Additionally,
two-qubit tomography potentially requires five times as
many measurement settings. We also note that a similar
quadratic improvement was derived in adaptive quantum
state tomography in [21], in the sample-optimal tomo-
graphic scheme in [22] and in the quantum state certifica-
tion scheme in [23]; however, the schemes therein assume
access to either non-local or collective measurements.

Arbitrary states of two qubits. The goal is unchanged
for other pure states of two qubits: we seek strategies
that accept the target state with certainty, and hence
achieve the asymptotic advantage outlined for Bell states
above. It is not clear from the outset that such a strategy
can be constructed for general states, in a way that is as
straightforward as the previous construction. However,
we show that for any two-qubit state not only does such
a strategy exist, but we can optimise within the family of
allowable strategies and give an analytic expression with
optimal constant factors.

We first remark that we can restrict to states of the
form |ψθ〉 = sin θ|00〉+cos θ|11〉 without loss of generality,
as any state is locally equivalent to a state of this form,
for some θ. Specifically, given any two qubit state |ψ〉
with optimal strategy Ωopt, a locally equivalent state (U⊗
V )|ψ〉 has optimal strategy (U ⊗ V )Ωopt(U ⊗ V )†. The
proof of this statement can be found in the Supplemental
Material. Given the restriction to this family of states,
we can now write down an optimal verification protocol.

Theorem 1. Any optimal strategy for verifying a state
of the form |ψθ〉 = sin θ|00〉 + cos θ|11〉 for 0 < θ < π

2 ,
θ 6= π

4 that accepts |ψθ〉 with certainty and satisfies the
properties of locality, trust and projective measurement,
can be expressed as a strategy involving four measurement
settings:

Ωopt = α(θ)P+
ZZ

+
1− α(θ)

3

3∑
k=1

[1− (|uk〉 ⊗ |vk〉)(〈uk| ⊗ 〈vk|)] ,

for α(θ) =
2− sin(2θ)

4 + sin(2θ)
, (9)

where P+
ZZ is the projector onto the positive eigenspace

of the Pauli operator ZZ, and the sets of states {|uk〉}
and {|vk〉} are written explicitly in the Supplemental Ma-
terial. The number of measurements needed to verify to
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FIG. 1. The number of measurements needed to verify the
state |ψθ〉 = sin θ |00〉 + cos θ |11〉, as a function of θ, using
the optimal strategy. See Eq. 10. Here, 1 − ε = 0.99 and
1− δ = 0.9.
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FIG. 2. A comparison of the total number of measurements
required to verify to fidelity 1 − ε for the strategy derived
here, versus the known bounds for estimation up to fidelity
1 − ε using non-adaptive tomography in [9] and the fidelity
estimation protocol in [10], and the globally optimal strategy
given by projecting onto |ψ〉. Here, 1− δ = 0.9 and θ = π
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within infidelity ε and with power 1− δ satisfies

nopt ≈ (2 + sin θ cos θ)ε−1 ln δ−1. (10)

Proof sketch. The full proof is included in the Supple-
mental Material, and we give a sketch here. The basic
principle is to consider the most general form that a mea-
surement strategy Ω could take, to narrow down its form
in a succession of steps, and then to show that there is
an explicit convex combination of projectors of the de-
sired form that equates to this optimised Ω. The first
step is to rule out families of measurements that are for-
bidden while maintaining that the strategy accepts |ψ〉
with certainty (analogously to the remark regarding rank
1 projectors in the Bell state case, above). The sec-
ond step is to note that, given a strategy for verifying
the state |ψ〉 and an operator U under which |ψ〉 is in-
variant, conjugating the strategy by U produces a valid
strategy of equal performance. As an example, the state
|ψθ〉 = sin θ|00〉+cos θ|11〉 is invariant under swapping of
the first and second qubit, which implies that the “swap-
averaged” strategy Ω′ = 1

2 (Ω+ΩSWAP ) performs at least
as well at verifying |ψ〉 as Ω. Moreover, we can average
the strategy over multiple choices of U and be left with
a compound strategy that is at least as good, which re-
duces the possible form for Ω considerably. We can then
explicitly parameterise the resulting strategy, and opti-
mise to derive maximum benefit to the verifier. For a
two-qubit state of the form |ψθ〉 = sin θ|00〉 + cos θ|11〉,
this is enough to narrow down Ω to the restricted form
above.

Note that the special cases where the state |ψθ〉 takes a
particular form, θ = 0, θ = π

2 and θ = π
4 are omitted from

this theorem. In these cases, the state admits a wider
choice of measurements that accept |ψθ〉 with certainty.
We have already treated the Bell state case θ = π

4 above.
In the other two cases, the state |ψθ〉 is product and hence
the globally optimal measurement, just projecting onto
|ψθ〉, is a valid local strategy. We note that this leads to
a discontinuity in the number of measurements needed
as a function of θ, for fixed ε (as may be seen in Fig. 1).
This arises since our strategies are designed to have the
optimal scaling

(
O
(

1
ε

))
for fixed θ, achieved by having

strategies that accept |ψ〉 with probability 1.

As for scaling, in Fig. 2 the number of measurements
required to verify a particular two-qubit state of this
form, for three protocols, is shown. The optimal pro-
tocol derived here gives a marked improvement over the
previously published bounds for both tomography [9] and
fidelity estimation [10] for the full range of ε, for the given
values of θ and δ. The asymptotic nature of the advan-
tage for the protocol described here implies that the gap
between the optimal verification scheme and quantum
state tomography only grows as the requirement on ε be-
comes more stringent. Note also that the optimal local
strategy is only marginally worse than the best possible
strategy of just projecting onto |ψ〉.

Stabilizer states. Additionally, it is shown in the Sup-
plemental Material that we can construct a strategy
with the same asymptotic advantage for any stabilizer
state, by drawing measurements from the stabilizer group
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(where now we only claim optimality up to constant fac-
tors). The derivation is analogous to that discussed above
for the Bell state. For a state of N qubits, a viable strat-
egy constructed from stabilizers must consist of at least
the N stabilizer generators of |ψ〉. This is because a
set of k < N stabilizers stabilizes a subspace of dimen-
sion at least 2N−k, and so in this case there always ex-
ists at least one orthogonal state to |ψ〉 accessible to the
adversary that fools the verifier with certainty. In this
minimal case, the number of required measurements is
ns.g.opt ≈ Nε−1 ln δ−1, with this bound saturated by mea-
suring all stabilizer generators with equal weight. Con-
versely, constructing a measurement strategy from the
full set of 2N −1 linearly independent stabilizers requires

a number of measurements nstabopt ≈ 2N−1
2(N−1) ε

−1 ln δ−1,
again with this bound saturated by measuring each sta-
bilizer with equal weight. For growing N , the latter ex-
pression for the number of measurements is bounded from
above by 2ε−1 ln δ−1, which implies that there is a local
strategy for any stabilizer state, of an arbitrary number
of qubits, which requires at most twice as many measure-

ments as the optimal non-local strategy. In comparison,
the former strategy constructed from only the N stabi-
lizer generators of |ψ〉 has scaling that grows linearly with
N . Thus there is ultimately a trade-off between number
of measurement settings and total number of measure-
ments required to verify within a fixed fidelity, in this
case.

In principle, the recipe derived here to extract the op-
timal strategy for a state of two qubits can be applied
to any pure state. However, we anticipate that deriving
the optimal strategy, including correct constants, may be
somewhat involved (both analytically and numerically)
for states of greater numbers of qubits.
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Supplemental Material: Optimal verification of entangled states with local
measurements

Appendix A: Quantum state verification

We first set up a formal framework for general state verification protocols. We assume that we have access to
a device D that is supposed to produce copies of a state |ψ〉. However, D might not work correctly, and actually
produces (potentially mixed) states σ1, σ2, . . . such that σi might not be equal to |ψ〉〈ψ|. In order to distinguish
this from the case where the device works correctly by making a reasonable number of uses of D, we need to have a
promise that these states are sufficiently far from |ψ〉. So we are led to the following formulation of our task:

Distinguish between the following two cases:

(a). (Good) σi = |ψ〉〈ψ| for all i;

(b). (Bad) For some fixed ε, F (|ψ〉, σi) := 〈ψ|σi|ψ〉 ≤ 1− ε for all i.

Given a verifier with access to a set of available measurements S, the protocols we consider for completing this task
are of the following form:

Protocol Quantum state verification

1: for i = 1 to n do
2: Two-outcome measurement Mi ∈ S on σi, where Mi’s outcomes are associated with “pass” and “fail”
3: if “fail” is returned then
4: Output “reject”

5: Output “accept”

We impose the conditions that in the good case, the protocol accepts with certainty, whereas in the bad case, the
protocol accepts with probability at most δ; we call 1− δ the statistical power of the protocol. We then aim to find a
protocol that minimises n for a given choice of |ψ〉, ε and S, such that these constraints are satisfied. Insisting that
the protocol accepts in the good case with certainty implies that all measurements in S are guaranteed to pass in
this case. This is a desirable property in itself, but one could consider more general non-adaptive protocols where
measurements do not output “pass” with certainty on |ψ〉, and the protocol determines whether to accept based on
an estimator constructed from the relative frequency of “pass” and “fail” outcomes across all n copies. We show in
Appendix E that this class of protocols has quadratically worse scaling in ε than protocols where each measurement
passes with certainty on |ψ〉.

We make the following observations about this framework:

1. Given no restrictions on Mi, the optimal protocol is simply for each measurement to project onto |ψ〉. In
fact, this remains optimal even over the class of more general protocols making use of adaptivity or collective
measurements. One can see this as follows: if a two-outcome measurement M (corresponding to the whole

protocol) is described by measurement operators P (accept) and I − P (reject), then if M accepts |ψ〉⊗n with

certainty, we must have P = |ψ〉〈ψ|⊗n + P ′ for some residual positive semidefinite operator P ′. Then replacing

P with |ψ〉〈ψ|⊗n gives at least as good a protocol, as the probability of accepting |ψ〉 remains 1, while the
probability of accepting other states cannot increase.

The probability of acceptance in the bad case after n trials is then at most (1− ε)n, so it is sufficient to take

n ≥ ln δ−1

ln((1− ε)−1)
≈ ε−1 ln δ−1 (S1)

to achieve statistical power 1− δ. This will be the yardstick against which we will compare our more restricted
protocols below.

2. We assume that the states σi are independently and adversarially chosen. This implies that if (as we will consider
below) S contains only projective measurements and does not contain the measurement projecting onto |ψ〉〈ψ|,
it is necessary to choose the measurement Mi at random from S and unknown to the adversary. Otherwise, we
could be fooled with certainty by the adversary choosing σi to have support only in the “pass” eigenspace of
Mi for each copy i.
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3. We can be explicit about the optimisation needed to derive the optimal protocol in this adversarial setting.
As protocols of the above form reject whenever a measurement fails, the adversary’s goal at the i’th step is to
maximise the probability that the measurement Mi at that step passes on σi. If the j’th measurement setting
in S, M j , is picked from S at step i with probability µij , the largest possible overall probability of passing for
copy i is

Pr[Pass on copy i] = max
σi,〈ψ|σi|ψ〉≤1−ε

∑
j

µij tr(Pjσi), (S2)

where we denote the corresponding “pass” projectors Pj . We can write Ωi =
∑
j µ

i
jPj , and then

Pr[Pass on copy i] = max
σ,〈ψ|σ|ψ〉≤1−ε

tr(Ωiσ). (S3)

As the verifier, we wish to minimise this expression over all Ωi, so we end up with a final expression that does
not depend on i. This leads us to infer that optimal protocols of this form can be assumed to be non-adaptive in
two senses: they do not depend on the outcome of previous measurements (which is clear, as the protocol rejects
if it ever sees a “fail” outcome); and they also do not depend on the measurement choices made previously.

Therefore, in order to find an optimal verification protocol, our task is to determine

min
Ω

max
σ,〈ψ|σ|ψ〉≤1−ε

tr(Ωσ), (S4)

where Ω is an operator of the form Ω =
∑
j µjPj for Pj ∈ S and some probability µj . We call such operators

strategies. If S contained all measurement operators (or even all projectors), Ω would be an arbitrary operator
satisfying 0 ≤ Ω ≤ I. However, this notion becomes nontrivial when one considers restrictions on S. Here,
we focus on the experimentally motivated case where S contains only projective measurements that can be
implemented via local operations and classical postprocessing.

4. In a non-adversarial scenario, it may be acceptable to fix the measurements in Ω in advance, with appropriate
frequencies µj . Then, given n, a strategy Ω =

∑
j µjPj corresponds to a protocol where for each j we de-

terministically make µjn measurements {Pj , I − Pj}. For large n, and fixed σi = σ, this will achieve similar
performance to the above protocol.

5. More complicated protocols with adaptive or collective measurements, or measurements with more than two
outcomes, cannot markedly improve on the strategies derived here. We do not treat these more general strategies
explicitly, but note that the protocols we will describe based on local projective measurements already achieve
the globally optimal bound (S1) up to constant factors, so any gain from these more complex approaches would
be minor.

Appendix B: Verification strategy optimisation

In this appendix, we simplify the form of the optimisation in S4 using the strategy requirements outlined previously.
We start by making the following useful observation:

Lemma 2. We can assume without loss of generality that, in (S4), σ is pure.

Proof. Assume the adversary chooses a fixed density matrix σ, which is globally optimal: it forces the verifier to
accept σ with the greatest probability among states σ such that 〈ψ|σ|ψ〉 := r ≤ 1 − ε. The probability of accepting
this σ given strategy Ω is then

Pr[Accept σ] = tr(Ωσ). (S1)

We have asserted that Ω accepts |ψ〉 with certainty: 〈ψ|Ω|ψ〉 = 1. However, for this to be the case Ω must have |ψ〉
as an eigenstate with eigenvalue 1; thus we can write

Ω = |ψ〉〈ψ|+
∑
j

cj |ψ⊥j 〉〈ψ⊥j | (S2)
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where the states {|ψ⊥j 〉} are a set of mutually orthogonal states orthogonal to |ψ〉. Then

Pr[Accept σ] = 〈ψ|σ|ψ〉+
∑
j

cj〈ψ⊥j |σ|ψ⊥j 〉 (S3)

= r +
∑
j

cj〈ψ⊥j |σ|ψ⊥j 〉. (S4)

We can write

σ = a|ψ〉〈ψ|+ bσ⊥ + c|ψ〉〈Φ⊥|+ c∗|Φ⊥〉〈ψ|, (S5)

where σ⊥ is a density matrix entirely supported in the subspace spanned by the states |ψ⊥j 〉, and |Φ⊥〉 is a vector in

the subspace spanned by |ψ⊥j 〉. We know that a = r as 〈ψ|σ|ψ〉 = r, and b = 1− r as tr(σ) = 1. Now, note that the

probability of accepting σ does not depend on the choice of |Φ⊥〉. Thus tr(Ωσ) is maximised when σ⊥ = |ψ⊥max〉〈ψ⊥max|,
where |ψ⊥max〉 is the orthogonal state in the spectral decomposition of Ω with largest eigenvalue, cmax. Thus

max
σ

tr(Ωσ) = r + (1− r)cmax, (S6)

which is achieved by any density matrix of the form

σ = r|ψ〉〈ψ|+ (1− r)|ψ⊥max〉〈ψ⊥max|+ c|ψ〉〈Φ⊥|+ c∗|Φ⊥〉〈ψ|. (S7)

Note that the pure state σ = |φ〉〈φ| for |φ〉 =
√
r|ψ〉 +

√
1− r|ψ⊥max〉 is of this form, and so we can assume that the

adversary makes this choice.

Given that the state σ can be taken to be pure and that the fidelity F (|ψ〉, σ) ≤ 1− ε, we write σ = |ψε̄〉〈ψε̄|, where
|ψε̄〉 :=

√
1− ε̄|ψ〉+

√
ε̄|ψ⊥〉 and 〈ψ|ψ⊥〉 = 0, for some ε̄ ≥ ε chosen by the adversary, to be optimised later. Denote

min
Ω

max
σ

〈ψ|σ|ψ〉≤1−ε
tr(Ωσ) := 1−∆ε. (S8)

Then the optimisation problem becomes to determine ∆ε, where

∆ε = max
Ω

min
|ψ⊥〉,ε̄≥ε

ε̄(1− 〈ψ⊥|Ω|ψ⊥〉)− 2
√
ε̄(1− ε̄)Re(〈ψ|Ω|ψ⊥〉) (S9)

and Ω|ψ〉 = |ψ〉.
(S10)

This expression can be simplified given that Ω|ψ〉 = |ψ〉. In particular, we then know that 〈ψ⊥|Ω|ψ〉 = 0 for any

choice of orthogonal state |ψ⊥〉. Thus the term
√
ε̄(1− ε̄)Re(〈ψ|Ω|ψ⊥〉) automatically vanishes. We are then left with

the optimisation

∆ε = max
Ω

min
|ψ⊥〉,ε̄≥ε

ε̄(1− 〈ψ⊥|Ω|ψ⊥〉), (S11)

where Ω|ψ〉 = |ψ〉.

As for the optimisation of ε̄, note that it is the goal of the adversary to make ∆ε as small as possible; and so they are
obliged to set ε̄ = ε. Then the optimisation becomes

∆ε = εmax
Ω

min
|ψ⊥〉

(1− 〈ψ⊥|Ω|ψ⊥〉), (S12)

where Ω|ψ〉 = |ψ〉.

Note that this expression implies that any Ω where Ω|ψ〉 = |ψ〉 automatically satisfies the future-proofing property:
firstly that Ω is independent of ε, but also that the strategy must be viable for any choice of ε (i.e. there must not
be a choice of ε where ∆ε = 0). For an initial choice ∆ε > 0, we have that 1− 〈ψ⊥|Ω|ψ⊥〉 > 0 and so ∆ε′ > 0 for any
0 < ε′ < ε. Thus the verifier is free to decrease ε arbitrarily without fear of the strategy failing. Note also that this
condition may not be automatically guaranteed if the verifier chooses an Ω such that Ω|ψ〉 6= |ψ〉.

Regarding the optimisation problem in S12, for an arbitrary state |ψ〉 on n qubits it is far from clear how to:
(a) construct families of viable Ω (built from local projective measurements) that accept |ψ〉 with certainty; (b) to
then solve this optimisation problem over those families of Ω. For the remainder of this work, we focus on states of
particular experimental interest where we can solve the problem: arbitrary states of 2 qubits, and stabilizer states.
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Appendix C: States of two qubits

We now derive the optimal verification strategy for an arbitrary pure state of two qubits. We first give the proof of
the statement in the main text that optimal strategies for locally equivalent states are easily derived by conjugating
the strategy with the local map that takes one state to the other. Hence, we can restrict our consideration to verifying
states of the form |ψ〉 = sin θ|00〉+ cos θ|11〉 without loss of generality. Specifically:

Lemma 3. Given any two qubit state |ψ〉 with optimal strategy Ωopt, a locally equivalent state (U⊗V )|ψ〉 has optimal
strategy (U ⊗ V )Ωopt(U ⊗ V )†.

Proof. We must show that strategy Ω′ = (U ⊗ V )Ωopt(U ⊗ V )† is both a valid strategy, and is optimal for verifying
|ψ′〉 = (U ⊗ V )|ψ〉.
Validity : If Ωopt =

∑
j µjPj is a convex combination of local projectors, then so is Ω′:

Ω′ = (U ⊗ V )Ω(U ⊗ V )† =
∑
j

µj(U ⊗ V )Pj(U ⊗ V )†

=
∑
j

µjP
′
j . (S1)

Also, if Ωopt|ψ〉 = |ψ〉 then Ω′|ψ′〉 = |ψ′〉:

Ωopt|ψ〉 = |ψ〉 ⇒ (U ⊗ V )Ω|ψ〉 = popt(U ⊗ V )|ψ〉 (S2)

⇒ (U ⊗ V )Ω(U ⊗ V )†(U ⊗ V )|ψ〉 = (U ⊗ V )|ψ〉
⇒ Ω′|ψ′〉 = |ψ′〉.

Optimality : The performance of a strategy is determined by the maximum probability of accepting an orthogonal
state |ψ⊥〉. For the strategy-state pairs (Ωopt, |ψ〉) and (Ω′, |ψ′〉), we denote this parameter qopt and q′, respectively.
Then

qopt = max
|ψ⊥〉
〈ψ⊥|Ωopt|ψ⊥〉 = max

|φ〉,〈ψ|φ〉=0
〈φ|Ωopt|φ〉 (S3)

= max
(U⊗V )|φ〉,〈ψ|(U⊗V )†(U⊗V )|φ〉=0

〈φ|(U ⊗ V )†(U ⊗ V )Ωopt(U ⊗ V )†(U ⊗ V )|φ〉 (S4)

= max
|φ′〉,〈ψ′|φ′〉=0

〈φ′|Ω′|φ′〉 = q′. (S5)

So applying the same local rotation to the strategy and the state results in no change in the performance of the
strategy. Thus the following simple proof by contradiction holds: assume that there is a better strategy for verifying
|ψ′〉, denoted Ω′′. But then the strategy (U ⊗ V )†Ω′′(U ⊗ V ) must have a better performance for verifying |ψ〉 than
Ωopt, which is a contradiction. Thus Ω′ must be the optimal strategy for verifying |ψ′〉.

We will now prove Theorem 1 from the main body. However, we first prove a useful lemma - that no optimal strategy
can contain the identity measurement (where the verifier always accepts regardless of the tested state). In the following
discussion, we denote the projector Π := 1−|ψ〉〈ψ|. For a strategy Ω where Ω|ψ〉 = |ψ〉, the quantity of interest which
determines ∆ε in (S12) is the maximum probability of accepting an orthogonal state |ψ⊥〉:

q := ‖ΠΩΠ‖ = max
|ψ⊥〉
〈ψ⊥|Ω|ψ⊥〉. (S6)

If a strategy is augmented with an accent or subscript, the parameter q inherits that accent or subscript.

Lemma 4. Consider an operator 0 ≤ Ω ≤ 1, Ω|ψ〉 = |ψ〉 of the form Ω = (1 − α)Ω1 + α1 for 0 ≤ α ≤ 1. Then
q ≥ q1.

Proof. For arbitrary |ψ⊥〉 such that 〈ψ|ψ⊥〉 = 0, 〈ψ⊥|Ω|ψ⊥〉 = (1−α) 〈ψ⊥|Ω1|ψ⊥〉+α. This is maximised by choosing
|ψ⊥〉 such that 〈ψ⊥|Ω1|ψ⊥〉 = q1, giving q = (1− α)q1 + α ≥ q1.

We are now in a position to prove Theorem 1. Note that the special cases where |ψ〉 is a product state (θ = 0 or π
2 )

or a Bell state (θ = π
4 ) are treated separately.
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Theorem 1 (restated). Any optimal strategy for verifying a state of the form |ψ〉 = sin θ|00〉+ cos θ|11〉 for 0 < θ <
π
2 , θ 6= π

4 that accepts |ψθ〉 with certainty and satisfies the properties of locality, trust and projective measurement,
can be expressed as a strategy involving four measurement settings:

Ωopt =
2− sin(2θ)

4 + sin(2θ)
P+
ZZ +

2(1 + sin(2θ))

3(4 + sin(2θ))

3∑
k=1

(1− |φk〉〈φk|), (S7)

where the states |φk〉 are

|φ1〉 =

(
1√

1 + tan θ
|0〉+

e
2πi
3

√
1 + cot θ

|1〉

)
⊗

(
1√

1 + tan θ
|0〉+

e
πi
3

√
1 + cot θ

|1〉

)
, (S8)

|φ2〉 =

(
1√

1 + tan θ
|0〉+

e
4πi
3

√
1 + cot θ

|1〉

)
⊗

(
1√

1 + tan θ
|0〉+

e
5πi
3

√
1 + cot θ

|1〉

)
, (S9)

|φ3〉 =

(
1√

1 + tan θ
|0〉+

1√
1 + cot θ

|1〉
)
⊗
(

1√
1 + tan θ

|0〉 − 1√
1 + cot θ

|1〉
)
. (S10)

The number of measurements needed to verify to within fidelity ε and statistical power 1− δ is

nopt ≈ (2 + sin θ cos θ)ε−1 ln δ−1. (S11)

Proof. The strategy Ω can be written as a convex combination of local projectors. We can group the projectors by
their action according to two local parties, Alice and Bob, and then it must be expressible as a convex combination
of five types of terms, grouped by trace:

Ω = c1
∑
i

µi(ρ
i
1⊗σi1)+c2

∑
j

νj(ρ
j
2⊗σ

j
2 +ρj⊥2 ⊗σ

j⊥
2 )+c3

∑
k

ηk(1−ρk3⊗σk3 )+c4
∑
l

[ζl(ρ
l
4⊗1)+ξl(1⊗σl4)]+c51⊗1,

(S12)
where ρki and σki are single-qubit pure states and the subscript denotes the type of term in question. The state ρj⊥ is
the density matrix defined by tr(ρjρj⊥) = 0. Qualitatively, given two local parties Alice and Bob with access to one
qubit each, and projectors with outcomes {λ, λ̄}, the terms above correspond to the following strategies: (1) Alice
and Bob both apply a projective measurement and accept if both outcomes are λ; (2) Alice and Bob both apply a
projective measurement and accept if both outcomes agree; (3) Alice and Bob both apply a projective measurement
and accept if both outcomes are λ̄; (4) Alice or Bob applies a projective measurement and accepts on outcome λ, and
the other party abstains; and (5) both Alice and Bob accept without applying a measurement.

Given the favourability in scaling with ε of the relative entropy with strategies that accept |ψ〉 with certainty, we
enforce this constraint from the outset and then show that a viable strategy can still be constructed. For the general
strategy in Eq. S12 to accept |ψ〉 with certainty, each term in its expansion must accept |ψ〉 with certainty. However,
this is impossible to achieve for some of the terms in the above expansion. In particular, we show that the terms
(ρ⊗σ), (ρ⊗1) and (1⊗σ) cannot accept |ψ〉 with certainty, and the form of the term (ρ⊗σ+ρ⊥⊗σ⊥) is restricted.

(ρ⊗ σ): this term can be reexpressed as a convex combination of projectors onto product states: ρ⊗σ =
∑
j bj(|uj〉⊗

|vj〉)(〈uj | ⊗ 〈vj |), and so this term only accepts |ψ〉 with certainty if (〈uj | ⊗ 〈vj |)|ψ〉 = 1,∀j. However, for 0 < θ < π
2

the state |ψ〉 is entangled and this condition cannot be satisfied.
(ρ⊗ 1) or (1⊗ σ): For the term (ρ⊗1), reexpress ρ in terms of its Pauli expansion: ρ⊗1 = 1

2 (1+αX+βY +γZ)⊗1,
for −1 ≤ α, β, γ ≤ 1. Then the condition that this term accepts with probability p = 1 is

〈ψ|1
2

(1+ αX + βY + γZ)⊗ 1|ψ〉 = 1. (S13)

By inserting the definition of |ψ〉, this becomes 1
2 (1 − γ cos(2θ)) = 1, which is unsatisfiable for 0 < θ < π

2 . It is
readily checkable that an identical condition is derived for the term 1⊗ σ, given the symmetry of the state |ψ〉 under
swapping.

(ρ⊗ σ + ρ⊥ ⊗ σ⊥): for this term, we can expand both ρ and σ in terms of Pauli operators:

ρ =
1

2
(1+ αX + βY + γZ); ρ⊥ =

1

2
(1− αX − βY − γZ) (S14)

σ =
1

2
(1+ α′X + β′Y + γ′Z); σ⊥ =

1

2
(1− α′X − β′Y − γ′Z). (S15)
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Inserting these expressions and the definition of |ψ〉 into the condition that p = 1 gives the constraint

γγ′ + (αα′ − ββ′) sin(2θ) = 1. (S16)

Now, we know from the Cauchy-Schwarz inequality that

γγ′ + (αα′ − ββ′) sin(2θ) ≤
√
α′2 + β′2 + γ′2

√
α2 sin2(2θ) + β2 sin2(2θ) + γ2 ≤ 1, (S17)

where the second inequality is derived from the fact that {α, β, γ}, {α′, β′, γ′} are the parameterisation of a pair of
density matrices. There are two ways that this inequality can be saturated: (a) sin(2θ) = 1; (b) αα′ − ββ′ = 0,
γγ′ = 1. In all other cases, the inequality is strict. Thus the constraint in Eq. S16 cannot be satisfied in general.
Exception (a) corresponds to θ = π

4 , which is omitted from this proof and treated separately. In exception (b), we
have that γγ′ = 1 and so either γ = γ′ = 1 or γ = γ′ = −1. In both cases we have that

ρ⊗ σ + ρ⊥ ⊗ σ⊥ =

(
1+ Z

2
⊗ 1+ Z

2

)
+

(
1− Z

2
⊗ 1− Z

2

)
= P+

ZZ , (S18)

where P+
ZZ is the projector onto the positive eigenspace of ZZ. This is the only possible choice for this particular

term that accepts |ψ〉 with certainty.
We can also make use of Lemma 4 to remove the term 1⊗ 1. Given this and the restrictions above from enforcing

that p = 1, the measurement strategy can be written

Ω = αP+
ZZ + (1− α)

∑
k

ηk(1− ρk ⊗ σk), (S19)

where
∑
k ηk = 1 and 0 ≤ α ≤ 1.

We’ll try to further narrow down the form of this strategy by averaging ; i.e. by noting that, as |ψ〉 is an eigenstate
of a matrix Mζ ⊗M−ζ where

Mζ =

(
1 0
0 e−iζ

)
, (S20)

then conjugating the strategy by Mζ ⊗M−ζ and integrating over all possible ζ cannot make the strategy worse; if we
consider an averaged strategy 〈Ω〉 such that

〈Ω〉 =
1

2π

∫ π

−π
dζ(Mζ ⊗M−ζ)Ω(M−ζ ⊗Mζ), (S21)

then necessarily the performance of 〈Ω〉 cannot be worse than that of Ω. To see this, note that the averaging procedure
does not affect the probability of accepting the state |ψ〉. However, for each particular value of ζ the optimisation
for the adversary may necessarily lead to different choices for the orthogonal states |ψ⊥(ζ)〉, and so averaging over ζ
cannot be better for the adversary than choosing the optimal |ψ⊥〉 at ζ = 0.

We can also consider discrete symmetries of the state |ψ〉. In particular, |ψ〉 is invariant under both swapping the
two qubits, and complex conjugation (with respect to the standard basis); by the same argument, averaging over

these symmetries (i.e. by considering Ω′ = 1
2 (Ω+(SWAP)Ω(SWAP†)) and Ω′′ = 1

2 (Ω+Ω∗)) cannot produce strategies
inferior to the original Ω. Therefore we can consider a strategy averaged over these families of symmetries of Ω,
without any loss in performance.

This averaging process is useful for three reasons. Firstly, it heavily restricts the number of free parameters in
Ω requiring optimisation. Secondly, it allows us to be explicit about the general form of Ω. Thirdly, the averaging
procedures are distributive over addition; and so we can make the replacement

Ω = αP+
ZZ + (1− α)

∑
k

ηk(1− ρk ⊗ σk)→ 〈αP+
ZZ + (1− α)

∑
k

ηk(1− ρk ⊗ σk)〉

=αP+
ZZ + (1− α)

∑
k

ηk〈1− ρk ⊗ σk〉. (S22)

Note that a single term 1 − ρk ⊗ σk, may, after averaging, be a convex combination of multiple terms of the form
1 − ρ ⊗ σ. To proceed, we will use this averaging procedure to show that it suffices to only include a single, post-
averaging term of the form 〈1−ρk⊗σk〉 in the strategy Ω, and that the resulting operator can be explicitly decomposed
into exactly three measurement settings.
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Consider a general operator Ω, expressed as a 4× 4 matrix. First, take the discrete symmetries of |ψ〉. Averaging
over complex conjugation in the standard basis implies that the coefficients of 〈Ω〉 are real; and averaging over qubit
swapping implies that 〈Ω〉 is symmetric with respect to swapping of the two qubits. Denote the operator after
averaging these discrete symmetries as Ω̄. Then consider averaging over the continuous symmetry of |ψ〉:

〈Ω〉 =
1

2π

∫ π

−π
dζ(Mζ ⊗M−ζ)Ω̄(M−ζ ⊗Mζ) (S23)

=
1

2π

∫ π

−π
dζ


1 0 0 0
0 eiζ 0 0
0 0 e−iζ 0
0 0 0 1


ω00 ω01 ω01 ω03

ω01 ω11 ω12 ω13

ω01 ω12 ω11 ω13

ω03 ω13 ω13 ω33




1 0 0 0
0 e−iζ 0 0
0 0 eiζ 0
0 0 0 1

 (S24)

=

ω00 0 0 ω03

0 ω11 0 0
0 0 ω11 0
ω03 0 0 ω33

 . (S25)

Thus after averaging using the above symmetries of |ψ〉, 〈Ω〉 can be written in the standard basis as

〈Ω〉 =

a 0 0 b
0 c 0 0
0 0 c 0
b 0 0 d

 , (S26)

for a, b, c, d ∈ R. Enforcing that the strategy accepts |ψ〉 with certainty yields 〈Ω〉|ψ〉 = |ψ〉, or explicitly that

〈Ω〉 =

1− b cot θ 0 0 b
0 c 0 0
0 0 c 0
b 0 0 1− b tan θ

 . (S27)

The eigensystem of this operator is then completely specified; besides |ψ〉, it has the following eigenvectors:

|v1〉 = cos θ|00〉 − sin θ|11〉; |v2〉 = |01〉; |v3〉 = |10〉, (S28)

with corresponding eigenvalues λ1 = 1− b csc θ sec θ and λ2 = λ3 = c. The maximum probability of accepting a state
orthogonal to |ψ〉, q, can then be written

q = ‖Π〈Ω〉Π‖ = max{λ1, λ2}, (S29)

where Π = 1− |ψ〉〈ψ|. Therefore, any reasoning about q can be reduced to reasoning about the pair (λ1, λ2).
Now, we will show that it suffices to only consider a single term of the form 〈1− ρk ⊗ σk〉 in the decomposition of

Ω. We write a strategy of this form as

Ω = αP+
ZZ + (1− α)〈1− ρ⊗ σ〉. (S30)

For the term 〈1− ρ⊗ σ〉, we have a constraint on the trace; if we label the eigenvalues for this term as λ
(3)
1 and λ

(3)
2 ,

we have the constraint that 1 + λ
(3)
1 + 2λ

(3)
2 = tr〈1 − ρ ⊗ σ〉 = 3 ⇒ λ

(3)
2 = 1 − λ

(3)
1

2 . The locus of points satisfying
this constraint is plotted in the (λ1, λ2) plane as the thick black line in Fig. S1. Moreover, we will show that a

single term of this form can achieve any valid choice of λ
(3)
1 on this locus (which we defer until we have an explicit

parameterisation of terms of this type; see Eq. S42, below).
However, we also have an additional constraint derived from insisting that the strategy remains local. For example,

the point (1, 0) in the (λ1, λ2) plane represents the strategy Ω = 1− |v1〉〈v1|, which corresponds to the strategy where
the verifier projects onto |v1〉 and accepts if the outcome is not |v1〉. But this type of measurement is operationally
forbidden as |v1〉 is entangled.

It can be readily checked that, for an arbitrary θ, it is not possible to cover the full locus in the range 0 ≤ λ1 ≤ 1

with a separable strategy; instead, there is a fixed lower bound on λ
(3)
1 . To see this, write

〈1− ρ⊗ σ〉 = |ψ〉〈ψ|+ λ
(3)
1 |v1〉〈v1|+

2− λ(3)
1

2
(|v2〉〈v2|+ |v3〉〈v3|). (S31)
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Then, taking just the 〈ρ⊗ σ〉 part and expressing as a matrix in the computational basis gives

〈ρ⊗ σ〉 =


(1− λ(3)

1 ) cos2 θ 0 0 (λ
(3)
1 − 1) cos θ sin θ

0
λ
(3)
1

2 0 0

0 0
λ
(3)
1

2 0

(λ
(3)
1 − 1) cos θ sin θ 0 0 (1− λ(3)

1 ) sin2 θ

 . (S32)

To enforce separability it is necessary and sufficient to check positivity under partial transposition, yielding the

constraint λ
(3)
1 − (1 − λ(3)

1 ) sin(2θ) ≥ 0. Simple rearrangement gives a lower bound that must be satisfied for the
strategy to remain separable:

λ
(3)
1 ≥ sin(2θ)

1 + sin(2θ)
:= λLB . (S33)

This additional locality constraint rules out any point on the black line to the left of the red point in Fig. S1. The term
P+
ZZ has parameters λZZ1 = 1, λZZ2 = 0 and so represents a single point in the (λ1, λ2) plane. Thus the parameters

(λ1, λ2) for the full strategy Ω must be represented by a point in the convex hull of the single point representing the
P+
ZZ term and the locus of points representing the trace 3 part - i.e. in the unshaded region in Fig. S1.
We now show that a strategy that includes more trace 3 terms cannot improve on the performance of the strategy

above. Write this expanded strategy as

Ω′ = αP+
ZZ + (1− α)〈

∑
k

ηk(1− ρk ⊗ σk)〉, (S34)

for
∑
k ηk = 1. Firstly, we note again that the averaging operations (SWAP, conjugation via Mζ and complex

conjugation in the standard basis) are distributive over addition and so we can make the replacement

Ω′ = αP+
ZZ + (1− α)

∑
k

ηk〈1− ρk ⊗ σk〉. (S35)

Write the composite term
∑
k ηk〈1 − ρk ⊗ σk〉 := Ωcomp, with parameters λcomp

1 and λcomp
2 . Note that each term

in Ωcomp satisfies both the constraint from the trace and the constraint from PPT in S33, and hence so does Ωcomp.
Now, each operator in this term shares the same eigenbasis (namely, the set of states {|vi〉} in S28). Thus we know
that λcomp

1 =
∑
k ηkλ1,k, and likewise for λcomp

2 ; i.e. the strategy parameters for this composite term are just a
convex combination of those for its constituent parts. A term Ωcomp is then specified in the (λ1, λ2) plane by a
point Pcomp = (λcomp

1 , λcomp
2 ) ∈ Conv(λ1,k, λ2,k) (i.e. the point Pcomp must lie on the thick black line bounding the

unshaded region in Fig. S1).
Thus we know that Conv(Ω′) ⊆ Conv(Ω), and so any strategy writeable in the form S34 can be replaced by a

strategy of the form S30 with identical parameters (λ1, λ2), and hence identical performance. Thus, we need only
consider strategies of the form

Ω = αP+
ZZ + (1− α)〈1− ρ⊗ σ〉. (S36)

We can now be explicit about the form of the above strategy. For Ω to accept |ψ〉 with certainty, ρ ⊗ σ must
annihilate |ψ〉 and so we make the replacement ρ⊗ σ = |τ〉〈τ |, where |τ〉 is the most general pure product state that
annihilates |ψ〉. To be explicit about the form of the state |τ〉, write a general two-qubit separable state as

|τ〉 = (cosφ|0〉+ eiη sinφ|1〉)⊗ (cos ξ|0〉+ eiζ sin ξ|1〉), (S37)

where we take 0 ≤ φ, ξ ≤ π
2 , without loss of generality. The constraint that this state annihilates |ψ〉 = sin θ|00〉 +

cos θ|11〉 is

cosφ cos ξ sin θ + e−i(η+ζ) sinφ sin ξ cos θ = 0. (S38)

If either φ = 0 or ξ = 0, then cosφ cos ξ sin θ = 0 implying that ξ = π
2 or φ = π

2 , respectively. This yields the
annihilating states |τ〉 = |01〉 and |τ〉 = |10〉, respectively. If φ, ξ 6= 0 then from the imaginary part of Eq. S38 we find
that e−i(η+ζ) = −1. Then we can rearrange to give

tanφ tan ξ = tan θ. (S39)
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Using this constraint and the identities

cos ξ =
1√

1 + tan2 ξ
; sin ξ =

tan ξ√
1 + tan2 ξ

, (S40)

we can eliminate ξ to yield

|τ〉 = (cosφ|0〉+ eiη sinφ|1〉)⊗

(
tanφ√

tan2 φ+ tan2 θ
|0〉 − e−iη tan θ√

tan2 φ+ tan2 θ
|1〉

)
. (S41)

Note that, for 0 < θ < π
2 , taking the limits φ → 0 and φ → π

2 we recover the cases |τ〉 = |01〉 and |τ〉 = |10〉, up to
irrelevant global phases. Thus we can proceed without loss of generality by assuming that ρ ⊗ σ = |τ〉〈τ |, where |τ〉
is given by Eq. S41. Averaging over the symmetries of |ψ〉 outlined above then yields the following expression:

〈ρ⊗σ〉 =
1

tan2 φ+ tan2 θ


sin2 φ 0 0 − sin2 φ tan θ

0 1
2

(
cos2 φ tan2 θ + sin2 φ tan2 φ

)
0 0

0 0 1
2

(
cos2 φ tan2 θ + sin2 φ tan2 φ

)
0

− sin2 φ tan θ 0 0 sin2 φ tan2 θ

 .

(S42)

Given this explicit parameterisation we can extract the eigenvalue λ
(3)
1 :

λ
(3)
1 = 1− sec2 θ sin2 φ

tan2 θ + tan2 φ
. (S43)

It can be shown by simple differentiation w.r.t. φ that, for fixed θ, this expression has a minimum at λ
(3)
1 = λLB .

Also, this expression is a continuous function of φ and therefore can take any value up to its maximum (namely, 1).
Hence a single trace 3 term is enough to achieve any point in the allowable convex hull in Fig. S1. For convenience
we will denote tan2 φ = P, tan2 θ = T for 0 ≤ P ≤ ∞, 0 < T <∞. The explicit form for the whole strategy is then

Ω =
1

(1 + P )(P + T )


T + P (P + T + α) 0 0 (1− α)P

√
T

0 1
2 (1− α)(T + 2P + P 2 + 2PT ) 0 0

0 0 1
2 (1− α)(T + 2P + P 2 + 2PT ) 0

(1− α)P
√
T 0 0 T + P (1 + P + αT )

 .

(S44)
We now optimise over the two remaining free parameters, {α, φ} (or alternatively, {α, P}) for fixed θ (or fixed T ).
We have shown that it suffices to consider the eigenvalues λ1 and λ2, given in this case by the expressions

λ1(α, P, T ) = 1− P (1− α)(1 + T )

(1 + P )(P + T )
; λ2(α, P, T ) = (1− α)

[
1− T + P 2

2(1 + P )(P + T )

]
. (S45)

The parameter q is given by the maximum of these two eigenvalues. Note that, if P = 0, the expression λ1(α, 0, T ) = 1
which implies that the adversary can pick a state that the verifier always accepts, and hence the strategy fails. Likewise,
taking the limit limP→∞ λ1(α, P, T ) = 1. Thus we must restrict to the range 0 < P <∞ to construct a viable strategy
for the verifier. The quantity q is minimised for fixed T when the derivatives with respect to P and α vanish. First,
we calculate the derivatives w.r.t. α:

∂λ1

∂α
=

P (1 + T )

(1 + P )(P + T )
;

∂λ2

∂α
=
−(2P + P 2 + T + 2PT )

2(1 + P )(P + T )
. (S46)

Given that P > 0 and T > 0, we have that for any choice of T , ∂αλ1 > 0 and ∂αλ2 < 0. Thus, one of three cases can
occur: (a) for a given choice of T and P , the lines given by λ1 and λ2 intersect in the range 0 ≤ α ≤ 1 and hence
there is a valid α such that q is minimised when λ1 = λ2; (b) for a given choice of T and P , λ1 > λ2 in the range
0 ≤ α ≤ 1 and hence q is minimised when α = 0; (c) for a given choice of T and P , λ1 < λ2 in the range 0 ≤ α ≤ 1
and hence q is minimised when α = 1. However, we note that this final case cannot occur; it suffices to check that
λ1(α = 1) > λ2(α = 1), and from the expressions in (S45) we have that λ1(α = 1) = 1 and λ2(α = 1) = 0. As a
visual aid for the remaining two cases, see Fig. S2. In case (a),

q = λ1 = λ2 =
1

2
+

1

2

(
T + P 2

T + P 2 + 4P (1 + T )

)
. (S47)
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In case (b), we have that

q = λ1(0, P, T ) =
T + P 2

(1 + P )(P + T )
. (S48)

We must also minimise w.r.t. φ; however, we can safely minimise w.r.t. P as ∂φP > 0 (unless φ = 0, but in this case
q = 1 and the strategy fails). In case (b), we have

∂q

∂P
=

(P 2 − T )(1 + T )

(1 + P )2(P + T )2
. (S49)

In this case, consider the two points implicitly defined by the constraint λ1(0, P, T ) = λ2(0, P, T ) (drawn as the black
points in Fig. S2). Denote these points f±(T ). It can be readily checked that in case (b), ∂P q < 0 for any q < f−(T ),
and ∂P q > 0 for any q > f+(T ). Thus the minimum w.r.t P must occur when λ1(0, P, T ) = λ2(0, P, T ) and hence we
can restrict our attention to case (a) (note Fig. S2). In this case, ∂P q becomes

∂q

∂P
=

−2(1 + T )(T − P 2)

[T + 4PT + P (4 + P )]2
= 0, (S50)

which implies that P =
√
T . Substituting in the optimal choices for the parameters {α, P} and reexpressing solely in

terms of θ gives the optimal strategy

Ωopt =
2− sin(2θ)

4 + sin(2θ)
P+
ZZ +

2(1 + sin(2θ))

4 + sin(2θ)
Ωopt3 , (S51)

where Ωopt3 is given by

Ωopt3 = 1− 1

(1 + t)2

 1 0 0 −t
0 t 0 0
0 0 t 0
−t 0 0 t2

 , t = tan θ. (S52)

This strategy accepts an orthogonal state with probability

qopt =
2 + sin(2θ)

4 + sin(2θ)
, (S53)

implying that the number of measurements needed to verify to within accuracy ε and with statistical power 1 − δ
under this test is

nopt =
ln δ−1

ln((1−∆ε)−1)
=

ln δ−1

ln((1− ε(1− qopt))−1)
≈ (2 + sin θ cos θ)ε−1 ln δ−1. (S54)

The final step is to show that the operator Ωopt3 can be decomposed into a small set of locally implementable, projective
measurements. We can do so with a strategy involving only three terms:

Ωopt3 =
1

3

[
3∑
k=1

(1− |φk〉〈φk|)

]
, (S55)

where the set of separable states {|φk〉} are the following:

|φ1〉 =

(
1√

1 + tan θ
|0〉+

e
2πi
3

√
1 + cot θ

|1〉

)
⊗

(
1√

1 + tan θ
|0〉+

e
πi
3

√
1 + cot θ

|1〉

)
, (S56)

|φ2〉 =

(
1√

1 + tan θ
|0〉+

e
4πi
3

√
1 + cot θ

|1〉

)
⊗

(
1√

1 + tan θ
|0〉+

e
5πi
3

√
1 + cot θ

|1〉

)
, (S57)

|φ3〉 =

(
1√

1 + tan θ
|0〉+

1√
1 + cot θ

|1〉
)
⊗
(

1√
1 + tan θ

|0〉 − 1√
1 + cot θ

|1〉
)
, (S58)

which gives a strategy of the required form.
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FIG. S1. Shaded region: unreachable parameters given a
strategy Ω that is both local and of the form Ω = αP+

ZZ +
(1− α)Ω3, where Ω3 is the trace 3 part. Here, θ = π

8
.
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FIG. S2. A contour map of the function q(α, φ) =
max{λ1(α, φ), λ2(α, φ)} for θ = π

8
, where the pair (λ1, λ2)

are given in S45. The pink curve denotes the minimum w.r.t
α given fixed φ. Above the curve, λ1 > λ2; below, λ1 < λ2.

We now briefly treat the special cases that were omitted from the above proof: θ = 0, π4 ,
π
2 .

θ = 0 , θ = π
2 : In these cases, the state |ψ〉 = |00〉 or |ψ〉 = |11〉. Then the globally optimal strategy, just projecting

onto |ψ〉, is an allowed local measurement. Thus in these cases the optimal strategy is to just apply the projector
|00〉〈00| or |11〉〈11|. Given this strategy we have that p = 1 and q = 0, giving a scaling of the number of measurements
required as

nopt ≈ ε−1 ln δ−1. (S59)

θ = π
4 : This case is treated explicitly in the main body. The optimal strategy is to perform the Pauli measurements

XX, −Y Y and ZZ with equal weight; i.e.

Ω =
1

3
(P+
XX + P+

−Y Y + P+
ZZ), (S60)

where P+
M is the projector onto the positive eigensubspace of the operator M . In this case, the number of measurements

required is

nopt ≈
3

2
ε−1 ln δ−1. (S61)

Appendix D: Stabilizer states

Assume now that |ψ〉 is a stabilizer state of N qubits, namely that there exist a generating set of N commuting Pauli
operators M1, . . . ,MN on N qubits such that Mi|ψ〉 = |ψ〉 for all i. We will describe below a strategy constructed
from only stabilizer measurements that accepts |ψ〉 with certainty, and hence achieves the same asymptotic scaling
in the number of required measurements with respect to ε as the two-qubit case above. However, we do not rule out
that there may be non-stabilizer strategies that give a small constant factor improvement over the strategy defined
here.

Theorem 5. Write a stabilizer state |ψ〉 and strategy Ω =
∑K
j=1 µjPj, where the set {Pj} are the projectors onto

the positive eigenspace of K linearly independent stabilizers of |ψ〉, for K ≤ 2N − 1. Then the optimal choice of the
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parameter K and weights µj are K = 2N − 1; µj = 1
2N−1

for all j. The number of measurements needed to verify to
within fidelity ε and statistical power 1− δ is then

nstabopt ≈
2N − 1

2(N−1)
ε−1 ln

1

δ
. (S1)

Proof. Recall that as the verifier accepts |ψ〉 with certainty, we are concerned with the optimisation of ∆ε, which can
be written as

∆ε = max
Ω

min
|ψ⊥〉

ε(1− 〈ψ⊥|Ω|ψ⊥〉) (S2)

= ε(1−min
Ω

max
|ψ⊥〉
〈ψ⊥|Ω|ψ⊥〉), (S3)

where the maximisation is over positive matrices Ω such that Ω|ψ〉 = |ψ〉.
Now consider Ω written as a matrix in the basis {|ψ〉, |ψ⊥j 〉}, j = 1 . . . (2N − 1) where the states |ψ⊥j 〉 are mutually

orthogonal and all orthogonal to |ψ〉. Given that Ω|ψ〉 = |ψ〉, we know that 〈ψ⊥j |Ω|ψ〉 = 0 ∀j. Then in this basis Ω
can be written

Ω =

(
1 0>

0 M

)
, (S4)

where 0 is the (2N − 1)-dimensional zero vector and M is a (2N − 1) × (2N − 1) Hermitian matrix. Then Ω must

be writable as Ω = |ψ〉〈ψ| +
∑2N−1
j=1 νj |φj〉〈φj |, where

∑
j νj |φj〉〈φj | is the spectral decomposition of M. Given

this decomposition, the optimisation for the adversary is straightforward – pick |ψ⊥〉 to be the eigenstate in the
decomposition of M with largest eigenvalue: |ψ⊥〉 = |φmax〉 where νmax = maxj νj . Then

∆ε = ε(1−min
Ω
〈φmax|Ω|φmax〉) = ε(1−min

Ω
νmax). (S5)

Given this choice by the adversary, the verifier is then forced to set the strategy such that all the eigenvalues of
M are equal; i.e. that M = a1 for some constant a. To see this, consider an alternative strategy where the
eigenvalues νj are not equal. Now, consider rewriting Ω in terms of stabilizers of |ψ〉. For any stabilizer (i.e. tensor
product of Paulis, perhaps with an overall phase) M over N qubits, the projector onto the positive eigensubspace has
tr(P+

M ) = 2N−1. Given that Ω is built from a convex combination of these projectors, and recalling from Lemma 4
that Ω does not contain an identity term, we also know that tr(Ω) = 2N−1. However, we have also expanded Ω as
Ω = |ψ〉〈ψ|+

∑
j νj |φj〉〈φj |, and so

tr(Ω) = 1 +
∑
j

νj = 2N−1. (S6)

Then, it is straightforward to see that decreasing any eigenvalue below a must result in an increase in at least one
other eigenvalue in order to maintain this equality, and hence would increase the value of νmax. Thus the optimal
choice for the verifier is to set Ω = |ψ〉〈ψ|+ a1⊥, where 1⊥ is the identity matrix on the subspace orthogonal to |ψ〉.
Taking the trace of this expression gives

tr[|ψ〉〈ψ|+ a1⊥] = 1 + (2N − 1)a = 2N−1. (S7)

This can be rearranged for a and then substituted into the expression for ∆ε, which gives

∆ε =
2(N−1)

2N − 1
ε, (S8)

or that the number of stabilizer measurements required to verify |ψ〉 is bounded below by

nstabopt ≈
2N − 1

2(N−1)
ε−1 ln δ−1. (S9)

The optimal Ω = |ψ〉〈ψ| + 2(N−1)−1
2N−1

1⊥ and the optimal scaling above can be achieved by decomposing Ω into a

strategy involving a maximal set (excluding the identity) of 2N − 1 linearly independent stabilizers, all with equal
weight. To see this note that for a stabilizer group of a state |ψ〉 of N qubits, there are 2N stabilizers independent
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under multiplication (including the identity element). Denote these stabilizers {Mi, i = 1 . . . 2N}. Then, we make use
of the fact that [S24]

1

2N

2N∑
i=1

Mi = |ψ〉〈ψ|. (S10)

Explicitly extracting the identity element gives

2N−1∑
i=1

Mi = 2N |ψ〉〈ψ| − 1. (S11)

Now, each stabilizer (for any N) is a two outcome measurement and so we can make use of the fact that Mi can be
written in terms of the projector onto the positive eigenspace of Mi, denoted P+

i , as Mi = 2P+
i − 1. Substituting in

this expression and rearranging gives

2N−1∑
i=1

P+
i = 2(N−1)|ψ〉〈ψ|+ (2(N−1) − 1)1. (S12)

Then normalising this expression over 2N − 1 stabilizers yields

1

2N − 1

2N−1∑
i=1

P+
i =

2(N−1)

2N − 1
|ψ〉〈ψ|+ 2(N−1) − 1

2N − 1
1

=
2(N−1) + 2(N−1) − 1

2N − 1
|ψ〉〈ψ|+ 2(N−1) − 1

2N − 1
1⊥

= |ψ〉〈ψ|+ 2(N−1) − 1

2N − 1
1⊥ = Ω, (S13)

where 1⊥ is the identity matrix on the subspace orthogonal to |ψ〉, as required.

Note that for growing N , the quantity nstabopt given in Eq. S9 is bounded above by 2ε−1 ln δ−1, which does not depend
on N , and implies that this stabilizer strategy requires at most a factor of two more measurements than the optimal
non-local verification strategy (just projecting onto |ψ〉).

One could also consider a reduced strategy that involves measuring fewer stabilizers. However, given a state of
N qubits and a set of k stabilizers, the dimension of the subspace stabilized by this set is at least 2N−k. Thus for
any choice of k < N , there must always exist at least one state |ψ⊥〉 orthogonal to |ψ〉 that is stabilized by every
stabilizer in the set. Then, the adversary can construct a σ that always accepts, implying that the verifier has no
discriminatory power between |ψ〉 and σ and thus the strategy fails. Consider instead constructing a strategy from the
N stabilizer generators of |ψ〉, with corresponding projectors {P s.g.j }. Then, Ω =

∑
j µjP

s.g.
j . The set of projectors

{P s.g.j } commute and so share a common eigenbasis, denoted {|λj〉}. To optimise this strategy over the weights µj ,
we first need the following lemma:

Lemma 6. Write the unique sets of N − 1 independent stabilizer generators of |ψ〉, Sk = {Mj , j = 1 . . . N} \Mk,
k = 1 . . . N . Then for each Sk, there exists a unique |λk〉, 〈λk|ψ〉 = 0, stabilized by all the elements of this set.

Proof. Each set Sk stabilizes a space of dimension two, and so a |λk〉 of the required form exists. To show uniqueness
(up to a constant), assume the converse: that there exist two sets Sk and S` such that Mk|λk〉 = |λk〉 for all Mk ∈ Sk,
and M`|λk〉 = |λk〉 for all M` ∈ S`. But the set of all stabilizer generators is Sk ∪S`, which then stabilizes |λk〉; which
is a contradiction, as the full set of stabilizer generators uniquely stabilizes |ψ〉.

We can now derive the optimal stabilizer generator strategy.

Theorem 7. For a stabilizer state |ψ〉 and strategy Ω =
∑N
j=1 µjP

s.g.
j , where the set {P s.g.j } are the projectors onto

the positive eigenspace of the stabilizer generators of |ψ〉, the optimal choice of the weights µj is µj = 1
N , for all j.

The number of measurements needed to verify to within fidelity ε and statistical power 1− δ is then

ns.g.opt ≈
N

ε
ln

1

δ
. (S14)
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Proof. If we write a state orthogonal to |ψ〉 in the stabilizer eigenbasis as |ψ⊥〉 =
∑
k αk|λk〉, we have that

〈ψ⊥|Ω|ψ⊥〉 =

2N∑
k,m=1

N∑
j=1

ᾱkαmµj〈λk|P s.g.j |λm〉

=

2N∑
k,m=1

N∑
j=1

ᾱkαmµjδkmεjk

=

2N∑
k=1

N∑
j=1

|αk|2µjεjk :=

2N∑
k=1

|αk|2Ek, (S15)

where εjk = 1 if Pj |λk〉 = |λk〉 and zero otherwise. This quantity is the parity-check matrix for the set of stabilizers
{P s.g.j }. The quantity of interest with respect to verification is

q = min
Ω

max
|ψ⊥〉
〈ψ⊥|Ω|ψ⊥〉 = min

µj
max
αk

∑
j,k

|αk|2µjεjk. (S16)

Lemma 6 gives that there is a set of orthogonal basis states |λk̃〉, k̃ ∈ I for |I| = N , stabilized by exactly N − 1

generators; thus the quantity εjk̃ = 1 for all j, unless j = k̃. For these terms, the summation over j is

Ek̃ =
∑
j

µjεjk̃ = 1− µk̃, (S17)

using the fact that
∑
j µj = 1. Now, each element of Ek for k /∈ I is a summation of at most N − 2 terms, µj .

Thus there always exists another element Ek̃ for k̃ ∈ I that is at least as large; and so it is never detrimental to the

adversary to shift any amplitude on the basis state labelled by k to the basis state labelled by k̃. Thus the optimal
choice for the adversary’s state is |ψ⊥〉 ∈ span{|λk̃〉 : k̃ ∈ I}. Given this choice by the adversary, we have that

q = min
µk̃

max
αk̃

∑
k̃

|αk̃|
2(1− µk̃) = min

µk̃
max
k̃

(1− µk̃). (S18)

It is straightforward to see that the optimal choice for the verifier is to have µk̃ = 1
N , for all k̃; then Ω = 1

N

∑
P s.g.j .

Thus

q = 1− 1

N
⇒ ns.g.opt ≈

N

ε
ln

1

δ
. (S19)

Clearly, this scaling is much poorer in N than in the case where the full set of 2N−1 linearly independent stabilizers
are allowed; indicating a trade-off between the total number of required measurements and the accessible number of
measurement settings, in this case.

Appendix E: Concentration inequalities and the relative entropy

In a binary hypothesis test between hypotheses H0 and H1, the Type I and Type II errors are, respectively,

Type I : Pr[Guess H1|H0] (S1)

Type II : Pr[Guess H0|H1]. (S2)

In general, in designing an effective hypothesis test there will be a trade-off between the relative magnitude of these
types of error; they cannot be arbitrarily decreased simultaneously. In an asymmetric hypothesis test, the goal is
to minimise one of these errors given a fixed upper bound on the other. In this addendum, we prove the following
proposition in the context of asymmetric hypothesis testing:

Proposition 8. Any strategy Ω that: (a) accepts |ψ〉 with certainty, p := tr(Ω|ψ〉〈ψ|) = 1; and (b) does not accept σ
with certainty (∆ε > 0) requires asymptotically fewer measurements in infidelity ε to distinguish these states to within
a fixed Type II error than the best protocol based on a strategy Ω′ where tr(Ω′|ψ〉〈ψ|) < 1.
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We have inherited notation regarding verification strategies from Appendix A. Here, hypothesis H0 corresponds to
accepting the target |ψ〉, and hypothesis H1 corresponds to accepting the alternative (that the output was far from
|ψ〉). Proposition 8 states that, in a framework where we attempt to verify |ψ〉 by repeatedly making two-outcome
measurements picked from some set, asymptotically it is always beneficial to use measurements that accept |ψ〉 with
certainty. In this case, each measurement is a Bernoulli trial with some acceptance probability. An example of a
protocol which would not satisfy this property would be estimating the probability of violating a Bell inequality for
a maximally entangled 2-qubit state |ψ〉.

In general, the optimum asymptotic rate at which the Type II error can be minimised in an asymmetric hypothesis
test is given by the Chernoff-Stein lemma:

Theorem 9 (Cover and Thomas [S25], Theorem 11.8.3.). Let X1, X2 . . . Xn be drawn i.i.d. from a probability mass
function Q. Then consider the hypothesis test between alternatives H0: Q = P0 and H1: Q = P1. Let An be an
acceptance region for the null hypothesis H0; i.e. it is a set consisting of all possible strings of outcomes with which
the conclusion H0 is drawn. Denote Type I and Type II errors after n samples as α∗n and β∗n, respectively. Then for
some constraint parameter 0 < χ < 1

2 , define

δχn = min
An
α∗n<χ

β∗n.

Then asymptotically

lim
n→∞

1

n
log δχn = −D(P0 ‖P1),

where D(P0‖P1) is the relative entropy between probability distributions P0 and P1.

For clarity we drop the sub- and superscript δχn → δ. The relative entropy typically takes a pair of probability
distributions as arguments, but given that each hypothesis is concerned only with a single Bernoulli-distributed
random variable uniquely specified by a a pair of real parameters (the quantities p and p − ∆ε), we will use the
shorthand D(p‖q) for real variables p and q. In this case the relative entropy can be expanded as

D(a‖b) = a ln
a

b
+ (1− a) ln

1− a
1− b

. (S3)

Note that in the limit where a→ 1, using that lima→1−(1− a) ln(1− a) = 0, this expression becomes

lim
a→1−

D(a‖b) = ln
1

b
. (S4)

After rearranging the expression for the optimal asymptotic Type II error given by the Chernoff-Stein lemma, we can
achieve a test with statistical power 1− δ by taking a number of measurements

n >
1

D (p‖p−∆ε)
ln

1

δ
. (S5)

Moreover, this bound is tight in that it gives the correct asymptotic relationship between n, D and δ; generically δ
can be lower bounded ([S25], p666) such that

e−Dn

n+ 1
≤ δ ≤ e−Dn. (S6)

Two important limiting cases of this expression have relevance here. Firstly, if p � ∆ε, then Taylor expanding n
for small ∆ε gives that it is sufficient to take

n ≥ 2p(1− p)
∆2
ε

ln
1

δ
. (S7)

Secondly, if p = 1, then it is sufficient to take

n ≥ −1

ln (1−∆ε)
ln

1

δ
≈ 1

∆ε
ln

1

δ
, (S8)
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which is in agreement with the scaling previously derived in Eq. S1. These are the limiting cases of the scaling of n
with ∆ε. In the worst case, n scales quadratically in ∆−1

ε ; however, for any strategy where the state |ψ〉 to be tested
is accepted with certainty, only a total number of measurements linear in ∆−1

ε are required. Thus asymptotically, a
strategy where p = 1 is always favourable (i.e. gives a quadratic improvement in scaling with ∆ε) for any ∆ε > 0.
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