Quantum speedup of the Travelling Salesman Problem for bounded-degree graphs

Dominic J. Moylett,"3[] Noah Linden,*[]] and Ashley Montanaro*[f]

! Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and
Department of Electrical & FElectronic Engineering, University of Bristol, BS8 1FD, UK
2 Quantum Engineering Centre for Doctoral Training,
H. H. Wills Physics Laboratory and Department of Electrical & Electronic Engineering, University of Bristol, BS8 1FD, UK
3 Heilbronn Institute for Mathematical Research, University of Bristol, BS8 1SN, UK
4School of Mathematics, University of Bristol, BS8 1TW, UK
(Dated: December 18, 2016)

The Travelling Salesman Problem is one of the most famous problems in graph theory. However,
little is currently known about the extent to which quantum computers could speed up algorithms
for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each
vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao
and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the
degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these

instances.

I. INTRODUCTION

A salesman has a map of n cities that they want to
visit, including the roads between the cities and how long
each road is. Their aim is to start at their home, visit
each city and then return home. To avoid wasting time,
they want to visit each city exactly once and travel via
the shortest route. So what route should the salesman
take?

This is an instance of the Travelling Salesman Problem
(TSP). More generally, this problem takes an undirected
graph G = (V, E) of n vertices connected by m weighted
edges and returns the shortest cycle which passes through
every vertex exactly once, known as a Hamiltonian cycle,
if such a cycle exists. If no Hamiltonian cycle exists,
we should report that no Hamiltonian cycle has been
found. The length or cost of an edge is given by an
n x n matrix C' = (¢;;) of positive integers, known as a
cost matrix. This problem has a number of applications,
ranging from route finding as in the story above to circuit
board drilling [I].

Unfortunately, the salesman might have to take a long
time in order to find the shortest route. The TSP has
been shown to be NP-hard [2, Chapter 3], suggesting that
even the best algorithms for exactly solving it must take
a superpolynomial amount of time. Nevertheless, the
importance of the problem has motivated a substantial
amount of classical work to develop algorithms for solv-
ing it provably more efficiently than the naive algorithm
which checks all O((n —1)!) of the potential Hamiltonian
cycles in the graph. Here we consider whether these algo-
rithms can be accelerated using quantum computational
techniques.

Grover’s famous quantum algorithm [3] for fast un-
structured search can be applied to the naive classical
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algorithm to achieve a runtime of O(v/n!), up to poly-
nomial terms in n. However, the best classical algo-
rithms are already substantially faster than this. For
many years, the algorithm with the best proven worst-
case bounds for the general TSP was the Held-Karp algo-
rithm [4], which runs in O(n?2") time and uses O(n2")
space. This algorithm uses the fact that for any short-
est path, any subpath visiting a subset of vertices on that
path must be the shortest path for visiting those vertices.
Held and Karp used this to solve the TSP by computing
the length of the optimal route for starting at vertex 1,
visiting every vertex in a set S C V and finishing at a
vertex [ € S. Denoting the length of this optimal route
D(S,1), they showed that this distance could be com-
puted as
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otherwise.

Solving this relation recursively for S = V would re-
sult in iterating over all O((n — 1)!) Hamiltonian cycles
again, but Held and Karp showed that the relation could
be solved in O(n?2") time using dynamic programming.
Bjorklund et al. [5] developed on this result, showing that
modifications to the Held-Karp algorithm could yield a
runtime of

O((2+1 = 2k — 2"/ 41 poly (n)),

where k is the largest degree of any vertex in the graph;
this bound is strictly less than O(2") for all fixed k. Un-
fortunately, it is not known whether quantum algorithms
can accelerate general dynamic programming algorithms.
Similarly, it is unclear whether TSP algorithms based
around the standard classical techniques of branch-and-
bound [6] or branch-and-cut [7] are amenable to quantum
speedup.

Here we apply known quantum-algorithmic techniques
to accelerate more recent classical TSP algorithms for
the important special case of bounded-degree graphs. We
say that a graph G is degree-k if the maximal degree of
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any vertex in G is at most k. A recent line of research
has produced a sequence of algorithms which improve
on the O*(2") runtime of the general Held-Karp algo-
rithm in this setting, where the notation O*(¢™) omits
polynomial factors in n. First, Eppstein presented algo-
rithms which solve the TSP on degree-3 graphs in time
O*(2™3) =~ 0*(1.260"), and on degree-4 graphs in time
O*((27/4)"/3) ~ 0*(1.890") [§]. The algorithms are
based on the standard classical technique of backtracking,
an approach where a tree of partial solutions is explored
to find a complete solution to a problem (see Section
for an introduction to this technique). Following subse-
quent improvements [9, [10], the best classical runtimes
known for algorithms based on this general approach are
0*(1.232") for degree-3 graphs [I1], and O*(1.692"™) for
degree-4 graphs [12], in each case due to Xiao and Nag-
amochi. All of these algorithms use polynomial space in
n.

An algorithm of Bodlaender et al. [13] achieves a faster
runtime of 0*(1.219") for solving the TSP in degree-3
graphs, which is the best known; however, this algorithm
uses exponential space. Similarly, an algorithm of Cy-
gan et al. [14] solves the TSP in unweighted degree-4
graphs in O*(1.588™) time and exponential space. Both
of these algorithms use an approach known as cut-and-
count, which is based on dynamic programming, so a
quantum speedup is not known for either algorithm.

In the case where we have an upper bound L on the
maximum edge cost in the graph, Bjorklund [I5] gave a
randomised algorithm which solves the TSP on arbitrary
graphs in O*(1.657™ L) time and polynomial space, which
is an improvement on the runtime of the Xiao-Nagamochi
algorithm for degree-4 graphs when L is subexponential
in n. Again, the techniques used in this algorithm do not
seem obviously amenable to quantum speedup.

Here we use a recently developed quantum backtrack-
ing algorithm [16] to speed up the algorithms of Xiao and
Nagamochi in order to find Hamiltonian cycles shorter
than a given upper bound, if such cycles do exist. We run
this algorithm several times, using binary search to spec-
ify what our upper bound should be, in order to find the
shortest Hamiltonian cycle and solve the Travelling Sales-
man Problem. In doing so, we achieve a near-quadratic
reduction in the runtimes:

Theorem 1. There are bounded-error quantum algo-
rithms which solve the TSP on degree-3 graphs in time
0*(1.110™ log Lloglog L) and on degree-4 graphs in time
0*(1.301™ log Lloglog L), where L is the maximum edge
cost. The algorithms use poly(n) space.

In this result and elsewhere in the paper, “bounded-
error” means that the probability that the algorithm ei-
ther doesn’t find a Hamiltonian cycle when one exists
or returns a non-optimal Hamiltonian cycle is at most
1/3. This failure probability can be reduced to 4, for
arbitrary 6 > 0, by repeating the algorithm O(log1/6)
times. Also here and throughout the paper, log denotes
log base 2. Note that the time complexity of our algo-

rithms has some dependence on L, the largest edge cost
in the input graph. However, this dependence is quite
mild. For any graph whose edge costs are specified by w
bits, L < 2*. Thus terms of the form polylog(L) are at
most polynomial in the input size.

Next, we show that degree-5 and degree-6 graphs can
be dealt with via a randomised reduction to the degree-4
case.

Theorem 2. There is a bounded-error quantum algo-
rithm which solves the TSP on degree-5 and degree-6
graphs in time O*(1.680™ log Lloglog L). The algorithm
uses poly(n) space.

We summarise our results in Table [l

A. Related work

Surprisingly little work has been done on quantum al-
gorithms for the TSP. Doérn [I7] proposed a quantum
speedup for the TSP for degree-3 graphs by applying
amplitude amplification [I8] and quantum minimum find-
ing [19] to Eppstein’s algorithm, and stated a quadratic
reduction in the runtime. However, we were not able to
reproduce this result (see Section [II| below for a discus-
sion).

Very recently, Mandra, Guerreschi and Aspuru-
Guzik [20] developed a quantum algorithm for finding a
Hamiltonian cycle in time O(2(*=27"/4) in a graph where
every vertex has degree k. Their approach reduces the
problem to an Occupation problem, which they solve via
a backtracking process accelerated by the quantum back-
tracking algorithm [I6]. The bounds obtained from their
algorithm are O(1.189") for k = 3 and O(1.414™) for
k = 4, in each case a bit slower than the runtimes of
our algorithms; for £ > 5, their algorithm has a slower
runtime than Bjorklund’s classical algorithm [15].

Martonék, Santoro and Tosatti [2I] explored the op-
tion of using quantum annealing to find approximate so-
lutions for the TSP. Rather than solve the problem purely
through quantum annealing, they simplify their Ising
Hamiltonian for solving the TSP and use path-integral
Monte Carlo [22] to run their model. While no bounds
on run time or accuracy were strictly proven, they con-
cluded by comparing their algorithm to simulated anneal-
ing via the Metropolis-Hastings algorithm [23] and the
Kernighan-Lin algorithm for approximately solving the
TSP [24]. Their results showed that ad hoc algorithms
could perform better than general simulated or quantum
annealing, but quantum annealing could outperform sim-
ulated annealing alone. However, they noted that simu-
lated annealing could perform better than in their anal-
ysis if combined with local search heuristics [25].

Chen et al. [26] experimentally demonstrated a quan-
tum annealing algorithm for the TSP. Their demonstra-
tion used a nuclear-magnetic-resonance quantum simula-
tor to solve the problem for a graph with 4 vertices.



Degree Quantum

Classical (poly space)

Classical (exp space)

3 |O*(1.110™ polylog L)

5,6 |O*(1.680" polylog L)

0*(1.232") [11]
4 |0*(1.301" polylog L) | O*(1.692") [12], O*(1.657" L) [15]
O*(1.657"L) [17] —

0*(1.219") [13]
0*(1.588") [14]

TABLE I. Runtimes of our quantum algorithms for a graph of n vertices with maximum edge cost L, compared with the best

classical algorithms known.

B. Organisation

We start by introducing the main technique we use,
backtracking, and comparing it with amplitude ampli-
fication. Then, in Section [[IT, we describe how this
technique can be used to accelerate classical algorithms
of Xiao and Nagamochi for graphs of degree at most
4 [111 12). In Section we extend this approach to
graphs of degree at most 6.

II. BACKTRACKING ALGORITHMS FOR THE
TSP

Many of the most efficient classical algorithms known
for the TSP are based around a technique known as back-
tracking. Backtracking is a general process for solving
constraint satisfaction problems, where we have v vari-
ables and we need to find an assignment to these vari-
ables such that they satisfy a number of constraints. A
naive search across all possible assignments will be inef-
ficient, but if we have some local heuristics then we can
achieve better performance by skipping assignments that
will definitely fail.

Suppose each variable can be assigned one value from
[d] :={0,...,d — 1}. We define the set of partial assign-
ments for v variables as D := ({1,...,v},[d])?, where
7 < v, with the first term denoting the variable to assign
and the second denoting the value it is assigned. Us-
ing this definition for partial assignments, backtracking
algorithms have two components. The first is a predi-
cate, P : D — {true,false, indeterminate}, which takes
a partial assignment and returns true if this assignment
will definitely result in the constraints being satisfied re-
gardless of how everything else is assigned, false if the
assignment will definitely result in the constraints being
unsatisfied, and indeterminate if we do not yet know.
The second is a heuristic, h : D — {1,...,v}, which
takes a partial assignment and returns the next variable
to assign.

The following simple recursive classical algorithm takes
advantage of P and h to solve a constraint satisfaction
problem. We take as input a partial assignment (ini-
tially, the empty assignment). We run P on this partial
assignment; if the result is true then we return the par-
tial assignment, and if it is false then we report that no
solutions were found in this recursive call. We then call
h on this partial assignment and find out what the next

variable to assign is. For every value in i € [d] we can
assign that variable, we recursively call the backtrack-
ing algorithm with ¢ assigned to that variable. If one
of the recursive calls returns a partial assignment then
we return that assignment, otherwise we report that no
solutions were found in this call. We can view this algo-
rithm as exploring a tree whose vertices are labelled with
partial assignments. The size of the tree determines the
worst-case runtime of the algorithm, assuming that there
is no assignment that satisfies all the constraints.

It is known that this backtracking algorithm can be
accelerated using quantum techniques:

Theorem 3 (Montanaro [I6]). Let A be a backtracking
algorithm with predicate P and heuristic h that finds a so-
lution to a constraint satisfaction problem on v variables
by exploring a tree of at most T vertices. There is a quan-
tum algorithm which finds a solution to the same problem
with failure probability § with O(v/Tv/?logwvlog(1/8))
uses of P and h.

Montanaro’s result is based on a previous algorithm by
Belovs |27, 28], and works by performing a quantum walk
on the backtracking tree to find vertices corresponding
to assignments which satisfy the constraints. The reader
familiar with [I6] may note that the definition of the set
of partial assignments D is different to that given there,
in that it incorporates information about the ordering of
assignments to variables. However, it is easy to see from
inspection of the algorithm of [16] that this change does
not affect the stated complexity of the algorithm.

It is worth noting that more standard quantum ap-
proaches such as amplitude amplification [I8] will not
necessarily achieve a quadratic speedup over the clas-
sical backtracking algorithm. Amplitude amplification
requires access to a function f : {0,1}* — {true, false}
and a guessing function G. If the probability of G find-
ing a result 2 € {0,1}* such that f(z) = true is p, then
amplitude amplification will succeed after O(1/,/p) ap-
plications of f and G [I§].

To apply amplitude amplification, we would need to ac-
cess the leaves of the tree, as these are the points where
the backtracking algorithm is certain whether or not a so-
lution will be found. Thus, for each integer i, we would
need to find a way of determining the 7’th leaf [; in the
backtracking tree. In the case of a perfectly balanced
tree, such as Fig. [Ta] where every vertex in the tree is
either a leaf or has exactly d branches descending from
it, such a problem is easy: write ¢ in base d and use each



(b) An unbalanced backtracking tree.

FIG. 1. Example backtracking trees, where [5 is a leaf corresponding to a solution to a constraint satisfaction problem. In the
perfectly balanced case of Fig. each leaf can be associated with a 3-bit string corresponding to a path to that leaf. But in
the unbalanced case of Fig. specifying a path to a leaf requires 6 bits.

digit of ¢ to decide which branch to explore. But not all
backtracking trees are perfectly balanced, such as in Fig.
[[Bl In these cases, finding leaf [; is hard as we cannot
be certain which branch leads to that leaf. Some heuris-
tic approaches, by performing amplitude amplification on
part of the tree, can produce better speedups for certain
trees, but do not provide a general speedup on the same
level as the quantum backtracking algorithm [16].

It is also worth understanding the limitations of the
quantum backtracking algorithm, and why it cannot nec-
essarily speed up all algorithms termed “backtracking al-
gorithms” [16]. First, a requirement for the quantum
algorithm is that decisions made in one part of the back-
tracking tree are independent of results in another part of
the tree, which is not true of all classical algorithms, such
as constraint recording algorithms [29]. Second, the run-
time of the quantum algorithm depends on the size of the
entire tree. Thus, to achieve a quadratic speedup over a
classical algorithm, the algorithm must explore the whole
backtracking tree, instead of stopping after finding the
first solution or intelligently skipping branches such as in
backjumping [29]. Therefore, it is important to check on
a case-by-case basis whether classical backtracking algo-
rithms can actually be accelerated using Theorem

Another limitation of the quantum backtracking algo-

rithm is that often there will be a metric M : D — N
we want the backtracking algorithm to minimise while
satisfying the other constraints. This is particularly rele-
vant for the TSP, where the aim is to return the shortest
Hamiltonian cycle. Classical backtracking algorithms can
achieve this by recursively travelling down each branch
of the tree to find results Dy,..., Dy € D and returning
the result that minimises M. The quantum backtracking
algorithm cannot perform this; it instead returns a so-
lution selected randomly from the tree that satisfies the
constraints. In order to achieve a quantum speedup when
finding the result that minimises M, we can modify the
original predicate to prune results which are greater than
or equal to a given bound. We then repeat the algorithm
in a binary search fashion, updating our bound based on
whether or not a solution was found. This will find the
minimum after repeating the quantum algorithm at most
O(log Mq4) times, where

Moz = max{M (D) : D € D, P(D) = true}.

We describe this binary search approach in more detail
in Sec. [IIBl

The intuition behind why backtracking is a useful tech-
nique for solving the TSP is that we can attempt to
build up a Hamiltonian cycle by determining for each



edge in the graph whether it should be included in the
cycle (“forced”), or deleted from the graph. As we add
more edges to the cycle, we may either find a contra-
diction (e.g. produce a non-Hamiltonian cycle) or reduce
the graph to a special case that can be handled efficiently
(e.g. a collection of disjoint cycles of four unforced edges).
This can sometimes allow us to prune the backtracking
tree substantially.

To analyse the performance of backtracking algorithms
for the TSP, a problem size measure is often defined that
is at least 0 and at most n (e.g. the number of vertices
minus the number of forced edges). Note that if there are
more than n forced edges then it is impossible to form
a Hamiltonian cycle that includes every forced edge, so
the number of forced edges is at most n. At the start
of the backtracking algorithm, there are no forced edges
so the problem size is n. Each step of the backtracking
algorithm reduces the problem size until the size is 0, at
which point either the n forced edges form a Hamiltonian
cycle or a Hamiltonian cycle that includes every forced
edge cannot be found. A quasiconvex program can be
developed based on how the backtracking algorithm re-
duces the problem size. Solving this quasiconvex problem
produces a runtime in terms of the problem size, which
can be re-written in terms of n due to the problem size
being at most n.

It was proposed by Dérn [17] that amplitude amplifi-
cation could be applied to speed up the runtime of Epp-
stein’s algorithm for the TSP on degree-3 graphs [§] from
O*(2™3) to O*(2™/°). Amplitude amplification can be
used in this setting by associating a bit-string with each
sequence of choices of whether to force or delete an edge,
and searching over bit-strings to find the shortest valid
Hamiltonian cycle. However, as suggested by the gen-
eral discussion above, a difficulty with this approach is
that some branches of the recursion, as shown in Fig.
only reduce the problem size by 2 (as measured by the
number of vertices n, minus the number of forced edges).
The longest branch of the recursion can, as a result, be
more than n/3 levels deep. In the worst case, this depth
could be as large as n/2 levels. Specifying the input to
the checking function f could then require up to n/2
bits, giving a search space of size O(2"/?). Under these
conditions, searching for the solution via amplitude am-
plification could require up to O*(2"/4) time in the worst
case. To yield a better runtime, we must take more of an
advantage of the structure of our search space to avoid
instances which will definitely not succeed.

The same issue with amplitude amplification applies to
other classical algorithms for the TSP which are based on
backtracking [11, 12]. In the case of the Xiao-Nagamochi
algorithm for degree-3 graphs, although the overall run-
time bound proven for the problem means that the num-
ber of vertices in the tree is O(2°"/10), several of the
branching vectors used in their analysis have branches
that reduce the problem size by less than 10/3, leading
to a branch in the tree that could be more than 3n/10
levels deep.

III. QUANTUM SPEEDUPS FOR THE
TRAVELLING SALESMAN PROBLEM ON
BOUNDED-DEGREE GRAPHS

Our algorithms are based on applying the quantum
algorithm for backtracking (Theorem to Xiao and
Nagamochi’s algorithm [I1]. Before describing our algo-
rithms, we need to introduce some terminology from [11]
and describe their original algorithm. The algorithm,
and its analysis, are somewhat involved, so we omit de-
tails wherever possible.

A. The algorithm of Xiao and Nagamochi

A graph G is k-edge connected if there are k edge-
disjoint paths between every pair of vertices. An edge
in G is said to be forced if it must be included in the
final tour, and unforced otherwise. The set of forced
edges is denoted F', and the set of unforced edges is de-
noted U. An induced subgraph of unforced edges which
is maximal and connected is called a U-component. If
a U-component is just a single vertex, then that U-
component is trivial. A maximal sequence C of edges
in a U-component H is called a circuit if either:

e C = {zy} and there are three edge-disjoint paths
from zx to vy,

eor C = {co,c1,...,Cm_1} such that for 0 < i <
m — 1, there is a subgraph B; of H such that the
only two unforced edges incident to B; are ¢; and
Cit1-

A circuit is reducible if subgraph B; for some i is in-
cident to only two edges. In order for B; to be reached,
both edges incident to B; need to be forced. Forcing one
edge in the circuit then means that the other edges can
be either forced or removed. The polynomial time and
space process by Xiao and Nagamochi to reduce circuits,
by forcing and removing alternating edges in the circuit,
is known as the circuit procedure [11].

Note that each edge can be in at most one circuit. If
two distinct circuits C, C’ shared an edge e;, then there are
two possibilities. The first is that there is a subgraph B;
incident to unforced edges e; € CNC' e;11 € C—C'ej €
C' — C. In this case, B; is incident to more than two
unforced edges, so neither C nor C’ are circuits, which is
a contradiction.

The second is that there is some edge e; which is inci-
dent to distinct subgraphs B;, B} related to C,C’, respec-
tively. Circuits are maximal sequences, so it cannot be
the case that B; is a subgraph of Bj, otherwise C' C C.
Now we consider the subgraphs B; N B} and B; — Bj,
which must be connected by unforced edges as they are
both subgraphs of B;. These unforced edges are incident
to B!, which is a contradiction as they are not part of C’.

Let X be a subgraph. We define cut(X) to be the
set of edges that connect X to the rest of the graph.



FIG. 2. An instance of the recursive step in Eppstein’s backtracking algorithm for the TSP [8] for a subgraph of a larger graph
G, with forced edges displayed in bold and branching on edge bc. If we force be, then b and ¢ are both incident to two forced
edges, so bd and ci cannot be part of the Hamiltonian cycle and can be removed from the graph. After these edges are removed,
vertices ¢ and d are both of degree 2, so in order to reach those vertices the edges hi, ij, df and dg must also be included in
the Hamiltonian cycle. So forcing bc has overall added five edges to the Hamiltonian cycle. On the other hand, if we remove
edge be, we find that b and ¢ are vertices of degree 2, so edges bd and ci must be part of the Hamiltonian cycle. Thus we have

only added two more edges to the Hamiltonian cycle.

If |cut(X)| = 3, then we say that X is 3-cut reducible.
It was shown by Xiao and Nagamochi [I1] that, if X is
3-cut reducible, X can be replaced with a single vertex
of degree 3 with outgoing edges weighted such that the
length of the shortest Hamiltonian cycle is preserved.

The definition of 4-cut reducible is more complex. Let
X be a subgraph such that cut(X) C F and |cut(X)| = 4.
A solution to the TSP would have to partition X into two
disjoint paths such that every vertex in X is in one of the
two paths. If z1, x5, x5 and x4 are the four vertices in X
incident to the four edges in cut(X), then there are three
ways these paths could start and end:

® I <> T2 and XT3 <> T4,
e 11 <> x3 and x5 > T4,
e or x1 <> x4 and zo <> 3.

We say that X is 4-cut reducible if for at least one of the
above cases it is impossible to create two disjoint paths
in X that include all vertices in X. Xiao and Nagamochi
defined a polynomial time and space process for applying
the above reductions, known as 3/4-cut reduction [I1].
A set of edges {e;} are parallel if they are incident to
the same vertices (note that here we implicitly let G be a
multigraph; these may be produced in intermediate steps
of the algorithm). If there are only two vertices in the
graph, then the TSP can be solved directly by forcing
the shortest two edges. Otherwise if at least one of the
edges is not forced, then we can reduce the problem by
removing the longer unforced edges until the vertices are

only adjacent via one edge. This is the process Xiao and
Nagamochi refer to as eliminating parallel edges [11].

Finally, a graph is said to satisfy the parity condition
if every U-component is incident to an even number of
forced edges and for every circuit C, an even number of
the corresponding subgraphs B; satisfy that |cut(B;)NF|
is odd.

We are now ready to describe Xiao and Nagamochi’s
algorithm. The algorithm takes as input a graph G =
(V,E) and a set of forced edges F' C E and returns the
length of the shortest Hamiltonian cycle in G' containing
all the edges in F, if one exists.

The algorithm is based on four subroutines: eliminat-
ing parallel edges, the 3/4-cut reduction, selecting a good
circuit and the circuit procedure, as well as the following
lemma:

Lemma 1 (Eppstein [8]). If every U-component in a
graph G is trivial or a component of a 4-cycle, then a
minimum cost tour can be found in polynomial time.

We will not define the subroutines here in any detail;
for our purposes, it is sufficient to assume that they all
run in polynomial time and space. The circuit procedure
for a circuit C begins by either adding an edge e € C to
F or deleting it from the graph, then performing some
other operations. “Branching on a circuit C at edge e €
C” means generating two new instances from the current
instance by applying each of these two variants of the
circuit procedure starting with e.

The Xiao-Nagamochi algorithm, named TSP3, pro-
ceeds as follows, reproduced from [11]:



1. If G is not 2-edge-connected or the instance violates
the parity condition, then return oo;

2. Elseif there is a reducible circuit C, then return
TSP3(G', F') for an instance (G', F') obtained by
applying the circuit procedure on C started by
adding a reducible edge in C to F;

3. Elseif there is a pair of parallel edges, then return
TSP3(G', F') for an instance (G', F') obtained by
applying the reduction rule of eliminating parallel
edges;

4. Elseif there is a 3/4-cut reducible subgraph X
containing at most eight vertices, then return
TSP3(G', F’) for an instance (G', F') obtained by
applying the 3/4-cut reduction on X;

5. Elseif there is a U-component H that is neither
trivial nor a 4-cycle, then select a good circuit C in
H and return min{TSP3(Gy, F1), TSP3(Gs, F»)},
where (G1, F1) and (Gs, F) are the two resulting
instances after branching on C;

6. Else [each U-component of the graph is trivial or
a 4-cycle], solve the problem directly in polynomial
time by Lemmal [T and return the cost of an optimal
tour.

Step 1 of the algorithm checks that the existence of a
Hamiltonian cycle is not ruled out, by ensuring that that
there are at least two disjoint paths between any pair
of vertices and that the graph satisfies the parity con-
dition. Step 2 reduces any reducible circuit by initially
forcing one edge and then alternately removing and forc-
ing edges. Step 3 removes any parallel edges from the
graph, and step 4 removes any circuits of three edges as
well as setting up circuits of four edges so that all edges
incident to them are forced. Step 5 is the recursive step,
branching on a good circuit by either forcing or remov-
ing an edge in the circuit and then applying the circuit
procedure. The algorithm continues these recursive calls
until it either finds a Hamiltonian cycle or G \ F is a
collection of single vertices and cycles of length 4, all of
which are disjoint from one another, at which point the
problem can be solved in polynomial time via step 6.

Xiao and Nagamochi looked at how the steps of the al-
gorithm, and step 5 in particular as the branching step,
reduced the size of the problem for different graph struc-
tures. From this they derived a quasiconvex program
corresponding to 19 branching vectors, each describing
how the problem size is reduced at the branching step
in different circumstances. Analysis of this quasiconvex
program showed that the algorithm runs in O*(237/10)
time and polynomial space [11].

B. Quantum speedup of the Xiao-Nagamochi
algorithm

Here we describe how we apply the quantum back-
tracking algorithm to the Xiao-Nagamochi algorithm. It
is worth noting that the quantum backtracking algorithm
will not necessarily return the shortest Hamiltonian cy-
cle, but instead returns a randomly selected Hamiltonian
cycle that it found. Adding constraints on the length
of the Hamiltonian cycles to our predicate and running
the quantum backtracking algorithm multiple times will
allow us to find a solution to the TSP.

The first step towards applying the quantum back-
tracking algorithm is to define the set of partial assign-
ments. A partial assignment will be a list of edges in G
ordered by when they are assigned in the backtracking
algorithm and paired with whether the assignment was
to force or remove the edge. The assignment is denoted
A € ({1,...,m}, {force,remove})’, where j < m. We
have m < 3n/2 as G is degree-3.

The quantum approach to backtracking requires us to
define a predicate P and heuristic h, each taking as in-
put a partial assignment. Our predicate and heuristic
make use of a reduction function, introduced in [I1], as a
subroutine; this function is described in the next subsec-
tion. However it may be worth noting that the algorithm
uses the original graph G, and partial assignments of it
at each stage.

Firstly, we describe the P function, which takes a par-
tial assignment A = ((e1, 41),...,(ej,4;)) as input:

1. Using the partial assignment A, apply the reduc-
tion function to (G, F) to get (G', F").

2. If G’ is not 2-edge-connected or fails the parity con-
dition, then return false.

3. If every U-component in G’ is either trivial or a
4-cycle, then return true.

4. Return indeterminate.

Step 2 matches step 1 of Xiao and Nagamochi’s algo-
rithm. Step 3 is where the same conditions are met as
in step 6 of Xiao and Nagamochi’s algorithm, where a
shortest length Hamiltonian cycle is guaranteed to ex-
ist and can be found in polynomial time classically via
Lemmal[] Step 4 continues the branching process, which
together with how the circuit is picked by h and step 2(c)
of the reduction function (qv) matches step 5 of Xiao and
Nagamochi.

The h function is described as follows, taking as input
a partial assignment A = ((e1,41),...,(ej,A;)) of the
edges of G:

1. Using the partial assignment A, apply the reduc-
tion function to (G, F) to get (G', F").

2. Select a U-component in G’ that is neither triv-
ial nor a cycle of length 4. Select a circuit C in



that component that fits the criteria of a “good”
circuit [I1], then select an edge €} € C.

3. Return an edge in G corresponding to e} (if there
is more than one, choosing one arbitrarily).

Step 2 applies step 5 of Xiao and Nagamochi’s algo-
rithm, by selecting the next circuit to branch on and
picking an edge in that circuit. If the reduced version
of the graph results in h picking an edge corresponding
to multiple edges in the original graph, step 3 ensures
that we only return one of these edges to the backtrack-
ing algorithm, as step 2(b) of the reduction function will
ensure that every edge in the original graph correspond-
ing to an edge in the reduced graph will be consistently
forced or removed. The rest of the circuit will be forced
or removed by step 2(c) of the reduction function.

We can now apply the backtracking algorithm (The-
orem [3) to P and h to find a Hamiltonian cycle. We
will later choose its failure probability ¢ to be sufficiently
small that we can assume that it always succeeds, i.e.
finds a Hamiltonian cycle if one exists, and otherwise
reports that one does not exist. At the end of the al-
gorithm, we will receive either the information that no
assignment was found, or a partial assignment. By ap-
plying the reduction steps and the partial assignments,
we can reconstruct the graph at the moment our quan-
tum algorithm terminated, which will give a graph such
that every U-component is either trivial or a 4-cycle. We
then construct and return the full Hamiltonian cycle in
polynomial time using step 6 of Xiao and Nagamochi’s
algorithm [11].

To solve the TSP, we need to find the shortest Hamil-
tonian cycle. This can be done as follows. First, we
run the backtracking algorithm. If the backtracking al-
gorithm does not return a Hamiltonian cycle then we
report that no Hamiltonian cycle was found. Otherwise
after receiving Hamiltonian cycle I' with length Ly, we
create variables £ < 0 & u + Lp and modify P to return
false if

Y = [(+u)/2).

e ;EF

If no cycle is found after running the algorithm again,
we set £ « [(£ + u)/2] and repeat. Otherwise, upon
receiving Hamiltonian cycle IV with total cost L, we set
u < Ly and repeat. We continue repeating until ¢ and u
converge, at which point we return the Hamiltonian cycle
found by the algorithm. In the worst case scenario, where
the shortest cycle is found during the first run of the
backtracking algorithm, this algorithm matches a binary
search. So the number of repetitions of the backtracking
algorithm required to return the shortest Hamiltonian
cycle is at most O(log L"), where

L = Zmax{cij cjef{l,...,n}} (1)

is an upper bound on the total cost of any Hamiltonian
cycle in the graph.

C. The reduction function

Finally, we describe the reduction function, which
takes the original graph G and partial assignment A, and
applies the partial assignment to this graph in order to
reduce it to a smaller graph G’ with forced edges F’.
This reduction might mean that forcing or removing a
single edge in G’ would be akin to forcing several edges
in G. For example, let X be a 3-reducible subgraph of at
most 8 vertices with cut(X) = {ax1, bz, cx3} for vertices
x1,x2,23 € V(X). The 3/4-cut reduction reduces X to
a single vertex x € G’ with edges ax, bz, cx. If the edges
axz and bx are forced, this is equivalent to forcing every
edge in TTU {axq, bxs}, where II is the shortest path that
starts at xp, visits every vertex in X exactly once, and
ends at x5. As we need to solve the problem in terms of
the overall graph G and not the reduced graph G’, our
assigned variables need to correspond to edges in G. To
do this, our heuristic includes a step where if the edge
selected in G’ corresponds to multiple edges in G, we
simply select one of the corresponding edges in G to re-
turn. Likewise, if the next edge in our partial assignment
is one of several edges in G corresponding to a single edge
in G’, we apply the same assignment to all of the other
corresponding edges in G.

The reduction function works as follows, using reduc-
tions and procedures from Xiao and Nagamochi [IT]:

1. Create a copy of the graph G’ +— G and set of forced
edges I + ().

2. Foreachi=1,...,5:

(a) Repeat until none of the cases apply:

i. If G’ contains a reducible circuit C, then
apply the circuit procedure to C.

ii. If G’ contains parallel edges, then apply
the reduction rule of eliminating parallel
edges.

iii. If G’ contains a subgraph X of at most 8
vertices such that X is 3/4-cut reducible,
then apply the 3/4-cut reduction to X.

(b) Apply assignment (e;,a;) to (G',F’) by
adding edge e; to F’ if a; = force, or deleting
edge e; from G’ if A; = remove. If edge e; is
part of a set of edges corresponding to a single
edge in G’, apply the same assignment to all
edges in G which correspond to the same edge
in G’ by adding them all to F' if a; = force,
or deleting them all from G’ if a; = remove.

(c) Apply the circuit procedure to the rest of the
circuit containing edge e;.

3. Run step 2(a) again.
4. Return (G', F").

Step 2(a)i recreates step 2 from Xiao and Nagamochi’s
original algorithm by applying the circuit procedure



where possible. Step 2(a)ii recreates step 3 of the origi-
nal algorithm by applying the reduction of parallel edges.
Step 2(a)iii recreates step 4 of the original algorithm via
the 3/4-cut reduction. Step 2(b) applies the next step of
the branching that has been performed so far, to ensure
that the order in which the edges are forced is the same
as in the classical algorithm. Step 2(c) corresponds to
branching on a circuit at edge e;. Finally, step 3 checks
whether or not the graph can be reduced further by run-
ning the reduction steps again.

One might ask if an edge could be part of two circuits,
in which case our algorithm would fail as it would not be
able to reduce the circuit. However, as discussed in Sec.
[[ITA] any edge can only be part of at most one circuit.

D. Analysis

Steps 2(a)i-iii of the reduction algorithm can be com-
pleted in polynomial time [I1]. All of these steps also re-
duce the size of a problem by at least a constant amount,
so only a polynomial number of these steps are needed.
Step 2(b) is constant time and step 2(c) can be run in
polynomial time as the circuit is now reducible. All steps
are only repeated O(m) times, so the whole reduction al-
gorithm runs in polynomial time in terms of m.

Steps 2 and 3 of the i subroutine run in polynomial
time as searching for a good circuit in a component can
be done in polynomial time [I1]. Likewise, steps 2 and
3 of the P function involve looking for certain structures
in the graph that can be found in polynomial time. As a
result, the runtimes for the P and h functions are both
polynomial in m.

By Theorem [3] the number of calls to P and h we
make in order to find a Hamiltonian cycle with failure
probability & is O(v/T poly(m)log(1/§)), where T is the
size of the backtracking tree, which in our case is equal
to the number of times the Xiao-Nagamochi algorithm
branches on a circuit. P and h both run in polynomial
time and as a result can be included in the poly(m) term
of the runtime. Because m < 3n/2, the polynomial term
in this bound is also polynomial in terms of n.

The behaviour of the P and h subroutines is de-
signed to reproduce the behaviour of Xiao and Nag-
amochi’s TSP3 algorithm [I1]. It is shown in [IT], The-
orem 1] that this algorithm is correct, runs in time
0*(2°*/1%) and uses polynomial space. As the runtime
of the TSP3 algorithm is an upper bound on the num-
ber of branching steps it makes, the algorithm branches
on a circuit O*(2%7/19) times. Therefore, the quan-
tum backtracking algorithm finds a Hamiltonian cycle,
if one exists, with failure probability at most § in time
0*(2°"/?010g(1/68)) ~ O*(1.110™1log(1/4)) and polyno-
mial space.

Finding the shortest Hamiltonian cycle requires re-
peating the algorithm O(log L) times, where L’ is given
in Equation |1} By using a union bound over all the runs
of the algorithm, to ensure that all runs succeed with

high probability it is sufficient for the failure probabil-
ity d of each run to be at most O(1/(log L’)). From this
we obtain the following result, proving the first part of
Theorem [T}

Theorem 4. There is a bounded-error quantum algo-
rithm which solves the TSP on degree-3 graphs in time
0*(1.110™ log Lloglog L), where L is the maximum edge
cost. The algorithm uses poly(n) space.

Note that we have used the bound L' < nL, where
the extra factor of n is simply absorbed into the hidden
poly(n) term.

IV. EXTENDING TO HIGHER-DEGREE
GRAPHS

We next consider degree-k graphs for k > 4. We start
with degree-4 graphs by applying the quantum back-
tracking algorithm to another algorithm by Xiao and
Nagamochi [12]. We then extend this approach to graphs
of higher degree by reducing the problem to degree-4
graphs.

A. Degree-4 graphs

Here we will show the following, which is the second
part of Theorem [T}

Theorem 5. There is a bounded-error quantum algo-
rithm which solves the TSP for degree-4 graphs in time
0*(1.301™ log Lloglog L), where L is the maximum edge
cost. The algorithm uses poly(n) space.

As the argument is very similar to the degree-3 case,
we only sketch the proof.

Proof sketch. Xiao and Nagamochi’s algorithm for
degree-4 graphs works in a similar way to their algo-
rithm for degree-3 graphs: The graph is reduced in poly-
nomial time by looking for specific structures in the
graph and then picking an edge in the graph to branch
on. We apply the quantum backtracking algorithm as
before, finding a Hamiltonian cycle with failure proba-
bility § in O*(1.301™log(1/6)) time. We then use bi-
nary search to find the shortest Hamiltonian cycle after
O(log L) repetitions of the algorithm, rejecting if the to-
tal length of the forced edges is above a given threshold.
To achieve overall failure probability 1/3, the algorithm
runs in O*(1.301™ log Lloglog L) time. O

B. Degree-5 and degree-6 graphs

To deal with degree-5 and degree-6 graphs, we reduce
them to the degree-4 case. The complexity of the two
cases turns out to be the same; however, for clarity we
consider each case separately.
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FIG. 3. Breaking a vertex of degree 5 or 6 into two lower-degree vertices. In the degree-5 case, dashed edge f is not present
and the vertex is split into one vertex of degree 3 and another of degree 4 connected by a forced edge in bold. In the degree-6
case, dashed edge f is present and the vertex is split into two vertices of degree 4 connected by a forced edge. If edges a and
b are included in the original graph’s shortest Hamiltonian cycle, then they must not be adjacent to one another in the final

graph. This holds in six of the ten ways of splitting the vertex.

Theorem 6. There is a bounded-error quantum algo-
rithm which solves the TSP for degree-5 graphs in time
0*(1.680™ log Lloglog L).

Proof. Our algorithm works by splitting each vertex of
degree 5 into one vertex of degree 3 and another of de-
gree 4 connected by a forced edge. The forced edges
can be included in our quantum algorithm by modifying
step 1 of the reduction function so that F’ contains all
the forced edges created by splitting a vertex of degree-5
into two vertices connected by a forced edge. Once all
degree-5 vertices are split this way, we run the degree-
4 algorithm. It is intuitive to think that this splitting
of the vertices could increase the runtime complexity of
the degree-4 algorithm, due to n being larger. However,
the addition of a forced edge incident to every new vertex
means that we do not need to create more branches in the
backtracking tree in order to include the new vertex in
the Hamiltonian cycle. As a result, the time complexity
of the degree-4 algorithm will remain the same.

There are 10 unique ways of splitting a vertex of degree
5 into one vertex of degree 3 and another of degree 4
connected by a forced edge. These ten ways of splitting
the vertex are shown in Fig. [3| for a vertex incident to
edges a,b, c,d,e. Without loss of generality, let a and b
be the two edges which are part of the Hamiltonian cycle.
In order for a and b to also be part of the Hamiltonian
cycle in the degree-4 graph produced, a and b cannot be
adjacent to one another. Looking at Fig. [3 the split is
successful in six of the ten ways of splitting the vertex.

If there are f vertices of degree 5, then there are 10f
possible ways of splitting all such vertices, of which 6/
will give the correct solution to the TSP. We can ap-
ply Diirr and Hgyer’s quantum algorithm for finding the
minimum [T9] to find a splitting that leads to a shortest
Hamiltonian cycle, or reporting if no cycle exists, after
0((10/6)7/2) repeated calls to the degree-4 algorithm. To
ensure that the failure probability of the whole algorithm
is at most 1/3, we need to reduce the failure probability

of the degree-4 algorithm to O((10/6)~//?), which can
be achieved by repeating it O(f) times and returning the
minimum-length tour found. The overall runtime is thus

[ /10\*
@] 3 1.301" log L loglog L

=0%(1.680" log L log log L).

O

It is also possible to split a vertex of degree 5 into
three vertices of degree 3 connected by two forced edges.
There are 15 ways of performing this splitting, of which
6 will succeed. Applying the degree-3 algorithm to these
reduced graphs finds a runtime of

K
15 2
o* ((6) 1.110" longoglogL>

=0"(1.754" log Lloglog L)

which performs worse than Theorem [6] We next turn to
degree-6 graphs, for which the argument is very similar.

Theorem 7. There is a quantum algorithm which solves
the TSP for degree-6 graphs with failure probability 1/3
in time O*(1.680™ log Lloglog L).

Proof. We can extend the idea of Theorem [6] to degree-6
graphs by splitting vertices of degree 6 into two vertices of
degree 4 connected by a forced edge. Because the degree
of both new vertices is 4, there are (g)/2 = 10 unique
ways of partitioning the edges, of which 4 will fail. We
show this in Fig. [3] by including the dashed edge f as
the sixth edge. The overall runtime is the same as the
degree-5 case. O



C. Degree-7 graphs

We finally considered extending the algorithm to
degree-7 graphs by partitioning degree-7 vertices into one
of degree 5 and another of degree 4, connected by a forced
edge. We can split a vertex of degree 7 into a vertex of de-
gree 4 and another of degree 5 in (D = 35 ways, of which

(1:3) + (g:g) = 15 will not preserve the shortest Hamil-
tonian cycle. We then use the same process as for the
degree-5 and degree-6 case, halting after O((35/20)%/2)
iterations and returning either the shortest Hamiltonian
cycle found or reporting if no Hamiltonian cycle exists.

From this, our overall runtime is

a5\ k/2
o* ((20> 1.680" log L log log L)

=07"(2.222" log Llog log L).

This is the point where we no longer see a quantum
speedup over the fastest classical algorithms using this
approach, as classical algorithms such as those of Held-
Karp [4] and Bjorklund et al. [B] run in O*(2™) and
0*(1.984™) time, respectively.

V. NOTE ADDED

Following the completion of this work, Andris Ambai-
nis informed us of two new related results in this area.

11

First, a quantum backtracking algorithm whose runtime
depends only on the number of tree vertices visited by the
classical backtracking algorithm, rather than the whole
tree [30]. This alleviates one, though not all, of the lim-
itations of the backtracking algorithm discussed in Sec-
tion II. Second, a new quantum algorithm for the general
TSP based on accelerating the dynamic programming al-
gorithm [3T]. The algorithm’s runtime is somewhat worse
than ours for graphs of degree at most 6, and it uses expo-
nential space; but it works for any graph, rather than the
special case of bounded-degree graphs considered here.
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