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Abstract

This thesis explores the interplay between structure and randomness in quantum
computation, with the goal being to characterise the types of structure that give quan-
tum computers an advantage over classical computation. The thesis begins by giving a
necessary and sufficient condition for one notion of a quantum walk to be defined on a
directed graph, and goes on to derive conditions on the structure of graphs that allow
a quantum advantage in a non-local graph colouring game.

A lower bound on entanglement-assisted quantum communication complexity based
on information-theoretic ideas is given, and applied to the communication complexity
of random functions. New lower bounds on the probability of success of quantum state
discrimination are derived, and are applied to the problem of distinguishing random
quantum states. This result is used to show a quantum advantage in almost all instances
of a bounded-error single-query oracle identification problem.

Lower bounds, and almost optimal algorithms, are given for two models of quantum
search of partially ordered sets. This leads to the development of an optimal quantum
algorithm to find the intersection of two sorted lists.

Abstractus

Haec thesis colludium explorat inter structuram et accidentiam in computatione
quanta, ut genera structurae inscribantur quae computatris quantis opportunitatem
dedent super computatione antiqua. Thesis incipit datione condicionem necessariam
et satis definire unam notionem ambulatus quanti in directis graphicis formulis, et
procedit condiciones derivare structura graphicarum formularum quae opportunitatem
quantam permittunt in ludo non locale de graphicis formulis colorandis.

Terminus inferior consequens conceptos scientiae indicii datur complexitati commu-
nicationis quantis adiutae implicatione, et complexitatem communicationem attenditur
functionum fortuitarum. Termini inferiores novi derivantur probabilitati distinguere re-
rum quantarum, et problemam attendiuntur rerum quantarum fortuitarum distinguen-
darum. Hoc proventus usus est docere opportunitatem quantam in paene omnibus
exemplis problemae oraculum cognoscandum cum terminato errato et uno quaestione.

Termini inferiores, et algoritmi paene optimi, dantur in duobus exemplibus inquisi-
tionis quantae in collectibus partiliter ordinatibus. Hoc ad algoritmum quantum opti-
mumque factum ducat, quid intersectionem invenit duorum inventariorum composito-
rum.
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Chapter 1

Introduction

A quantum computer is a machine designed to use the magical properties of quan-
tum physics to do things that computers built using only the principles of classical
physics cannot. In particular, quantum algorithms have been developed that outper-
form known classical algorithms (the classic example being Shor’s integer factorisation
algorithm [123], which achieves an exponential speed-up over the best known classical
algorithms), and in some cases this improvement is provable.

It is a well-known fact that quantum computers cannot achieve a speed-up greater
than a quadratic factor for unstructured search problems [21]. Thus, in order to ob-
tain the exponential speed-ups that we would like, we are led to consider structured

problems. In the case of integer factorisation, Shor’s algorithm relies on a periodicity
structure which classical computers cannot (apparently) use. This leads to the general
question: what types of structure are useful in quantum computation? That is, what
types of structure can quantum computers use in ways that classical computers cannot?

This thesis makes some partial progress towards answering this question. It begins,
in Chapter 2, by considering questions related to the structure of graphs, which are fun-
damental objects both in pure mathematics and in computer science. A basic classical
algorithmic tool is the random walk on a graph. This turns out to have a generali-
sation to the quantum walk, which has proven to be a useful tool in the development
of quantum algorithms. Indeed, one of the few known provable exponential quantum
speed-ups over classical computation is a quantum walk algorithm [38]. However, quan-
tum walks are usually defined on undirected graphs. The main result in this chapter is
the development of a necessary and sufficient condition for one notion of quantum walk
to be defined on a directed graph. In the case where a “traditional” unitary quantum
walk cannot be defined on a graph, a generalisation that alternates unitary evolution
and measurement is proposed.

Chapter 3 turns to another graph-related task in which the strange properties of
quantum mechanics can be beneficial: a distributed graph colouring game. Alice and
Bob are separated and have to convince a referee that they have a k-colouring of a
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graph G, but are in the unfortunate situation that k is less than the chromatic number
of G. Surprisingly, for some graphs, if they have the aid of quantum entanglement they
can still trick the referee with certainty. As they have no need to communicate, this
is known as a pseudo-telepathy game [26]. This game allows the definition of a natural
quantum generalisation of the classical chromatic number of a graph. Some properties
of this quantum chromatic number are discussed, including limitations on how small
the quantum chromatic number can be relative to the classical chromatic number, and
the chapter finishes with an example of a small graph with a separation between its
quantum and classical chromatic numbers.

We then proceed to considering communication tasks where sharing entanglement
does not completely remove the necessity of communication, but might result in less
communication being required. This is the realm of communication complexity, where
shared entanglement has been shown to be advantageous [62, 60], but is far from be-
ing fully understood. Chapter 4 presents a new lower bound on the entanglement-
assisted quantum communication complexity of total Boolean functions that is based
on information-theoretic ideas. The bound unifies several existing bounds, and has an
operational interpretation as a method of turning a protocol for computing a function
into a communication protocol.

The second theme in the title of this thesis is randomness. As well as the intrinsic
interest of studying the behaviour of random objects – after all, most objects are
random – understanding the properties of a random (i.e. typical) object helps one
understand the properties of atypical (i.e. structured) objects. In the case of quantum
computation, the natural random objects of study are random quantum states. In
Chapter 5, we consider one measure of the information content of a set of states:
their global distinguishability. Lower bounds are developed on the ability of a specific
measurement – the so-called pretty good measurement [68] – to distinguish a set of
states. These bounds are then applied to sets of random quantum states, showing that
a large number of random states can be distinguished with a constant probability of
success. This lower bound uses results from random matrix theory to determine the
distribution of the eigenvalues of the Gram matrix of a set of random states.

The relationship between randomness and complexity is exemplified by the useful
principle that, for any reasonable measure of randomness, and any reasonable measure
of complexity, random objects are complex. For example, a random language is unde-
cidable; to compute a random n-bit Boolean function, an exponential-sized circuit is
required; a random bit-string is incompressible.

This thesis gives several examples of this principle at work in quantum computation.
These include the following:

• A random Boolean function has almost maximal entanglement-assisted quantum
communication complexity (Chapter 4).
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• A set of O(n) n-dimensional random quantum states can be distinguished with
constant probability of success as n→∞ (Chapter 5).

• Finding an object in a random partially ordered set of n elements requires Ω(
√
n)

quantum queries (Chapter 7).

This provides a link to the final theme of the thesis, complexity. Chapter 6 is
devoted to an important measure of complexity in quantum computation: the number
of queries to an oracle that are required to perform some task, i.e. the query complexity
of that task. We begin by giving a simple proof of the fundamental Ω(

√
n) quantum

lower bound on unstructured search [21], and show how this can easily be applied to give
an exponential lower bound on the quantum query complexity of Boolean satisfiability
(SAT) in a natural oracular model.

We then drastically simplify to problems which we can solve using only one quantum
query, and in particular the oracle identification problem [10] of determining, given an
unknown “oracle” function picked from a known set of functions, which function we
have been given. Some problems of this type that can be solved exactly by a quantum
computer with a single query are characterised, and the results of Chapter 5 are used to
show that quantum computation has a strong advantage over classical computation in a
bounded-error version of this task, in that almost all sets of approximately 2n Boolean
functions on n bits can be distinguished with one query using a quantum computer
(with a bounded probability of failure), whereas n queries are required classically.

The final chapter of the thesis investigates the quantum advantage that can be
obtained when searching in a data set which is partially structured. Two different
models of quantum search in partially ordered sets (posets) are considered. In both
models, it is shown that (up to logarithmic factors) the quadratic reduction in query
complexity obtained by Grover’s algorithm [64] is the best possible for search of any
partially ordered set, and quantum algorithms that almost achieve this bound are
presented. In one model, we give an almost optimal quantum algorithm for searching
forest-like posets; in the other, we give an optimal O(

√
n) quantum algorithm for

searching posets derived from n× n arrays sorted along rows and columns. This leads
to an optimal O(

√
n) quantum algorithm for finding the intersection of two sorted lists

of n integers.

1.1 Quantum mechanics in a nutshell

This section briefly introduces some basic quantum mechanical notions that will be
used throughout the remainder of this thesis, as well as some miscellaneous notation.
It is written from an abstract, rather than physical, perspective; for a full introduction,
see [108] or [111], and for the background in linear algebra, see [75]. More advanced
concepts will be introduced later, where necessary.
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Mathematically speaking, a d-dimensional pure quantum state |ψ〉 is a unit vector
in d-dimensional complex space Cd equipped with the standard inner product (Hilbert
space). The “ket” notation |ψ〉 denotes a column vector, as opposed to the conjugate
transpose “bra” row vector 〈ψ|; so we have (for example) the inner product 〈α|β〉 =∑

k α
∗
kβk. A mixed quantum state ρ is a probabilistic mixture of pure states; ρ =∑

k pk|ψk〉〈ψk|, where
∑

k pk = 1. It is easy to show that ρ is a Hermitian matrix whose
eigenvalues {λi} are non-negative (i.e. ρ is positive semidefinite), and that tr(ρ) =∑

i λi = 1.

The von Neumann entropy S(ρ) = −
∑

i λi log λi is the quantum analogue of the
Shannon entropy giving a measure of the “subjective uncertainty” of a probability
distribution; it can be interpreted as the “information content” of a quantum state.
(All logarithms will be taken to base 2 throughout, unless otherwise specified.)

Quantum states combine via the tensor product ⊗: (|ψ〉 ⊗ |φ〉)ij = ψiφj (the ⊗
symbol will often be omitted). A product state |ψ〉 can be written as |ψA〉|ψB〉 for
some |ψA〉, |ψB〉; a state is called entangled if it is not product. The partial trace is the
act of “throwing away” a subsystem: trB (|αA〉〈βA| ⊗ |αB〉〈βB|) = 〈βB|αB〉|αA〉〈βA|.

In this thesis, the only operations applied to quantum states will be unitary evolu-
tion |ψ〉 → U |ψ〉 where UU † = I, measurement, and the partial trace. The most general
form of measurement is given by a POVM (positive operator valued measure), namely
a set of positive semidefinite operators M = {µi} with

∑
i µi = I. Each operator

is associated with a measurement outcome; the probability of obtaining measurement
outcome i when measurement M is applied to state ρ is tr(µiρ). If we specialise to
rank 1 projective measurement operators µi = |νi〉〈νi| then the probability of outcome
i is |〈νi|ψi〉|2.

The fundamental object in quantum computation is the quantum bit, or qubit, the
quantum analogue of the classical bit. A qubit is simply a two-dimensional quantum
system where we define a “computational” basis {|0〉, |1〉} corresponding to the classical
{0, 1}. The ability for quantum systems to be in a superposition of basis states allows a
qubit to be “both zero and one at the same time”, which is an essential part of quantum
algorithms that operate on systems of many qubits to achieve speed-ups over classical
algorithms.

A quantum algorithm can be described by a quantum circuit, which (analogously
to a classical circuit) is a sequence of elementary “quantum gates” (unitary operators)
applied to a starting state and terminating with a measurement whose result is the
output of the algorithm. We generally look for efficient quantum algorithms, where the
number of gates is polynomial in the size of the input.
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1.2 Previous publications

Much of this thesis has been published previously and some of it is joint work.

• Chapter 2 has been published previously as “Quantum walks on directed graphs”,
Quantum Information and Computation vol. 7 no. 1, pp. 93–102 (quant-ph/
05041161).

• Chapter 3 is joint work with Peter Cameron, Mike Newman, Simone Severini
and Andreas Winter, and has been published previously as “On the quantum
chromatic number of a graph”, Electronic Journal of Combinatorics vol. 14 no. 1
(quant-ph/0608016).

• Chapter 4 is joint work with Andreas Winter and has been published previously as
“A lower bound on entanglement-assisted quantum communication complexity”,
in the proceedings of ICALP 2007, pp. 122–133 (quant-ph/0610085).

• The majority of Chapter 5 has been published previously as “On the distinguisha-
bility of random quantum states”, Communications in Mathematical Physics vol.
273 no. 3, pp. 619-636 (quant-ph/0607011).

• The portions of Chapter 6 relating to exact single-query oracle identification are
joint work with Richard Jozsa.

• The majority of Chapter 7 is available as the pre-print “Quantum search of par-
tially ordered sets” (quant-ph/0702196).

1“quant-ph/xxx” identifiers refer to the quant-ph arXiv e-print server http://arxiv.org/.
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Chapter 2

Quantum walks on directed

graphs

2.1 Introduction

Quantum walks are the quantum counterpart of classical random walks. Random walks
play an important part in classical computer science, and it seems plausible that quan-
tum walks could be equally important in the study of quantum computation. Quan-
tum walks on undirected graphs have been defined using two different formulations
(discrete-time [4] and continuous-time [54]), and are known to exhibit markedly differ-
ent behaviour to classical random walks [86, 39]. Quantum walks have been used to
produce novel quantum algorithms [122, 38, 8] displaying speed-ups over their classical
equivalents. A natural question arises: can a quantum walk be defined on a directed
graph? If so, which directed graphs allow a reasonable definition?

As motivation for this, there are many problems in graph theory that are known
or suspected to be more difficult to solve for directed graphs than undirected graphs
(an example being Reachability [110], c.f. Section 2.7 below). It is interesting to ask
whether quantum walk algorithms can provide any straightforward improvement over
classical algorithms for such problems.

The continuous-time formulation of quantum walks is defined by introducing a
quantum system whose Hamiltonian is based on the adjacency matrix of the graph.
This will not be suitable for walks on directed graphs, as this matrix will not in general
be Hermitian, and hence the evolution of the system will not be unitary. Therefore, this
chapter will only consider the discrete-time formulation, which consists of the iterated
application of a unitary operator based on the structure of the graph.

We give a necessary and sufficient condition – which we term reversibility – on a
graph for it to allow the definition of a discrete-time quantum walk that respects its
structure. We then discuss the implications of this result. If a directed graph does

13



not allow the definition of a “fully quantum” walk that preserves coherence through-
out, we provide a method for defining a walk that alternates unitary evolution and
measurement, and still allows for a level of coherence to be maintained.

This chapter has been published previously as “Quantum walks on directed graphs”,
Quantum Information and Computation vol. 7 no. 1, pp. 93–102 (quant-ph/0504116).

2.2 Quantum walks on graphs

We begin with some standard graph-theoretic definitions that will be used throughout
this chapter.

2.2.1 Graphs

A graph (or digraph; we will use the terms interchangeably) G is defined here as a
set of vertices V and arcs A, where A is a set of ordered pairs of vertices. The i’th
vertex is labelled vi (1 ≤ i ≤ |V |). We assume that there may be at most one arc in
each direction between each two vertices. An undirected graph has the further property
(vi, vj) ∈ A⇔ (vj , vi) ∈ A. When (vi, vj) ∈ A, we say that vi is connected to vj (or that
there is an arc between vi and vj), and use the notation vi → vj . We sometimes say that
there is an undirected edge between vi and vj if vi → vj and vj → vi. We say that G is
connected if for every pair of vertices (v, w) there is a sequence of vertices v1, v2, . . . , vk

such that v = v1, w = vk, and each consecutive pair of vertices is connected by an arc
(in either direction, which may vary along the sequence).

The out-neighbours of a vertex vi are the vertices to which vi is connected; similarly,
the in-neighbours of vi are the vertices that are connected to vi. The in-degree and out-
degree of vi are the number of in-neighbours and out-neighbours it has, respectively.
Every vertex in a d-regular graph has d in-neighbours and d out-neighbours. A subgraph
G′ of a graph G is a graph whose sets of vertices and arcs are subsets of those in G.
A connected component C of G is a connected subgraph of G such that C does not
remain connected if any further vertices of G are added to C. A path is an ordered list
of vertices {v1, v2, . . . } where vi−1 → vi, for all i > 1. A cycle is a path whose final
vertex is the same as its initial vertex.

The adjacency matrix of G is the matrix also called G, where Gij = 1 ⇔ j → i.
The support of a matrix U is the matrix U ′, where U ′ij = 0 if Uij = 0, and U ′ij = 1
otherwise. The (di)graph of a unitary matrix U is the graph whose adjacency matrix
is the support of U .
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2.2.2 Quantum walks

A coined quantum walk on a d-regular undirected graph G, as defined in [4], is produced
by creating a Hilbert space Hv of dimension |G| (where |G| is the number of vertices in
G), and identifying a basis state with each vertex. Each arc leaving a vertex is labelled
by an integer from 0 to d − 1. This space is then augmented with a “coin” Hilbert
space Hc of dimension d to give an expanded space Hc⊗Hv. A “coin toss” operator C
is defined, which operates only on Hc. A “shift” operator S is also defined, such that
S|c〉|vi〉 = |c〉|vj〉, where vj is the vertex at the other end of the arc from vi labelled by
c. One step of the walk then consists of applying the unitary S(C⊗ I) – i.e. a coin toss
followed by a shift.

Several methods, resulting in potentially different dynamics, can be used to define
a coined quantum walk on an irregular graph. Multiple coins may be used [86] (a
d-dimensional coin for each vertex of degree d); a single coin of the same dimension as
the maximum degree of any vertex in G may be used, and restricted to a d-dimensional
subspace at each vertex of degree d [127]; alternatively, self-loops may be added to
low-degree vertices to make the graph regular [86].

We now define a more general notion of a discrete-time quantum walk, using a
similar definition to [4].

Definition 2.2.1. A discrete-time quantum walk is the repeated application of a unitary
operator W , where each application of W is one step of the walk. To define a quantum
walk on a graph G, we identify a finite set of one or more basis states {|v1

i 〉, |v2
i 〉, . . .}

with each vertex vi of the graph. We say a quantum walk can be implemented on G if
there exists a W such that, for all i, j, vi → vj if and only if there exist k, l such that
〈vk

j |W |vl
i〉 6= 0. We assume that G has self-loops at each vertex.

2.3 Reversible and irreversible graphs

Definition 2.3.1. An arc a → b is called reversible if there is a path from b to a.
A graph whose arcs are all reversible is also called reversible; otherwise, it is called
irreversible.

Consider the following examples. A graph containing at least one source or sink is
irreversible. All undirected graphs are reversible. An Eulerian graph is a graph whose
every vertex has equal in-degree and out-degree. All Eulerian graphs are reversible,
as they admit Eulerian tours (a cycle that visits every vertex, and traverses each arc
once). Thus, all regular graphs are reversible. A Cayley graph is a graph associated
with a group X and a set of generators Y , whose vertices are the elements of X, and
which contains an arc va → vb if and only if the associated element b = ac, for some
c ∈ Y . All Cayley graphs are regular, and hence are reversible.
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Figure 2.1: Some irreversible graphs. An undirected edge represents an arc in both
directions.

In the language of graph theory [37], a reversible graph is a graph whose every
connected component is strongly connected (a graph is strongly connected if there is a
path from any vertex in the graph to any other vertex). A reversible graph is almost the
same as the transition graph of an irreducible Markov chain. However, there is a minor
difference in that the definition here allows a graph to have multiple disconnected
components, whereas irreducible Markov chains do not. So-called “time reversible”
Markov chains are quite different, referring to a Markov chain which is symmetric in
time [85].

The first new result in this chapter is the following theorem. The proof will be given
in Section 2.5 below.

Theorem 2.3.2. A discrete-time quantum walk can be defined on a finite graph G if
and only if G is reversible.

Corollary 2.3.3. The digraph of a unitary matrix is reversible.

This corollary is simply the special case where each vertex of the graph is identified
with one basis state.

2.3.1 Determining reversibility

How easily can reversibility be determined for a given graph? On the one hand, it is
clear that reversibility is a global attribute of a graph: it is not possible to determine
whether a given arc is reversible without potentially considering all the other arcs
in the graph. On the other hand, reversibility of a graph can be determined very
efficiently. Assume that a graph G = (V,E) is given as an adjacency list. Then [45]
gives algorithms based on depth-first search which can be used to first decompose G
into connected components, and then to decompose each connected component into
strongly connected components. G is clearly only reversible if there is one strongly
connected component for each connected component. Each of these two steps can be
performed in time O(|V |+ |E|) for an overall runtime which is linear in the number of
edges.

2.4 Previous work

A directed bridge is an arc in a graph G whose removal would increase the number of
connected components of G. Severini has proven [121] that the digraph of a unitary
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matrix does not contain any directed bridges. The reversibility condition given here is
stronger, as a graph containing two connected components with multiple arcs between
them, all going in the same direction, is irreversible. It has also been shown [119] that
the digraph of a unitary matrix is strongly quadrangular.

The notion of a coined quantum walk and the term “quantum random walk” were
introduced by Aharonov et al. [4], and quantum walks were used by Watrous to simulate
classical random walks [127]. A systematic study of the potential algorithmic appli-
cations of discrete-time quantum walks was initiated by [4]. There have been many
results on coined quantum walks since; see the survey [86] for details. In particular,
Severini has shown that the underlying digraph of a coined quantum walk is a line
digraph [120]. With the result given here, this implies that a line digraph is reversible.
Lopez Acevedo and Gobron [99] have considered the classification of quantum walks
on Cayley graphs.

Szegedy has developed [124] a method for defining quantum walks based on arbi-
trary Markov chains, which has recently been generalised and simplified by Magniez et
al. [100]. This approach produces a quantum walk from any Markov chain, including
chains whose transition graphs are irreversible. However, for such graphs the walk pro-
duced will not respect the graph’s structure: there will be some probability to travel
between basis states corresponding to vertices that are not connected by an arc in the
correct direction.

2.5 Proof of Theorem 2.3.2

2.5.1 Necessity

Our definition of a quantum walk consists of an identification of states with vertices
of a graph. We will show that, if it is possible to “walk” from state |a〉 to state |b〉
by performing a unitary operation W , it is also possible to walk from |b〉 to |a〉 by
performing W a positive number of times. (Without this positivity condition, the
problem is trivial, as multiplying by W−1 will perform the reverse of W .)

Lemma 2.5.1. For any vector |a〉 in a finite-dimensional Hilbert space, any unitary
operator W , and any ε > 0, there exists n ≥ 1 such that |〈a|Wn|a〉| > 1− ε.

Proof. This is simply a restatement in the terminology of unitary operators of the
Quantum Recurrence Theorem proved by Bocchieri and Loinger in the language of
wavefunctions [24], which in turn is a quantum equivalent of Poincaré’s recurrence
theorem for classical mechanics from 1890. �

The implication of this lemma is that repeating the same unitary operator enough
times on |a〉 will produce a state arbitrarily close to |a〉.
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Lemma 2.5.2. For any vectors |a〉, |b〉 in a finite-dimensional Hilbert space, and for
any unitary operator W , if 〈b|W |a〉 6= 0, then there exists m ≥ 0 such that 〈a|Wm|b〉 6=
0.

Proof. First, we have 〈b|W |a〉 6= 0 ⇒ 〈a|W−1|b〉 6= 0. Consider a state close to |b〉,
denoted by |b′〉. For sufficiently small ε, |〈b|b′〉| > 1− ε⇒ 〈a|W−1|b′〉 6= 0. By Lemma
2.5.1, for arbitrarily small ε′ > 0, there exists p ≥ 1 such that |〈b|W p|b〉| > 1 − ε′. Set
|b′〉 = W p|b〉 and we have 〈a|W−1W p|b〉 6= 0, and hence 〈a|Wm|b〉 6= 0 for m = p− 1 ≥
0. �

Lemma 2.5.3. Let W be a quantum walk defined on a graph G with vertices {v1, v2, . . .}
by associating basis states {|v1

i 〉, |v2
i 〉, . . .} with each vertex vi. Then if, for some k and

l, and some n ≥ 0, 〈vl
j |Wn|vk

i 〉 6= 0, there is a path from vi to vj.

Proof. Wn|vk
i 〉 describes n steps of the walk starting from state |vk

i 〉, and hence produces
a superposition over possible paths of length n that the walk can take from vertex vi.
If 〈vl

j |Wn|vk
i 〉 6= 0 for some k, l, this implies that at least one of these paths must reach

vertex vj . For the case n = 0, 〈vl
j |W 0|vk

i 〉 6= 0 only if vi = vj , as expected. �

Lemma 2.5.2 shows that, if there is some amplitude to travel from some basis state
|vk

i 〉 to some basis state |vl
j〉 after 1 step of the walk, there must also be some amplitude

to travel from |vl
j〉 to |vk

i 〉 after some m ≥ 0 steps of the walk. With Lemma 2.5.3, this
shows that, if there is an arc from the corresponding vertex vi to vj , then there is a
path from vj to vi, and hence the necessity of Theorem 2.3.2 is proven.

2.5.2 Sufficiency

We will show that a coined quantum walk can be defined on any reversible graph. As
defined in Section 2.2.2, we will use a Hilbert space Hv which associates one basis state
with each vertex of the graph, augmented with a “coin” space Hc. Our construction
will be determined by the cycles in the graph.

Lemma 2.5.4. Every arc in a reversible graph G is included in at least one cycle.

Proof. Let vi → vj be any arc in G. Since G is reversible, there is a path from vj to
vi, and hence there exists a cycle that includes the given arc. �

This shows that it is possible to find a set {c1, c2, . . .} of cycles in G such that every
arc in G is included in at least one cycle. Each cycle ci gives rise to a permutation Pi

as follows. If a vertex v is in the cycle with arc v → v′, then Pi(v) = v′; otherwise,
Pi(v) = v.

We then associate one coin basis state with each permutation, and select a coin
operator C as in the standard definition of a coined quantum walk (Section 2.2.2). In
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the study of quantum walks on undirected graphs, it has been found that the choice
of coin operator may have a significant effect on the dynamics of a quantum walk
[104, 125, 90], and it is a non-trivial question to determine the “optimal” coin (in terms
of the desired dynamics) for a given graph. The same applies here.

The quantum walk operator W , which operates on Hc⊗Hv, can then be expressed
as

W =

(∑
i

|i〉〈i| ⊗ Pi

)
(C ⊗ I) (2.1)

This proves that reversibility is a sufficient condition for the definition of a quantum
walk. As an example of this construction, consider the following directed graph with
labelled vertices. (Recall that self-loops are always included at every vertex.)

•�� •��

•

??~~~~~~~��

This graph admits the following four cycles, each augmented by self-loops at vertices
not included in the cycle. Between them, these include every arc in the graph.

•�� •��

•��

•

��

•oo ??

~~
~~

~~
~

•

• •

•��

• •��

•

We can now use a four-dimensional coin space to select between these four cycles.
This example illustrates the fact that, depending on the structure of the graph in
question, this algorithm may require a number of coin basis states exceeding the number
of vertices in the graph. However, the number of coin states need never exceed the
number of arcs. Also note that, for some graphs, the number of coin states used can
be reduced by combining disjoint cycles into a single permutation.

2.6 Simulating irreversible arcs with measurement

There appears to be an intuitive correspondence between walking on a reversible graph
and the reversibility of unitary evolution. Can we take this analogy a step further and
define a quantum walk on a graph containing irreversible arcs by making use of the
irreversible process of measurement? It turns out to be possible to define a “partially
quantum” walk that maintains some quantum coherence in the reversible portions of
the graph.

We will first define what is meant by “reversible portions” of a graph. Consider a
subgraph G′ of a graph G. G′ is called a reversible subgraph of G if, considered as a
graph itself, G′ is reversible.
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Lemma 2.6.1. Let Grev be the subgraph of G whose arcs consist of all the reversible
arcs of G. Then Grev is reversible.

Proof. For every arc vi → vj in Grev, we require there to exist a path from vj to vi.
But this will be the case, because there is a path in G from vj to vi. Every arc in this
path is reversible, and hence will be included in Grev’s set of arcs. �

Lemma 2.6.2. It is possible to partition any graph G into reversible subgraphs such
that the arcs in G that connect different subgraphs are all irreversible.

Proof. Consider the connected components of Grev, which are clearly reversible sub-
graphs ofG. By definition, these do not contain any irreversible arcs. All the irreversible
arcs in G must therefore connect vertices in different reversible subgraphs of G. �

One possible way of defining a walk on an irreversible graph G is the following
approach. Informally, we consider G as consisting of the connected components of
Grev “patched together” with irreversible arcs. We produce a set of quantum walk
operators, each corresponding to one component of Grev. The irreversible arcs of G are
then simulated by replacing them with undirected edges. If such an edge is traversed
by the “walker”, we change to a different walk operator to ensure that it cannot be
traversed in the opposite direction.

More specifically, consider vertices v1 and v2 that are in different reversible sub-
graphs of G (called C1 and C2 respectively), and consider an irreversible arc v1 → v2.
This arc can be simulated by the following two-step process. First, we perform an
incomplete measurement to determine whether the walker is in C1 or C2. Then, if it
is in C1, we perform one step of a quantum walk defined on the graph consisting of
C1 augmented with an undirected edge v1 ↔ v2. Alternatively, if the walker is in C2,
we perform one step of a walk only defined on the graph C2. This ensures that the
irreversible arc cannot be traversed in the wrong direction.

A more formal definition of this algorithm is given below.

2.6.1 Algorithm to produce a partially quantum walk

1. Produce a set of reversible subgraphs of G (Lemma 2.6.2) using the algorithm of
Section 2.3.1.

2. Create a set of reversible graphs {G1, G2, . . .} from the set of reversible subgraphs
of G. These graphs partition all the vertices of G. Consider a Hilbert space
Hv labelled by the vertices, and let M be the incomplete measurement that
projects onto this partition. Thus one measurement outcome corresponds to each
reversible subgraph.
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3. Consider each graph in turn, denoting the graph under consideration Gi. Some
graphs Gi will contain vertices that were the heads of irreversible arcs in G. Aug-
ment each graph Gi with undirected links from these vertices to the corresponding
targets of the arcs. Each of these links corresponds to moving to a new reversible
subgraph. Call each augmented graph G′i.

4. Define a coined quantum walk Wi on each graph G′i, using the approach of Section
2.5.2.

5. We now have a set of quantum walks, each operating on a subgraph of the original
graph. The overall walk consists of repeatedly alternating the measurement M
and one of the unitary walk operators. We perform measurement M , and if we
see outcome i, we perform one step of the walk Wi.

This approach has the advantage that it preserves coherence within each reversible
subgraph; however, coherence across reversible subgraphs is not possible. That is, it is
impossible to maintain a coherent superposition of states corresponding to vertices in
two different subgraphs. An obvious implication of this is that a quantum walk on a
graph whose arcs are all irreversible will be the same as the equivalent classical random
walk.

2.6.2 Example of the algorithm operating on an irreversible graph

Consider the following labelled irreversible graph G and its adjacency matrix. Self-loops
are not shown here but should be considered to be present.

•0 //•1

•2 //•3


0 0 1 0
1 0 0 1
1 0 0 0
0 1 1 0


We can split the graph into reversible subgraphs R1 and R2 consisting of the vertices
{0, 2} and {1, 3}, joined by irreversible arcs 0 → 1 and 2 → 3. These reversible
subgraphs have adjacency matrices

R1 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 and R2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


Define an incomplete projective measurement M that distinguishes between R1 and
R2. This measurement is made up of the operators

M1 = |0〉〈0|+ |2〉〈2| and M2 = |1〉〈1|+ |3〉〈3|
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Then augment R1 with undirected links corresponding to the irreversible arcs to R2.
This graph, denoted here by R′1, is still reversible and allows the definition (omitted)
of a coined quantum walk W1. The subgraph R2 does not need augmenting, as it does
not contain the heads of any irreversible arcs, and a quantum walk W2 can be defined
on it directly.

R′1 =

•0 •1

•2 •3
=


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0


A quantum walk on G then consists of repeating the following steps. First, perform the
measurement M to determine whether the walker is in R1 or R2. If the measurement
outcome is M1, perform one step of the walk W1 on the graph R′1. Otherwise, perform
one step of the walk W2 on the graph R2. Note that, if the walk is begun with a
superposition corresponding to being at vertices 0 and 2, and outcome M2 is measured
after one step, this superposition is translated to a superposition of vertices 1 and 3 in
R2: so in this case quantum coherence is preserved.

2.7 The Reachability problem for directed graphs

Reachability (also known as s-t Connectivity or Path) is the problem of deciding
whether, for two vertices s and t in a directed graph, there is a path from s to t. In
the context of classical algorithms, the problem is suspected to be more difficult than
its undirected variant; in fact, it is NL-complete [110], whereas undirected Reacha-

bility is in L [115]. On reversible directed graphs, the problem reduces to undirected
connectivity. This is clear from the following lemma:

Lemma 2.7.1. In any connected reversible graph G, there is a path from every vertex
a to every other vertex b.

Proof. Immediate from the definition of strong connectivity in [37]. To see this explic-
itly, note that since G is connected, any vertex a may be linked to any other vertex b
by a sequence of arcs vi → vj whose directions may vary along the sequence. Since G
is reversible, vi is also reachable from vj for each arc, so a and b are reachable from
each other in either direction. �

Thus, every vertex within each connected component of a reversible graph is reach-
able from every other vertex in that component, exactly as in undirected graphs. This
implies that Reachability can be solved for reversible graphs by ignoring the direc-
tion of arcs and treating the graph as undirected. Theorem 2.3.2 therefore suggests
that quantum walk algorithms of the type discussed in this chapter may not be much
help in solving Reachability, because the only graphs on which such algorithms may
be defined are exactly those for which the problem is already easy.
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It is also worth noting that there are many other classical random walk algorithms
which perform a search on directed graphs (an example being Schöning’s random walk
algorithm for SAT [117]). These often work by traversing a directed graph randomly
until they reach a sink, which represents a previously unknown solution. Since such
graphs are not reversible, the main result of this chapter shows that quantum walk
algorithms for such problems may not be merely straightforward generalisations of
their classical counterparts.
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Chapter 3

The quantum chromatic number

3.1 Introduction

From the fundamental question of whether a graph is connected, we now turn to an-
other basic property of a graph: its chromatic number. A colouring of an undirected
graph G is an assignment of colours to the vertices such that adjacent vertices have
different colours. The chromatic number χ(G) is defined as the minimum number of
colours required to properly colour G. We consider here a quantum generalisation of a
distributed graph colouring problem.

Namely, Alice and Bob want to convince a referee with probability 1 that they have
a c-colouring of a graph G = (V,E) in the interrogation model: they each get asked
a vertex v, w of the graph, respectively, and have to report back a colour α, β (resp.)
to the referee (i.e. a number in [c] = {1, 2, . . . , c}). If v = w, then to pass they have
to reply the same: α = β; if (v, w) ∈ E, then to pass they have to reply differently:
α 6= β.

If they are not allowed to talk to each other during the interrogation but may agree
on a strategy beforehand, then it is straightforward to see that they can win with
probability 1 if and only if c ≥ χ(G) – that is, in a classical world where Alice and Bob
may share randomness and an otherwise deterministic strategy. However, if Alice and
Bob share an entangled state (possibly depending on the graph), there are graphs for
which Alice and Bob can win this game with probability 1 for c < χ(G). Based on a
suggestion of Patrick Hayden (see [14]) we call the smallest c such that Alice and Bob
can win the graph colouring scheme the quantum chromatic number.

Such a problem was first considered in [31, 27], and generalised in [128], Theorems
8.5.1-3, and [30], for Hadamard graphs: the vertices are n-bit strings, and two of them
are joined by an edge if and only if their Hamming distance is n/2. In these references
it is shown that the game can be won with c = n colours. This line of investigation
was carried further under the heading “pseudo-telepathy” in [58, 57, 26, 14]. Earlier
work of Frankl and Rödl [56] in extremal combinatorics established that the chromatic
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number of the Hadamard graphs grows exponentially in n. In [106] it is shown that
the chromatic number is equal to n if and only if n ∈ {1, 2, 4, 8}.

The rest of the chapter is structured as follows: in Section 3.2 we present the model
(strictly speaking, an infinite hierarchy of models) for the quantum chromatic number.
Then we go on to general properties of the quantum chromatic number in Section
3.3, bounds via orthogonal representations (Section 3.4), restrictions on the quantum
chromatic number when it is low (Section 3.5), and finish with an example of a small
graph that demonstrates a separation between classical and quantum chromatic number
(Section 3.6).

The results in this chapter are joint work with Peter Cameron, Mike Newman,
Simone Severini and Andreas Winter, and have been published previously as “On the
quantum chromatic number of a graph”, Electronic Journal of Combinatorics vol. 14
no. 1 (quant-ph/0608016).

3.2 Model(s)

The most general strategy for Alice and Bob to win the graph colouring game with
probability 1 with c colours for a graph G = (V,E) consists of an entangled state
|ψ〉AB ∈ Cd×d shared between them, and two families of POVMs (Evα)α=0,...,c−1 and
(Fvβ)β=0,...,c−1, indexed by the vertices v ∈ V of the graph. The fact that they win
with probability 1 is expressed by the consistency condition

∀v ∈ V ∀α 6= β 〈ψ|Evα ⊗ Fvβ |ψ〉 = 0, (3.1)

∀(v, w) ∈ E ∀α 〈ψ|Evα ⊗ Fwα|ψ〉 = 0. (3.2)

Note that the dimension d bears no relationship to c, that the entangled state |ψ〉 can
be anything (it may even be mixed but it is immediate that w.l.o.g. we may assume it
to be pure), and the POVMs may have operators of arbitrary rank.

The smallest possible c for which Alice and Bob can convince the referee with
certainty, i.e. such that eq. (3.1) holds, is called the quantum chromatic number of G,
which will be denoted by χq(G).

Theorem 3.2.1. To win the graph colouring game in the above setting, w.l.o.g. the
state is maximally entangled, and the POVM elements are all projectors, all w.l.o.g. of
the same rank.

Proof. Without loss of generality we can assume that |ψ〉 has full Schmidt rank d since
otherwise we restrict all POVMs to the supports of the respective reduced states. From
eq. (3.1) we get, for any v ∈ V , any α and β 6= α, that Evα ⊥ trB

(
(I ⊗ Fvβ)|ψ〉〈ψ|

)
,
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hence
Evα ⊥

∑
β 6=α

trB

(
(I ⊗ Fvβ)|ψ〉〈ψ|

)
= trB

(
(I ⊗ I − I ⊗ Fvα)|ψ〉〈ψ|

)
.

From this, and because Alice needs to get outcome α with certainty if Bob gets α, we
must have

Evα = supp trB

(
(I ⊗ Fvα)|ψ〉〈ψ|

)
.

By the same argument all Fvβ are projectors.

Now we argue that the consistency requirement for state |ψ〉 implies that it is also
true when we substitute the maximally entangled state |Φd〉: in its Schmidt basis,
|ψ〉 =

∑
i

√
λi|i〉|i〉, and denoting ρ = trB |ψ〉〈ψ| =

∑
i λi|i〉〈i| = trA |ψ〉〈ψ|, the finding

of the previous paragraph can be cast as

Evα = supp
√
ρ
(
Fvα

)√
ρ, Fwβ = supp

√
ρ
(
Ewβ

)√
ρ. (3.3)

This implies however
EvαρEvβ = 0

for all v and α 6= β (where we cancelled
√
ρ’s left and right), and likewise for Fwα.

But with the fact that each Evα is a projector and that summed over α they yield the
identity, this gives (for arbitrary v)

ρ =
∑
α,β

EvαρEvβ =
∑
α

EvαρEvα,

from which it follows that ρ commutes with all the operators Evα, and likewise Fwβ [93].
So we might as well make ρ a multiple of the identity, and hence a maximally entangled
state. Additionally, we find

Evα = Fvα, Fwβ = Ewβ . (3.4)

Finally, we show how to make the operators all the same rank: let |ψ′〉 = |ψ〉 ⊗ |Φc〉,
and

E′
vα =

c−1∑
i=0

Ev,α+i ⊗ |i〉〈i|, F ′wβ =
c−1∑
i=0

Fw,β+i ⊗ |i〉〈i|, (3.5)

where the colours are w.l.o.g. {0, . . . , c − 1} and the additions above are modulo c.
These states and operators evidently still make for a valid quantum colouring, and also
clearly all operators have now the same rank. �

This proposition motivates us to introduce rank-r versions of the quantum chromatic
number: we define χ(r)

q (G) as the minimum c such that Alice and Bob can win the graph
colouring game for G with a maximally entangled state of rank rc, and POVMs with
operators of rank r (exactly).
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The special case of the rank-1 model is the case where Alice and Bob share a
c-dimensional maximally entangled state

|Φc〉 =
1√
c

∑
i

|i〉A|i〉B.

To make their choices, they both use rank 1 von Neumann measurements, which are
ordered bases (|evα〉)α and (|fvβ〉)β for all vertices v, for Alice and Bob, respectively.
At this point we can argue easily that χ(1)

q (G) ≤ χ(G), as follows. Take a colouring
γ : G −→ {0, . . . , c − 1} of G with c = χ(G) colours, and let Alice and Bob share the
maximally entangled state |Φc〉. Their measurements are simply permutations of the
standard basis:

|evα〉 = |α+ γ(v) mod c〉, |ewβ〉 = |β + γ(w) mod c〉.

We now make several observations regarding Alice and Bob’s selection of bases. First,
Bob’s bases are tied to Alice’s by the demand of consistency: we need, for all v and α,

〈evα|〈fvα|Φc〉 = 1/
√
c, (3.6)

which enforces the condition of (3.4) that

|fvα〉 = |evα〉. (3.7)

This means that we can translate the colouring condition into something that only
concerns Alice’s bases: we need, for all (v, w) ∈ E and all α,

〈evα|〈fwα|Φc〉 = 0.

Because of eqn. (3.6) this can be rewritten as

∀(v, w) ∈ E and ∀α 〈evα|ewα〉 = 0. (3.8)

It is convenient to introduce unitary matrices Uv for each vertex v, whose columns
are just the vectors |evα〉, α = 1, . . . , c. Then we can reformulate Alice’s strategy as
follows: on receiving the request for vertex v, she performs the unitary U †v on her
quantum system and measures in the standard basis to get a number α ∈ [c]. By eqn.
(3.6) above, Bob, for vertex w, performs the unitary Uw

† = U>w and measures in the
standard basis to obtain β ∈ [c]. So we can rewrite the colouring condition expressed
in eqn. (3.8) as:

∀(v, w) ∈ E U †vUw has only zeroes on the diagonal. (3.9)

By a similar chain of arguments we can show, for the POVM constructed in the proof
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of Theorem 3.2.1, that Fvα = Evα for all vertices v and all colours α, and that hence
the colouring condition can be phrased entirely in terms of Alice’s operators:

∀(v, w) ∈ E and ∀α EvαEwα = 0, (3.10)

i.e. Evα and Ewα are orthogonal.

We note here that the following question remains open: whether χ(1)
q (G) = χq(G) for

all graphs G. This has bearing on the decidability of the quantum chromatic number.
Determining whether χ(r)

q (G) ≤ c is decidable1 because it boils down to solving the
set of quadratic equations (3.1) over the reals in a space of dimension cr, for which
there exist exact algorithms based on extensions of the Gröbner basis technique [18].
However, χq(G) = infr χ

(r)
q (G) is not decidable in such an easy way. It should be

possible to prove at least an upper bound on r that is sufficient to attain the limit.
In that case, it would make sense to ask about the complexity of computing χq(G), in
particular whether it is NP-hard, as is computing the chromatic number χ(G).

3.3 General properties

We look at some basic properties of the quantum chromatic number as a graph para-
meter. None of these are particularly surprising; indeed, the point of this section is
to show that the quantum chromatic number “does the right thing”, and merits being
considered as a generalisation of the (classical) chromatic number.

A homomorphism is a mapping from one graph to another that preserves edges.
That is, a homomorphism φ from G to H maps vertices of G to vertices of H such that
if x and y are adjacent in G then φ(x) and φ(y) are adjacent in H. We write G → H

to indicate that there exists a homomorphism from G to H.

The following easy observation is a useful tool.

Lemma 3.3.1. If G→ H, then χ(r)
q (G) ≤ χ(r)

q (H) for all r and hence χq(G) ≤ χq(H).

Proof. Let φ be a homomorphism from G to H. Then any quantum colouring of H
gives a quantum colouring of G by colouring the vertex x of G with the colour assigned
to φ(x) in H. �

It is trivial to see that if (and only if) G has no edges then χ
(r)
q (G) = χq(G) = 1.

With a little more effort, one sees that if G = Kn then χ
(r)
q (G) = χq(G) = n, where

Kn is the complete graph on n vertices. For, using Theorem 3.2.1 and eqn (3.10), we
have a set of n rank-r pairwise orthogonal operators in a space of dimension cr. We
can say a little more.

1Not necessarily efficiently; it is also open whether an efficient algorithm could be found (perhaps

using semidefinite programming) to determine χ
(r)
q (G).
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Theorem 3.3.2. χq(G) = 2 if and only if χ(G) = 2.

Proof. If χ(G) = 2, then G → K2 and K2 → G, and so by Lemma 3.3.1 χq(G) is at
most and at least 2. On the other hand, consider any quantum colouring of G with
2 colours, with orthogonal projectors Evα for Alice, α = 0, 1. By eq. (3.10), however,
Evα = I−Ewα for adjacent vertices v and w. That means, looking at a fixed colour α∗,
we encounter only two different operators as we traverse the graph – these can serve as
colours in a colouring as adjacent vertices will have different Evα∗ . �

The clique number of G, denoted by ω(G), is the size of the largest complete sub-
graph of G.

Theorem 3.3.3. ω(G) ≤ χq(G) ≤ χ(G)

Proof. Any graph G contains Kω(G) as a subgraph, so Kω(G) → G. Also G → Kχ(G),
by mapping each vertex to the vertex of Kχ(G) corresponding to its colour. The result
follows by Lemma 3.3.1. �

(Of course, Theorems 3.3.2 and 3.3.3 remain valid if we replace χq with χ(r)
q for any

r.) Let G and H be two graphs on the same vertex set. We define the graph G ∪ H
to be the graph whose edge set is the union of the edge sets of G and H. It is easy to
see that χ(G ∪H) ≤ χ(G)χ(H): colour each vertex in G ∪H with the ordered pair of
colours it received in colourings of G and H, respectively. This idea can be extended
to quantum colourings:

Theorem 3.3.4. For any r, s, we have χ(rs)
q (G ∪H) ≤ χ(r)

q (G)χ(s)
q (H).

Proof. Given rank-r and rank-s quantum colourings forG andH respectively, we obtain
a rank-rs quantum colouring of G ∪H by taking the tensor products of the individual
POVM operators associated to the vertices. �

As a corollary, we obtain the following, showing that a graph and its complement
cannot both have small quantum chromatic number.

Theorem 3.3.5. χq(G)χq(G) ≥ n.

Proof. Apply Theorem 3.3.4 with H = G, the complement of G. �

3.4 Orthogonal representations

The origin of the quantum chromatic number is in Hadamard graphs [31, 27], which
are a special case of orthogonality graphs, so it is natural to consider the larger family.

An orthogonal representation of a graph G is a mapping φ from the vertices of G
to the non-zero vectors of some vector space, such that if two vertices x and y are
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adjacent, then φ(x) and φ(y) are orthogonal. Conversely, given a set of vectors, we
define their orthogonality graph to be the graph having the vectors as vertices, with
two vectors adjacent if and only if they are orthogonal.

Let ξ(G) be the smallest integer c such that G has an orthogonal representation in
the vector space Cc. Furthermore, let ξ′(G) be the smallest integer c such that G has
an orthogonal representation in the vector space Cc with the added restriction that the
entries of each vector must have modulus one. (In fact, we really only need the entries
in any particular vector to have constant modulus.)

Theorem 3.4.1. ω(G) ≤ ξ(G) ≤ χ(1)
q (G) ≤ ξ′(G) ≤ χ(G)

Proof. For each integer c, let Fc be the quantum Fourier transform of order c, i.e.,
[Fc]j,k = 1√

c
e2πijk/c. Then:

• Given a graph with χ(G) = c, colour the vertices with the rows of F . Adjacent
vertices have distinct colours and hence orthogonal vectors, and thus ξ′(G) ≤
χ(G).

• Given a graph with χ
(1)
q (G) = c, map each vertex to the first column of its

corresponding unitary matrix. By eqn. (3.8) adjacent vertices will get mapped to
orthogonal vectors, and thus ξ(G) ≤ χ(1)

q (G).

• Given a graph with ω(G) = c, any orthogonal representation of it must contain c
pairwise orthogonal vectors and thus ω(G) ≤ ξ(G).

• Finally, given a graph with ξ′(G) = c, map each vertex x to ∆xFc, where ∆x is
the diagonal (unitary) matrix whose diagonal entries are the entries of x. Then
〈x|y〉 = 0 implies that (∆vFc)†(∆wFc) has only zeroes on the diagonal. Thus
χ

(1)
q (G) ≤ ξ′(G).

�

Finally, we derive an upper bound on the chromatic number of the orthogonality
graph on Ck in terms of k, which gives an upper bound on χ(G) in terms of ξ(G) for
any graph G by converting any orthogonal representation of G into a colouring of G.
This allows us to bound the largest possible gap between χ(G) and χ(1)

q (G).

Theorem 3.4.2. For a graph G,

χ(G) ≤ (1 + 2
√

2)2 ξ(G) ≤ (1 + 2
√

2)2χ
(1)
q (G).

Proof. To show the first inequality, we give a colouring of the orthogonality graph on Ck,
where k = ξ(G). This can be produced from a set of unit vectors V = {|vi〉} such that
for all unit vectors |w〉 ∈ Ck, ‖|w〉−|vi〉‖2 < 1/

√
2 for some i, by assigning colour i to |w〉
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(if there are two or more vectors in V satisfying this inequality, picking one arbitrarily).
This works because, for any two vectors |x〉, |y〉, 〈x|y〉 = 0 ⇒ 2(1 − Re(〈x|y〉)) =
‖|x〉 − |y〉‖22 = 2, so no two orthogonal vectors will receive the same colour. We use
the argument of [69] to bound the size of such a set (which [69] calls a 1/

√
2-net). Let

M = {|vi〉} be a maximal set of unit vectors such that ‖|vi〉−|vj〉‖2 ≥ 1/
√

2 for all i and
j and set m = |M |. Then M is a 1/

√
2-net giving a m-colouring of the orthogonality

graph of Ck. Observe that, as subsets of R2k, the open balls of radius 1/(2
√

2) about
each |vi〉 are disjoint and contained in the overall ball of radius 1 + 1/(2

√
2). Thus

m(1/(2
√

2))2k ≤ (1 + 1/(2
√

2))2k.

The second inequality follows from Theorem 3.4.1. �

The above result shows that the separation between χ(G) and χ
(1)
q (G) can be at

most exponential; the results of [31, 128], on the other hand, demonstrate that expo-
nential gaps can occur, showing that this inequality is tight up to constant factors.

3.5 Few colours

Here we investigate properties of graphs with small quantum chromatic number or
small orthogonal rank. We already saw that for two colours, classical and quantum
chromatic numbers coincide. It turns out that for three this is also the case, and for
numbers up to 8 the quantum chromatic number stays close to the orthogonal rank.

Theorem 3.5.1. Given a graph G, χ(1)
q (G) = 3 if and only if χ(G) = 3.

Proof. If χ(G) = 3, we cannot have χq(G) = 2 (nor 1 because the graph is not empty)
as this would mean χ(G) = 2. On the other hand, consider a rank-1 quantum colouring
with 3 colours. We use the analysis in Section 3.2 and in particular the observation
that we can view the quantum colouring as a family of 3 × 3 unitaries Uv such that
eqn (3.9) holds. The columns of the unitaries are just the basis vectors |ev0〉, |ev1〉,
|ev2〉. W.l.o.g. the graph is connected and for one distinguished vertex v0 we may
assume Uv0 = I.

The crucial observation is that there are essentially only two unitary matrices U †vUw

with zeroes on the diagonal [119]: they can only be 0 0 ∗
∗ 0 0
0 ∗ 0

 or

 0 ∗ 0
0 0 ∗
∗ 0 0

 ,

where the starred entries must be roots of unity. Starting from v0 we hence find
inductively that all Uv are, up to phase factors, permutation matrices. Just looking at
the first column, we now obtain a 3-colouring of G, choosing the colour according to
the row in which the nonzero entry of the column vector is. �

31



We now show that, in small dimension, having a small-dimensional orthogonal rep-
resentation is sufficient for a graph to have a low quantum chromatic number.

Theorem 3.5.2. Let G be a graph with an orthogonal representation in Rc. If c = 3, 4
then χ

(1)
q (G) ≤ 4; if 4 < c ≤ 8 then χ

(1)
q (G) ≤ 8.

Proof. If c = 4, 8 then associate every vector v ∈ R4 and w ∈ R8 to real orthogonal
designs V and W of the form OD (4; 1, . . . , 1) and OD (8; 1, . . . , 1), respectively [44].
For example, every vector v ∈ R4 is associated to a real orthogonal matrix

V =


v1 v2 v3 v4

−v2 v1 −v4 v3

−v3 v4 v1 −v2
−v4 −v3 v2 v1

 .

If v ∈ Rc and c = 3 or 4 < c ≤ 8 then concatenate a zero-vector of length 1 or 8− c to
v, respectively, and proceed as above. �

The above construction works based on the fact that in dimensions 4 and 8 there
exist division algebras (Hamilton quaternions and Cayley octonions). That is, if we
associate a quaternion v1 +v2i+v3j+v4k with a vector (v1, v2, v3, v4), multiplying that
quaternion by i, j, or k will give an orthogonal vector (and similarly for octonions).
Unfortunately division algebras exist only in dimensions 1, 2, 4 and 8 [50].

3.6 A graph with a small quantum chromatic number

We now give an example of a fairly small graph G (18 vertices and 44 edges) which has
quantum chromatic number – in fact, even χ(1)

q (G) – equal to 4, but chromatic number
5. Label the vertices with integers 1 . . . 18; then

E = {(1, 2), (1, 3), (1, 11), (1, 12), (1, 16), (2, 3), (2, 4),

(2, 13), (3, 4), (3, 13), (4, 5), (4, 6), (4, 10), (4, 17),

(5, 6), (5, 7), (5, 14), (6, 7), (6, 14), (7, 8), (7, 9),

(7, 16), (8, 9), (8, 10), (8, 13), (9, 10), (9, 13), (10, 11),

(10, 12), (10, 17), (11, 12), (11, 14), (12, 14), (13, 14),

(13, 15), (13, 18), (14, 15), (14, 18), (15, 16), (15, 17),

(15, 18), (16, 17), (16, 18), (17, 18)}

The graph may be visualised as consisting of two components connected to each other
by 8 additional edges: a 4-regular graph on vertices 1 − 14 [augmented by two edges
(4, 10) and (13, 14)], and a 4-clique on vertices 15− 18, see Fig. 3.1. The following list

32



of vectors gives an orthogonal representation of G in R4, which by Proposition 3.5.2
gives a quantum colouring with 4 colours:

{(0, 0, 1,−1), (1, 0, 0, 0), (0, 1, 1, 1), (0, 1, 0,−1), (0, 0, 1, 0),

(1, 1, 0, 1), (1,−1, 0, 0), (0, 0, 0, 1), (1, 1, 1, 0), (1, 0,−1, 0),

(0, 1, 0, 0), (1, 0, 1, 1), (0, 1,−1, 0), (1, 0, 0,−1), (1, 1, 1, 1),

(1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}

Because G contains a 4-clique, χq(G) cannot, on the other hand, be smaller than 4.

It may be verified as follows that G cannot be 4-coloured. Assume w.l.o.g. that
vertices 15-18 are coloured 1, 2, 3, 4 respectively. Then vertices 13 and 14 must di-
vide colours 2 and 3 between them; and for a valid 4-colouring, none of the triplets
(1, 4, 13), (1, 10, 14), (4, 7, 14), (7, 10, 13) may consist of 3 distinct colours. Using this,
it is straightforward to try all the possible colourings of vertex 7 and see that each leads
to vertices 4 and 10 being assigned the same colour.

1

2
3

4

5
6

7

8

9

10

11

12

13 14

15 16

17 18

Figure 3.1: A graph G with χ(1)
q (G) = 4, but χ(G) = 5.

This graph is much smaller and uses fewer colours than the previously smallest
specimen exhibiting a separation between classical and quantum chromatic numbers:
in [14] a graph on 1609 vertices is described with χ(G) ≥ 13 and χq(G) = 12.

As Theorem 3.5.1 shows that if χ(1)
q (G) = 3 then χ(G) = 3, this is the minimum

value of χ(1)
q (G) for which we can achieve a separation from χ(G). However, a graph

showing a separation with a smaller number of vertices might exist, as might a graph
with χq(G) = 3, χ(G) > 3. Also, in the general setting of pseudo-telepathy games, an
even smaller game is known where Alice and Bob gain a quantum advantage from a
3×3-dimensional entangled state rather than the 4×4-dimensional state used here [43].
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Chapter 4

A lower bound on

entanglement-assisted quantum

communication complexity

4.1 Introduction

From the model of the previous chapter, where sharing entanglement allowed two play-
ers to win a game with no communication at all, we turn to a more modest goal: using
quantum mechanics to reduce the amount of communication required for Alice and
Bob to complete some task. The study of this problem belongs to the field of quantum
communication complexity. Classical communication complexity was first introduced
by Yao [131] in 1979, and has been found to have many important links to other areas
of computer science. The same applies to its quantum generalisation. (See [129] and
[91] for excellent introductions to quantum and classical communication complexity,
respectively.)

Specifically, consider a total Boolean function f : {0, 1}n × {0, 1}n 7→ {0, 1}. The
quantum communication complexity of f is defined to be the minimum number of
qubits required to be transmitted between two parties (Alice and Bob) for them to
compute f(x, y) for any two n-bit inputs x, y, given that Alice starts out with x and
Bob with y. This number is clearly upper-bounded by n, but for some functions may
be considerably lower. Alice and Bob may be allowed some probability of error ε, and
may be allowed to share an entangled state before they start their protocol. We will
assume that Bob has to output the result.

Some functions are known to have a quantum communication complexity lower
than their classical communication complexity (for example, a bounded-error protocol
for the disjointness function f(x, y) = 1 ⇔ |x ∧ y| = 0 requires Ω(n) bits of classical
communication, but only Θ(

√
n) qubits of quantum communication [31, 1, 114]), but
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the extent of the possible reduction in communication is unknown. In particular, it is
still open whether the quantum communication complexity of total functions can ever
be exponentially smaller than the classical communication complexity, although it has
been shown [113, 62] that quantum communication can exponentially reduce the cost
of computing a partial function (where there is a promise on the input). It is therefore
of interest to produce lower bounds on quantum communication complexity.

In this context, the model with prior entanglement is less well understood; although
there are strong bounds known for some classes of functions [42, 114], there are few
general lower bounds [32]. In the 1-way and simultaneous message passing1 models of
communication complexity, sharing entanglement can reduce the communication cost
of a partial function exponentially [62, 60], but it is unknown whether the same might
hold for a total function.

In this chapter, we develop an elegant result of Cleve et al. that relates computation
to communication. Cleve et al. showed [42] that, if Alice and Bob have access to a
protocol to exactly compute the inner product function IP (x, y) =

∑
i xiyi (mod 2),

then this can be used to produce a quantum protocol that communicates Alice’s input
x to Bob. They used this to show that IP cannot be computed (exactly and without
prior entanglement) by sending fewer than n qubits from Alice to Bob. Similar results
hold for the bounded-error case and with prior entanglement.

We show that a weaker form of this result can be extended to all Boolean functions.
That is, for almost any Boolean function f , the ability for Alice and Bob to compute f
implies the ability for Alice to send some arbitrary information to Bob. The extension
leads to the development of a new complexity measure for Boolean functions: com-
munication capacity. Given a Boolean function f(x, y), we define the communication
capacity of f as the maximum number of bits which the execution of a protocol to com-
pute f allows Alice to communicate to Bob (in an asymptotic sense). This is a concept
which has no classical analogue and which, as we will show, gives a lower bound on the
quantum communication complexity of f , with or without entanglement.

Some comments on notation: we will use M to denote the square communication
matrix of f (where Mxy is equal to (−1)f(x,y)). We will use the standard notation
QE(f) to denote the quantum communication complexity of f in the case where the
protocol must be exact, Qε(f) the complexity where Alice and Bob are allowed to err
with probability ε < 1/2, and Q2(f) the complexity in the case where ε = 1/3. In
all three cases, Alice and Bob’s initial state is separable; Q∗E(f), Q∗ε (f) and Q∗2(f)
will represent the equivalent quantities in the case where they are allowed to share an
arbitrary initial entangled state.

Then the main result of this chapter can be stated as follows (a more precise state-
ment is given as Theorem 4.2.1 below).

1This is a model where Alice and Bob communicate not with each other but with a referee.
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Theorem 4.1.1. Let f : {0, 1}n × {0, 1}n 7→ {0, 1} be a total Boolean function with
communication matrix M . Then, for any non-negative diagonal matrices A and B with
‖A‖2 = ‖B‖2 = 1,

Q∗2(f) = Ω(H(σ2(AMB))/ log n) (4.1)

where σ2(M) is the vector of squared singular values of a matrix M and H(v) is the
Shannon entropy of v, i.e. H(v) = −

∑
i vi log2 vi.

We use this result to show that the quantum communication complexity of a random
function is linear in n, even if Alice and Bob are allowed to share an arbitrary entangled
state.

This chapter is joint work with Andreas Winter and has been published previously
as “A lower bound on entanglement-assisted quantum communication complexity”, in
the proceedings of ICALP 2007, pp. 122–133 (quant-ph/0610085).

4.1.1 Related work

This work is part of a large and growing body of research on quantum communication
complexity. The concept of quantum communication complexity was introduced by Yao
[132] more than a decade ago, and then studied extensively in Kremer’s thesis [89]. The
study of communication complexity with prior entanglement (in a three-party scenario
using only classical communication) was initiated by Cleve and Buhrman [41].

The lower bound of Theorem 4.1.1 is a generalisation of a bound obtained by Klauck
[87] on quantum communication complexity in the model without entanglement. The
result here can thus be seen as extending Klauck’s bound to the model of entanglement-
assisted quantum communication, and giving it a satisfying operational interpretation.
As our bound also holds for classical communication complexity, it fits into the frame-
work of results using ideas from quantum information to say something about classical
computation.

Entropic lower bounds for quantum communication complexity have been studied
previously by van Dam and Hayden [46]. Their work starts from a different perspective
to this chapter: considering the communication required to perform a quite general
state transformation task. They produce a lower bound on communication complexity
based on Rényi entropy (q.v.) which is similar to the bound given here, although they
only consider the uniform distribution on Alice and Bob’s inputs. Their bound has the
advantage that it removes the log n factor from Theorem 4.1.1; however, an unfortunate
side-effect is that it only holds in a scenario where Alice and Bob are allowed to share
only maximally entangled states (rather than arbitrary entanglement).

Following the completion of this work, Linial and Shraibman have shown [97] that
the minimum γ2 norm of matrices that approximate the communication matrix M

gives a lower bound on entanglement-assisted quantum communication complexity.
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This norm is defined as

γ2(M) = min
XY =M

‖X‖`2→`∞‖Y ‖`1→`2 (4.2)

where ‖X‖`2→`∞ is the largest `2 norm of a row of X, and ‖Y ‖`1→`2 is the largest `2
norm of a column of Y . Among other results, Linial and Shraibman use this lower
bound to extend the bound of Klauck [87] to the model of quantum communication
with entanglement. Their work thus proves the special case of Theorem 4.1.1 where
Aii = Bii = 1/

√
2n.

As is usual in computational complexity, we would expect most functions to have
“high” quantum communication complexity. Kremer showed [89] by a counting argu-
ment that a random function f has Q2(f) ≥ n/2 (and thus QE(f) ≥ n/2). Buhrman
and de Wolf extended Kremer’s methods to show that, for all f , it holds that Q∗E(f) ≥
(log rank(M))/2 [32] (an equivalent result is shown in Section 6.4.2 of [107]). As al-
most all Boolean matrices have full rank, this shows that for almost all f , Q∗E(f) ≥ n/2.
Very recently, Gavinsky, Kempe and de Wolf [61] have shown the final remaining case:
for almost all f , Q∗2(f) = Ω(n). Their technique was to relate quantum communica-
tion protocols to quantum fingerprinting protocols, and then to show a relationship
between quantum fingerprinting and some well-studied concepts from classical compu-
tational learning theory. This result was shown independently by Linial and Shraibman
[96]; their paper also extends the well-known discrepancy lower bound to the model of
quantum communication with entanglement.

As an application of our communication capacity technique, we reprove the result
that for almost all f , Q∗2(f) = Ω(n). The proof is of a quite different character and
of (arguably) a more “quantum” nature, as it is based on showing that the entropy of
almost all density matrices produced in a certain random way is high.

4.2 Turning any distributed function into a communica-

tion protocol

In this section, we will describe a protocol (which is a simple extension of the protocol in
[42] for IP) that allows any protocol for evaluating a distributed function to be turned
into a communication protocol. However, for some functions, the communication will
be considerably more inefficient than IP allows (Alice may only be able to send � n

bits to Bob).
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4.2.1 Exact protocols

Say Alice and Bob have access to a classical or quantum protocol that computes f(x, y)
exactly. We express this as a unitary P that performs the following action.

P |x〉A|y〉B|0〉B|a〉AB = |x〉A|y〉B|f(x, y)〉B|a′〉AB (4.3)

where |a〉, |a′〉 are arbitrary (and possibly entangled) ancilla states shared by Alice and
Bob. Note that, as P does not modify the first two registers, we may decompose it as
follows:

P =
∑
x,y

|x〉〈x|A ⊗ |y〉〈y|B ⊗ Uxy (4.4)

for some unitary Uxy acting only on the last two registers. Following [42], we will turn
this into a “clean” protocol P ′ by giving Bob an additional qubit to copy the answer
into, then running the protocol backwards to uncompute the “junk” |a′〉. The steps of
the clean protocol are thus

(i) |x〉A|y〉B|0〉B|0〉B|a〉AB

(ii) → |x〉A|y〉B|f(x, y)〉B|0〉B|a′〉AB

(iii) → |x〉A|y〉B|f(x, y)〉B|f(x, y)〉B|a′〉AB

(iv) → |x〉A|y〉B|0〉B|f(x, y)〉B|a〉AB

where now the fourth register contains the answer. Ignoring the third and fifth registers,
which are the same at the beginning and the end of the protocol, we are left with the
map

P ′|x〉A|y〉B|0〉B = |x〉A|y〉B|f(x, y)〉B (4.5)

Note that, if the original protocol P communicated a qubits from Alice to Bob and b

qubits from Bob to Alice, the protocol P ′ requires a + b qubits to be communicated
in each direction. That is, P ′ sends as many qubits in the “forward” direction as the
original protocol P sends in total. Now say Alice wants to communicate her input x to
Bob using this protocol. They start with the following state, where (by) is an arbitrary
probability distribution on Bob’s inputs:

|ψ〉 = |x〉A

 ∑
y∈{0,1}n

√
by|y〉B

 1√
2
(|0〉 − |1〉)B (4.6)
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Note that this state is separable (so we do not require entanglement to execute the
communication protocol). After executing the clean protocol for f , they are left with

P ′|ψ〉 = |x〉A

 1√
2

∑
y∈{0,1}n

√
by|y〉B (|f(x, y)〉 − |1− f(x, y)〉)B

 (4.7)

= |x〉A

 ∑
y∈{0,1}n

(−1)f(x,y)
√
by|y〉B

 1√
2

(|0〉 − |1〉)B (4.8)

Ignoring the registers that remain the same throughout, Bob has the following state at
the end of the protocol.

|ψx〉 =
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉 (4.9)

This state provides some information about Alice’s bit string x. If 〈ψx|ψx′〉 = 0 for
all x′ 6= x (as is the case with the protocol of [42] for IP, where Bob uses the uniform
distribution on his inputs) then Bob can determine x with certainty and hence has
received n bits from Alice. If this is not the case, then we can still quantify precisely
how much information can be transmitted. The protocol is equivalent to Alice encoding
the classical bit-string x as a state |ψx〉, and co-operating with Bob to send it to him.
Say Alice uses a distribution (ax) on her inputs. Then the ensemble representing what
Bob eventually receives is

ρ =
∑

x∈{0,1}n

ax|ψx〉〈ψx| (4.10)

By Holevo’s theorem [74], the entropy S(ρ) describes the maximum number of bits of
classical information about x available to Bob by measuring ρ. And, by the Holevo-
Schumacher-Westmoreland channel coding theorem for a channel with pure signal states
[67], Alice and Bob can achieve this bound (in an asymptotic sense) using block coding!

Therefore, the ability to compute f exactly can be used to transmit S(ρ) bits of
information through a quantum channel, even though this does not hold if Alice and
Bob are restricted to a classical channel. We thus define the communication capacity of
a Boolean function f as the maximum over all probability distributions (ax) (on Alice’s
inputs) and (by) (on Bob’s inputs) of

S

 ∑
x∈{0,1}n

ax|ψx〉〈ψx|

 , where |ψx〉 =
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉 (4.11)

4.2.2 Bounded error protocols

In the case where Alice and Bob have access to a protocol computing f with some
probability of error, Bob will not have the state |ψx〉 at the end of the protocol, but
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rather some approximation |ψε
x〉. We will now show that, if the error probability is

small, this is in fact still sufficient to communicate a significant amount of information
from Alice to Bob. As before, Alice will use a distribution (ax) on her inputs, and Bob
a distribution (by).

Say Alice and Bob are using a protocol P ε that computes f with probability of
error ε, where ε < 1/2. As before, the |x〉 and |y〉 registers will be unchanged by this
protocol, so we can write

P ε =
∑
x,y

|x〉〈x|A ⊗ |y〉〈y|B ⊗ U ε
xy (4.12)

Now let us run the protocol on the same starting state |ψ〉 as in the previous section.

(i) |x〉A

 1√
2

∑
y∈{0,1}n

√
by|y〉B|0〉B(|0〉 − |1〉)B

 |a〉AB

(ii) → |x〉A

 1√
2

∑
y∈{0,1}n

√
by|y〉B(αxy|0〉+ βxy|1〉)B(|0〉 − |1〉)B

 |a′〉AB

where the effect of U ε
xy on the “answer” qubit has been decomposed into αxy and βxy

components. If f(x, y) = 0, then |αxy|2 ≥ 1 − ε, and thus (by unitarity) |βxy|2 ≤ ε; if
f(x, y) = 1, |βxy|2 ≥ 1− ε and |αxy|2 ≤ ε. The ancilla register is still completely arbi-
trary, and in particular may be entangled with any of the other registers. Continuing
the protocol, we have

(iii)→ |x〉A

(
1√
2

∑
y∈{0,1}n

√
by|y〉B(αxy|0〉(|0〉−|1〉)− βxy|1〉(|0〉−|1〉))B

)
|a′〉AB

(iv)→ |x〉A

(
1√
2

∑
y∈{0,1}n

√
by|y〉B(αxy(α∗xy|0〉+ γ∗xy|1〉)|0〉 − αxy(α∗xy|0〉+

+γ∗xy|1〉)|1〉 − βxy(β∗xy|0〉+ δ∗xy|1〉)|0〉+ βxy(β∗xy|0〉+ δ∗xy|1〉)|1〉)B

)
|a〉AB

where we introduce γ∗xy and δ∗xy as arbitrary elements of (U ε
xy)

†, subject only to the
constraint that U ε

xy be unitary. We may now remove registers that end the protocol
unchanged and rewrite Bob’s final state as

|ψε
x〉 =

∑
y∈{0,1}n

√
by|y〉

(
(|αxy|2 − |βxy|2)|0〉+ (αxyγ

∗
xy − βxyδ

∗
xy)|1〉

)
(4.13)

Now, if f(x, y) = 0, then |αxy|2 − |βxy|2 ≥ 1− 2ε > 0, whereas if f(x, y) = 1, |αxy|2 −

40



|βxy|2 ≤ 2ε− 1 < 0. We may therefore write

|ψε
x〉 =

∑
y∈{0,1}n

√
by|y〉

(
(−1)f(x,y) cos θxy|0〉+ eiφxy sin θxy|1〉

)
(4.14)

where θxy is real with cos θxy ≥ 1 − 2ε, and φxy is an arbitrary phase. Crucially, the
form of these states is quite restricted and close to the original |ψx〉. In fact, it is clear
that

|(〈ψx|〈0|)|ψε
x〉|2 ≥ (1− 2ε)2 (4.15)

Set ρε =
∑

x∈{0,1}n ax|ψε
x〉〈ψε

x|. We will compare this to the state

ρ′ =
∑

x∈{0,1}n

ax|ψx〉|0〉〈ψx|〈0|

(where of course S(ρ′) = S(ρ)). We have

‖ρ′ − ρε‖1 ≤ 2
√

1− (1− 2ε)2 ≤ 4
√
ε (4.16)

We will use Fannes’ inequality [53] to show that S(ρε) ≈ S(ρ). Define the function

η0(x) =

{
−x log x for x ≤ 1/e
1/e log e for x > 1/e

(4.17)

Then Fannes’ inequality gives that

S(ρε) ≥ S(ρ)− 4
√
εn− log η0(4

√
ε) (4.18)

4.2.3 Communication complexity lower bounds from communication

capacity

A lower bound for the communication capacity of a function f can be written down in
terms of its communication matrix M as follows. As before, set

ρ =
∑

x∈{0,1}n

ax|ψx〉〈ψx| for |ψx〉 =
∑

y∈{0,1}n

(−1)f(x,y)
√
by|y〉 (4.19)

for arbitrary probability distributions (ax), (by) on Alice and Bob’s inputs. Define the
rescaled Gram matrix G as Gij =

√
ai
√
aj〈ψi|ψj〉. Now it is known [83] that G will

have the same eigenvalues as ρ, and thus the same entropy. But it can easily be verified
that

G = (AMB)(AMB)† (4.20)

41



where A and B are diagonal matrices with Aii =
√
ai, Bii =

√
bi. So the eigenvalues of

G are simply the singular values squared of AMB. We may thus write

S(ρ) = H(σ2(AMB)) (4.21)

where σ2(M) denotes the vector containing the squared singular values of a matrix
M . We can now produce lower bounds on the quantum communication complexity of
f by appealing to the result of Nayak and Salzman [105] which states that, if Alice
wishes to transmit n bits to Bob over a quantum channel with probability of success
p, Alice must send m ≥ 1

2

(
n− log 1

p

)
qubits to Bob. If they are not allowed to

share prior entanglement, the factor of 1/2 vanishes. This immediately gives a lower
bound on the exact quantum communication complexity of f , as lower bounds on the
forward communication required for the “clean” protocols that we use translate into
lower bounds on the total amount of communication needed for any communication
protocol.

In the bounded-error case, we can still use the Nayak-Salzman result. Consider a
block coding scheme with blocks of length k where each letter |ψε

x〉 is produced by one
use of f , as in the previous section. By [67] there exists such a scheme that transmits
kS(ρε)−o(k) bits of information with k uses of f , as k →∞, and probability of success
p→ 1. A lower bound on the bounded-error quantum communication complexity of f
follows immediately:

mk ≥ 1
2
(kS(ρε)− o(k)− o(1)), (4.22)

hence, after taking the limit k →∞, p→ 1, we find m ≥ 1
2S(ρε).

In order to reduce the error probability ε to O(1/n2) (to remove the additive term
linear in n in inequality (4.18)), it is sufficient to repeat the original protocol O(log n)
times and take a majority vote [89]. Alternatively, using (4.18) directly gives a better
bound for functions for which S(ρ) is linear in n. We thus have the following theorem.

Theorem 4.2.1. Let f : {0, 1}n × {0, 1}n 7→ {0, 1} be a total Boolean function with
communication matrix M . Then, for any non-negative diagonal matrices A and B with
‖A‖2 = ‖B‖2 = 1,

QE(f) ≥ H(σ2(AMB)) (4.23)

Q∗E(f) ≥ 1
2
H(σ2(AMB)) (4.24)

Qε(f) ≥

{
Ω(H(σ2(AMB))/ log n)
H(σ2(AMB))− 4

√
εn− log η0(4

√
ε)

(4.25)

Q∗ε (f) ≥

{
Ω(H(σ2(AMB))/ log n)
1
2(H(σ2(AMB))− 4

√
εn− log η0(4

√
ε))

(4.26)

where η0(x) is defined as in equation (4.17).
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If we use the uniform distribution on Alice and Bob’s inputs, then AMB = M/2n.
In the case of the models without entanglement, Klauck obtained this specialised result
via a different method [87]. This theorem can thus be seen as simultaneously extending
Klauck’s work to the model with entanglement, generalising it, and giving it an oper-
ational interpretation. The special case of the uniform distribution was also used by
Cleve et al. [42] to prove their lower bound on the communication complexity of IP.

It has to be noted that this bound is not always tight: an example is provided by
the disjointness problem, where Alice and Bob want to determine if their strings x and
y have a position where they are both 1. It is known that the quantum communication
complexity of this function is Θ(

√
n) [114, 1]. On the other hand, an implicit upper

bound on the entropy in Theorem 4.2.1 was already given for this case in [12], and
it is only O(log n). Thus, not quite surprisingly, the ability of a function to let Alice
communicate to Bob is not the same as the communication cost of implementing this
computation.

4.3 Rényi entropic bounds on communication capacity

A disadvantage of the von Neumann entropy S(ρ) is the difficulty involved in its com-
putation. The second Rényi entropy S2(ρ) [116] provides an easily computable lower
bound on S(ρ). The Rényi entropy of order α is defined as

Sα(ρ) =
1

1− α
log tr(ρα) (4.27)

so we have
S2(ρ) = − log tr(ρ2) = − log

∑
i,j

|ρij |2 (4.28)

and there is the fundamental property that Sα(ρ) ≤ Sβ(ρ) if α ≥ β. The Rényi
entropies also obey the bounds 0 ≤ Sα(ρ) ≤ n. As with the von Neumann entropy, the
Rényi entropy is a function only of the eigenvalues of ρ, so the Rényi entropy of the
density matrix corresponding to an ensemble of equiprobable states is the same as that
of the rescaled Gram matrix corresponding to these states. We can use this to write
down a formula for the second Rényi entropy of a density matrix ρ corresponding to
the communication matrix M of a function (as in the previous section, specialising to
the uniform distribution on Alice and Bob’s inputs), which gives a lower bound on its
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communication capacity and thus its entanglement-assisted communication complexity.

S2(ρ) = − log tr
(

1
24n

(MM †)2
)

(4.29)

= 4n− log

∑
i,j

(∑
k

MikMjk

)2
 (4.30)

= 4n− log

∑
i,j,k,l

MikMjkMilMjl

 (4.31)

As discussed in Section 4.1.1, Rényi entropic arguments have previously been used by
van Dam and Hayden [46] to put lower bounds on quantum communication complexity.

4.4 The quantum communication complexity of a random

function

In this section, we will show a lower bound on the communication capacity – and thus
the quantum communication complexity – of a random function (one which takes the
value 0 or 1 on each possible input with equal probability). Define the state ρ as

ρ =
1
2n

∑
k∈{0,1}n

|ψk〉〈ψk|, where |ψk〉 =
1√
2n

∑
i∈{0,1}n

(−1)ak
i+1 |i〉 (4.32)

where ak is a randomly generated 2n-bit string, and ak
i represents the i’th bit of ak.

We will show that the Rényi entropy S2(ρ) is high for almost all ρ.

Theorem 4.4.1. Pr [S2(ρ) < (1− δ)n] ≤ e−(2δn−1)2/2.

Proof. We have

S2(ρ) = 4n− log

∑
i,j

(∑
k

MikMjk

)2
 (4.33)

= 4n− log

∑
i

(∑
k

(Mik)2
)2

+
∑
i6=j

(∑
k

MikMjk

)2
 (4.34)

= 4n− log
(
N3 + T

)
(4.35)

where we define N = 2n and T =
∑

i6=j (
∑

k MikMjk)
2. It is then clear that

Pr [S2(ρ) < (1− δ)n] = Pr
[
T > N3(N δ − 1)

]
(4.36)

Each term in the inner sum in T (the sum over k) is independent and picked uniformly
at random from {−1, 1}. We will now produce a tail bound for T using “Bernstein’s
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trick” (see Appendix A of [5]): from Markov’s inequality we have

Pr [T > a] < E(eλT )/eλa < E(eλX11)N2
/eλa (4.37)

where we define Xij = (
∑

k MikMjk)
2: each Xij is independent and identically distrib-

uted, so T is the sum of N(N−1) < N2 copies of X11. It remains to calculate E(eλX11).
This can be written out explicitly as follows.

E(eλX11) =
1

2N

N∑
k=0

(
N

k

)
eλ(N−2k)2 (4.38)

It is then straightforward to see (using an inequality from [5]) that the following series
of inequalities holds.

E(eλX11) ≤ 1
2N

N∑
k=0

(
N

k

)(
eλ(N−2k)2 + e−λ(N−2k)2

)
(4.39)

≤ 1
2N−1

N∑
k=0

(
N

k

)
eλ

2(N−2k)4/2 (4.40)

≤ 1
2N−1

N∑
k=0

(
N

k

)
eλ

2N4/2 = 2eλ
2N4/2 (4.41)

Inserting this in eqn. (4.37), and minimising over λ, gives

Pr [T > a] < 2e−a2/2N6
(4.42)

and substituting a = N3(N δ − 1) gives the required result. �

In particular, putting δ = 1/2 gives that Pr [S2(ρ) < n/2] ≤ 2e−(
√

N−1)2/2, which is
doubly exponentially small in n. As ρ corresponds to the communication matrix of a
random function, Theorem 4.2.1 immediately gives the result that the entanglement-
assisted quantum communication complexity of almost all functions is Ω(n).
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Chapter 5

The distinguishability of random

quantum states

5.1 Introduction

The fact that non-orthogonal pure quantum states may not be distinguished perfectly
is a fundamental property of quantum mechanics. This leads to the following quantum
detection problem (also known as quantum state discrimination): given an unknown
quantum state |ψ?〉, picked from a known set E with known a priori probabilities, find
the “optimal” measurement Mopt(E) to determine |ψ?〉. First studied by Helstrøm [70]
and Holevo [74] in the 1970s, there is now a vast literature related to this problem
(see [36] for a survey). Several different criteria for optimality may been considered
[70, 48, 51]; in this chapter we only concern ourselves with optimising the probability of
success P opt(E), and in particular the related state distinguishability problem of finding
P opt(E) without necessarily finding Mopt(E). Efficient optimisation techniques can be
used to estimate P opt(E) numerically [52]; however, the problem of finding an analytic
expression for P opt(E) seems intractable. We are therefore led to attempting to produce
bounds on this quantity.

In this chapter, two lower bounds on this optimal probability are derived; one based
on the pairwise distinguishability of the states in E , and one based on the eigenvalues
of their Gram matrix. These bounds are derived for pure states but have an extension
to mixed states. We also mention an upper bound on the probability of success based
on pairwise distinguishability. As showing that a set of quantum states are quite
distinguishable, or otherwise, forms an essential part of proofs in many areas of quantum
information theory, we hope that these results will find application elsewhere.

The bounds are first applied to an illustrative example: a set of pure states with
constant inner product. We then turn to the main subject of the chapter, which is the
distinguishability of random quantum states. In particular, we derive a strong lower
bound on the probability of success of distinguishing n random quantum states in d
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dimensions, where n and d are large. In order to study the inner products of a set of
random states, we use a powerful result from random matrix theory: the Marčenko-
Pastur law [101]. This law turns out to give the distribution of the eigenvalues of
the Gram matrix of n states in d dimensions, where n and d approach infinity and
their ratio approaches a constant. In finite dimension, one can lower bound the rate of
convergence to the law.

See Section 6.10 for an application of these results to the oracle identification prob-
lem in quantum computation.

The majority of this chapter has been published previously as “On the distinguisha-
bility of random quantum states”, Communications in Mathematical Physics vol. 273
no. 3, pp. 619-636 (quant-ph/0607011).

5.2 Bounds on the distinguishability of quantum states

We consider an ensemble E containing n d-dimensional pure states |ψi〉 with their a
priori probabilities pi. We will use {|ψ′i〉} to denote the set containing the same states,
renormalised to reflect their probabilities (i.e. |ψ′i〉 =

√
pi|ψi〉). Given an unknown

state |ψ?〉, picked in accordance with these probabilities, the quantity we are interested
in is the average probability of success for a given generalised measurement (POVM)
to distinguish which state we were given. For a measurement M (given by a set of
positive operators {Mi} summing to the identity), let this probability be denoted by
PM (E). Then we have

PM (E) =
∑

i

〈ψ′i|Mi|ψ′i〉 =
∑

i

pi〈ψi|Mi|ψi〉 (5.1)

Mopt(E) will denote the measurement with the optimal probability of success, and in an
abuse of notation P opt(E) will denote this optimal probability. We call this the optimal
probability of distinguishing the states in E .

We use three matrix norms: the Euclidean (Frobenius) norm ‖A‖2 =
√

trA†A =√∑
i,j |Aij |2, the trace norm ‖A‖1 = tr

√
A†A =

∑
i σi(A), where σi(A) denotes the i’th

singular value of A, and the l1 norm
∑

i,j |Aij |. We will often use the d×n state matrix
S = S(E) = (|ψ′1〉, . . . , |ψ′n〉) whose i’th column is the state |ψ′i〉. Then G = S†S gives
the n× n Gram matrix [75] encoding all the inner products between the renormalised
states in E . If n < d, G will have d − n zero eigenvalues. Note that every rectangular
matrix M with ‖M‖2 = 1 is a state matrix. ρ will represent the density matrix of the
ensemble:

ρ =
n∑

i=1

|ψ′i〉〈ψ′i| (5.2)

It is well-known [83] that G and ρ have the same non-zero eigenvalues.
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5.2.1 Use of the “pretty good measurement”

We will use a specific measurement to provide bounds on P opt(E), which is “canonical”
in the sense that it performs reasonably well for any ensemble E . This is the so-called
pretty good measurement (PGM), which was independently identified by several authors
(e.g. see [67, 68]) and has a number of useful properties. It is usually defined as a set
of projectors {|νi〉〈νi|} onto “measurement vectors” |νi〉, where |νi〉 = ρ−1/2|ψ′i〉 (the
inverse only being taken on the support of ρ). However, it may also be defined implicitly,
which brings out its “canonical” nature.

To this end, consider an arbitrary measurement M for E that consists of a set of
n rank 1 projectors onto unnormalised measurement vectors |µi〉, where each measure-
ment vector corresponds to a state |ψ′i〉 in the ensemble. (In fact, it turns out that
the optimal measurement for an ensemble of pure states always falls into this category
[51].) The probability of getting measurement outcome i and receiving state j is then
|〈µi|ψ′j〉|2, and the overall probability of success of this measurement is

∑n
i=1 |〈µi|ψ′i〉|2.

We may thus encode all the inner products (and hence the probabilities) in a matrix
P , where Pij = 〈µi|ψ′j〉; and rather than looking for an optimal measurement M , we
can rephrase our task as looking for an optimal matrix P that corresponds to a valid
measurement.

We have the following requirement on P , from the fact that M must be a valid
POVM.

(P †P )ij =
n∑

k=1

〈ψ′i|µk〉〈µk|ψ′j〉 = 〈ψ′i|

(
n∑

k=1

|µk〉〈µk|

)
|ψ′j〉 = Gij = (S†S)ij (5.3)

A natural way to produce a matrix P that satisfies this condition from any given S is
to take P =

√
G, the positive semidefinite square root of G. The PGM turns out to be

a measurement corresponding to this matrix P , for, if Pij = 〈νi|ψ′j〉, then

(P 2)ij =
n∑

k=1

〈ψ′i|ρ−1/2|ψ′k〉〈ψ′k|ρ−1/2|ψ′j〉 = 〈ψ′i|

(
ρ−1/2

n∑
k=1

|ψ′k〉〈ψ′k|ρ−1/2

)
|ψ′j〉 = Gij

(5.4)
The probability of success for the PGM is thus given by P pgm(E) =

∑n
i=1(
√
G)2ii.

Barnum and Knill have proved [17] that the PGM has the further property that it is
almost optimal in the following sense.

Theorem 5.2.1. (Barnum, Knill) [17] P pgm(E) ≥ P opt(E)2.

For completeness, we now give a simplified proof of Barnum and Knill’s result in
the case of pure states.

Proof. Consider an arbitrary POVM R consisting of measurement operators {Ri}, and
an arbitrary ensemble E of renormalised states {|ψ′i〉}, with a priori probabilities pi,

48



where as before |ψ′i〉 =
√
pi|ψi〉 and ρ =

∑n
i=1 |ψ′i〉〈ψ′i|. Assume w.l.o.g. that Ri =

|µi〉〈µi| for some vectors |µi〉, as the optimal measurement will always be of this form
[52]. Then

PR(E) =
n∑

i=1

〈ψ′i|Ri|ψ′i〉 =
n∑

i=1

|〈ψ′i|µi〉|2 =
n∑

i=1

|〈ψ′i|ρ−1/4ρ1/4|µi〉|2 (5.5)

≤
n∑

i=1

〈ψ′i|ρ−1/2|ψ′i〉〈µi|ρ1/2|µi〉 (5.6)

≤

√√√√√( n∑
i=1

〈ψ′i|ρ−1/2|ψ′i〉2
) n∑

j=1

〈µj |ρ1/2|µj〉2

 (5.7)

≤

√√√√ n∑
i=1

〈ψ′i|ρ−1/2|ψ′i〉2 =
√
P pgm(E) (5.8)

The first and second inequalities are Cauchy-Schwarz inequalities, and the third follows
because the vectors {ρ1/2|µi〉} can easily be seen to define an ensemble with density
matrix ρ:

n∑
i=1

ρ1/2|µi〉〈µi|ρ1/2 = ρ1/2

(
n∑

i=1

|µi〉〈µi|

)
ρ1/2 = ρ (5.9)

and we therefore have
∑n

i=1〈µi|ρ1/2|µi〉2 ≤ 1, as this is the probability of success of the
measurement R applied to this ensemble. �

We have thus shown the overall relationship P opt(E)2 ≤ P pgm(E) ≤ P opt(E).

5.2.2 Bounds from the pairwise inner products

A set of states that are pairwise almost orthogonal are pairwise highly distinguishable.
It thus seems intuitively clear that, given such a set, the probability of success in dis-
tinguishing one state from all the others must also be high. However, this intuition is
wrong. This was noted by Jozsa and Schlienz [83], who showed that the inner products
of an ensemble of states may all be reduced, while simultaneously reducing the von
Neumann entropy of the ensemble (which gives a measure of overall distinguishability).
This effect also manifests itself in quantum fingerprinting [30]. Here, d-dimensional
states are “compressed” to O(log d)-dimensional “fingerprint” states that can be dis-
tinguished pairwise. However, given such a fingerprint the corresponding original state
may not be identified, as this would violate Holevo’s theorem [74].

Nevertheless, for certain ensembles the pairwise inner products can give a good
lower bound on the overall distinguishability, as noted by several authors [67, 17]. In
this section, we derive such a bound. Our approach is based on that of Hausladen et
al. [67], who found a parabola giving a lower bound on the square root function, which
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is useful because of the following lemma.

Lemma 5.2.2. If the function
√
x is bounded below by f(x) = ax+ bx2 for x ≥ 0, then

(
√
G)ii ≥ aGii + b

∑n
j=1 |Gij |2.

Proof. G is a positive semidefinite matrix and thus may be diagonalised: G = UDU †,
where D = diag({λi}) and U = (uij) is unitary. Working out the matrix algebra
shows that (

√
G)ii =

∑n
k=1

√
λk|uik|2, so (

√
G)ii ≥

∑n
k=1 f(λk)|uik|2 = f(G)ii. But

f(G)ii = (aG+ bG2)ii = aGii + b
∑n

j=1GijGji = aGii + b
∑n

j=1 |Gij |2. �

Our goal will be to find a and b to parametrise f such that aGii + b
∑n

j=1 |Gij |2 is
maximised. It is clear that, for this to be maximised, f(r) must equal

√
r for some r

(or we could just increase a or b). So we will pick a and b such that f(r) =
√
r and

f ′(r) = 1
2
√

r
(i.e. the curves are tangent at this point). This leads to the simultaneous

equations

ar + br2 =
√
r, a+ 2br =

1
2
√
r

(5.10)

Solving for a and b gives the optimal values

a =
3

2
√
r
, b = − 1

2r3/2
(5.11)

To see that f(x) actually is a lower bound for
√
x for any positive value of r (with

these values for a and b), note that the only solutions to the related equation f(x)2 = x

are x = 0, x = r, or x = 4r. As f(4r) is negative, we have that f(x) =
√
x if and

only if x = 0 or x = r. So the only remaining possibility is that f(x) >
√
x for all

0 < x < r. Plugging in a suitable value of x (e.g. r/2) shows that this is not the
case. The expression aGii + b

∑n
j=1 |Gij |2 may now be expressed solely in terms of r.

Optimising this for r gives that the maximum is found at the point

r =

∑n
j=1 |Gij |2

Gii
(5.12)

Returning to the original inequality, we have

(
√
G)ii ≥

3
2
√
r
Gii −

1
2r3/2

n∑
j=1

|Gij |2 ⇒ (
√
G)2ii ≥

G3
ii∑n

j=1 |Gij |2
(5.13)

We thus have the following bound on the probability of distinguishing the states in E .

P pgm(E) ≥
n∑

i=1

〈ψ′i|ψ′i〉3∑n
j=1 |〈ψ′i|ψ′j〉|2

=
n∑

i=1

p2
i∑n

j=1 pj |〈ψi|ψj〉|2
(5.14)
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If all the states have equal a priori probabilities, the bound simplifies further to

P pgm(E) ≥ 1
n

n∑
i=1

1∑n
j=1 |〈ψi|ψj〉|2

(5.15)

The bound (5.14) is always positive and greater than or equal to
∑n

i=1 p
2
i , thus showing

that the PGM always does at least as well as the “non-measurement” of guessing which
state was received in accordance with their a priori probabilities. For comparison, the
bound of [67], obtained for the uniform distribution, used the parabola f(x) = 3

2x−
1
2x

2

to give the simpler expression

P pgm(E) ≥ 1− 1
n

∑
i6=j

|〈ψi|ψj〉|2 (5.16)

5.2.3 Bounds from eigenvalues

The eigenvalues of a Hermitian matrix are closely related to its diagonal elements;
indeed, the former majorises the latter [75]. With this in mind, we look for a bound on
the unknown diagonal elements of

√
G in terms of the known eigenvalues {λi} of G.

Lemma 5.2.3.

P pgm(E) ≥ 1
n

(
n∑

i=1

√
λi

)2

=
1
n
‖S‖21

Proof. By the fact that the trace of a matrix is the sum of its eigenvalues, we have

n∑
i=1

(
√
G)ii =

n∑
i=1

√
λi (5.17)

⇒

(
n∑

i=1

(
√
G)ii

)2

=

(
n∑

i=1

√
λi

)2

(5.18)

⇒ n
n∑

i=1

(
√
G)2ii ≥

(
n∑

i=1

√
λi

)2

(5.19)

⇒ P pgm(E) ≥ 1
n

(
n∑

i=1

√
λi

)2

(5.20)

where in (5.19) we used a Cauchy-Schwarz inequality, showing that equality can only
be attained in step (5.19) when all the (

√
G)ii are equal. �

Interestingly, this bound is the same as the fidelity of G with the maximally mixed

state I/n, where the fidelity F (ρ, σ) is defined as
(
tr
√
ρ1/2 σ ρ1/2

)2
[126, 82].
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5.2.4 Distinguishability of unitary operators

We briefly mention a related problem: distinguishing between unitary operators. In
this scenario, we are given an unknown d-dimensional unitary operator U? picked at
random from some set E = {Uk} with a priori probabilities {pk}, and must input some
state to U? (perhaps appending an ancilla), perform a measurement, then output a
guess as to which operator we were given. This is clearly possible with certainty if
and only if there exists some |ψ〉 such that 〈ψ|(U †k ⊗ I)(Uk′ ⊗ I)|ψ〉 = 0 for all k 6= k′;
when this is not the case, the goal is to find |ψ〉 to optimise the success probability.
Interestingly (and in contrast to the problem of distinguishing quantum states), for any
pair of unitary operators U1, U2, there exists some finite number of copies n and a state
|ψ〉 such that 〈ψ|(U †1)⊗nU⊗n

2 |ψ〉 = 0 [3].

We can obtain lower bounds on the distinguishability of a set of unitary operators
using the following reduction to the problem of distinguishing quantum states. Append
a d-dimensional ancilla and input the maximally entangled state |ψ〉 =

∑d−1
i=0 |i〉|i〉 to

U?. We then have

〈ψ|(U †k ⊗ I)(Uk′ ⊗ I)|ψ〉 =
d−1∑
i,j=0

〈i|〈i|(U †kUk′)⊗ I|j〉|j〉 (5.21)

=
d−1∑
i,j=0

〈i|U †kUk′ |j〉〈i|j〉 =
d−1∑
i=0

〈i|U †kUk′ |i〉 = tr(U †kUk′) (5.22)

which is precisely the Hilbert-Schmidt inner product between Uk and Uk′ [75]. This
implies that the results of the previous two sections can be applied to the Gram matrix
Gxy = tr(U †xUy) of a set of unitary operators to give lower bounds on the distinguisha-
bility of that set.

5.2.5 Distinguishing mixed states

It is natural to ask to what extent the preceding lower bounds hold for the generalised
problem of distinguishing an ensemble E consisting of mixed states {ρi}. The following
lemma allows the problem to be related to that of distinguishing pure states.

Lemma 5.2.4. Let E be an ensemble of n d-dimensional mixed states {ρi} with a priori
probabilities {pi}, and having spectral decompositions ρi =

∑d
k=1 λik|vik〉〈vik|. Let F

be an ensemble of the nd pure states given by the eigenvectors {|vik〉} with a priori
probabilities {piλik}. Then P pgm(E) ≥ P pgm(F).

Proof. For mixed states, the PGM is defined by the following measurement operators
{Mi}:

Mi = ρ−1/2ρ′iρ
−1/2, where ρ′i = piρi and ρ =

n∑
i=1

ρ′i (5.23)
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So the probability of success can be bounded as follows, where we use the renormalised
eigenvectors |v′ik〉 =

√
pi

√
λik|vik〉.

P pgm(E) =
n∑

i=1

tr
(
ρ−1/2ρ′iρ

−1/2ρ′i

)
(5.24)

=
n∑

i=1

tr

(
ρ−1/2

(
d∑

k=1

|v′ik〉〈v′ik|

)
ρ−1/2

(
d∑

l=1

|v′il〉〈v′il|

))
(5.25)

=
n∑

i=1

d∑
k,l=1

tr
(
ρ−1/2|v′ik〉〈v′ik|ρ−1/2|v′il〉〈v′il|

)
(5.26)

=
n∑

i=1

d∑
k,l=1

|〈v′ik|ρ−1/2|v′il〉|2 (5.27)

≥
n∑

i=1

d∑
k=1

|〈v′ik|ρ−1/2|v′ik〉|2 = P pgm(F) (5.28)

�

Therefore, if the eigenvalues and eigenvectors of the states {ρi} are known, the
lower bounds given previously may be applied. If not, a weaker lower bound based
only on the pairwise fidelities of the states may be given (where, as before, we set

F (ρ, σ) =
(
tr
√
ρ1/2 σ ρ1/2

)2
).

Theorem 5.2.5. Let E be an ensemble of n mixed states {ρi} with a priori probabilities
{pi}. Then

P pgm(E) ≥
n∑

i=1

p2
i tr(ρ2

i )∑n
j=1 pjF (ρi, ρj)

(5.29)

Proof. From the bound (5.14) and Lemma 5.2.4, we have

P pgm(E) ≥
n∑

i=1

d∑
k=1

p2
iλ

2
ik∑n

j=1

∑d
l=1 pjλjl|〈vik|vjl〉|2

(5.30)

=
n∑

i=1

d∑
k=1

p2
iλ

2
ik∑n

j=1 pj〈vik|
(∑d

l=1 λjl|vjl〉〈vjl|
)
|vik〉

(5.31)

=
n∑

i=1

d∑
k=1

p2
iλ

2
ik∑n

j=1 pj〈vik|ρj |vik〉
(5.32)

≥
n∑

i=1

d∑
k=1

p2
iλ

2
ik∑n

j=1 pjF (ρi, ρj)
=

n∑
i=1

p2
i tr(ρ2

i )∑n
j=1 pjF (ρi, ρj)

(5.33)

�

This bound gets progressively worse as the states in E get more mixed. One might
expect the following lower bound to hold for mixed states, as it is the obvious extension
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of the bound (5.14) for pure states, but interestingly it does not.

P pgm(E) �
n∑

i=1

p2
i∑n

j=1 pjF (ρi, ρj)
(5.34)

A simple counterexample is given by the equiprobable ensemble consisting of the fol-
lowing two three-dimensional states.

ρ1 =
( 1

2
0 0

0 1
2

0
0 0 0

)
, ρ2 =

( 1
2

0 0
0 0 0
0 0 1

2

)
(5.35)

5.2.6 Upper bounds on distinguishability

The final question in quantum measurement theory that we mention is whether con-
verses of the inner product and eigenvalue bounds can be found that would give upper
bounds on the success probability of distinguishing between a set of quantum states.
Such bounds might be useful in the fields of quantum cryptography or quantum query
complexity.

Firstly, it is worth noting that no upper bound on the success probability in terms
of the eigenvalues alone can be found1, for the following reason. Any set of eigenvalues
{λi} summing to 1 can give rise to a Gram matrix G where Gii = λi, and Gij = 0 (for
i 6= j). Such matrices correspond to an ensemble E of perfectly distinguishable states
where P pgm(E) = 1.

However, following the completion of this thesis, an upper bound has been found
that is given in terms of the pairwise fidelities of the states in E [103]; the bound also

extends to mixed states (recall that the fidelity F (ρ, σ) is defined as
(
tr
√
ρ1/2 σ ρ1/2

)2

[126, 82]). We content ourselves with stating it below.

Theorem 5.2.6. Let E be an ensemble of quantum states {ρi} with a priori probabilities
{pi}. Then, for any measurement M ,

PM (E) ≤ 1−
∑
i>j

pipjF (ρi, ρj)

5.3 The distinguishability of states with constant inner

product

An illustrative case to which the above lower bounds can be applied is that of equiprob-
able states where the pairwise inner products are all equal, so the states are all equally
distinguishable from each other. Consider an ensemble E with Gram matrix G, where
Gii = 1/n and Gij = p/n for i 6= j (and p is a positive real constant). In this case, the

1As future work, it would be interesting to determine whether an upper bound (or an improved
lower bound) could be produced by considering the diagonal entries of G as well as its eigenvalues.
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inner product bound of Section 5.2.2 gives the bound

P pgm(E) ≥ 1
1 + p2(n− 1)

= O(1/n) (5.36)

The eigenvalue bound, however, gives much better results. The symmetry of G shows
immediately that it has an eigenvector (1, 1, . . . , 1); the corresponding eigenvalue is
λ1 = p+(1−p)/n. The set of eigenvectors may be completed by taking any n−1 vectors
orthogonal to (1, 1, . . . , 1), which will be eigenvectors with eigenvalues λ2...n = (1−p)/n.
We therefore have

P pgm(E) ≥ 1
n

(√
p+

1− p
n

+ (n− 1)

√
1− p
n

)2

(5.37)

≥ 1
n

(
(n− 1)2

(1− p)
n

)
≥ (1− p)− 2(1− p)

n
(5.38)

so the probability of distinguishing these states approaches a constant as n → ∞.
In fact, one can show that inequality (5.37) is actually an equality giving the precise
probability of success P pgm(E) (this follows from showing that the diagonal entries of√
G are all equal).

Such an ensemble therefore provides a kind of converse to the ensemble of states
used in quantum fingerprinting [30]: in this case, no matter how many states there
are in the ensemble, their joint distinguishability is of the same order as their pairwise
distinguishability. We will see below that this behaviour is not typical; however, it is
perhaps not surprising, because E can only be realised in n dimensions. To see this,
note that G is non-singular, so the states in E must be linearly independent.

5.4 The overlap of random quantum states

We now turn to the distinguishability of random quantum states. As a preamble, this
section contains a derivation of the precise distribution of the overlap between random
pure quantum states, i.e. their pairwise distinguishability2.

The standard definition of a random d-dimensional quantum state is a vector picked
uniformly at random from the complex unit sphere. This may be produced by writing
down a d-dimensional vector v, each of whose components are complex Gaussians (say
vi ∼ Ñ(0, 1/d), i.e. vi has probability density function d

πe
−d|vi|2), and normalising the

result. To see that this gives a vector uniformly distributed on the sphere, note that
the joint probability distribution of the entries of v depends only on the norm of v, and
is thus uniform on the sphere when v is normalised.

Before discussing the standard complex case, we first calculate the overlap between
2This is probably well-known but is hard to find in the literature. The fidelity of random mixed

states is considered in [135].
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random real quantum states, where vi ∼ N(0, 1/d), i.e. vi has probability density func-
tion

√
d√
2π
e−dv2

i /2. See [81] for definitions and properties of the probability distributions
used below.

Lemma 5.4.1. Let |r〉, |s〉 be random unit vectors in Rd. The overlap |〈r|s〉|2 follows
a beta distribution with parameters α = 1/2, β = (d− 1)/2 – i.e. |〈r|s〉|2 ∼ β(1/2, (d−
1)/2).

Proof. Without loss of generality, we will show that |〈0|r〉|2 ∼ β(1/2, (d − 1)/2). This
is simply equal to the square of the first component of |r〉. We will use the random
variable ri to denote the i’th component of |r〉, and wi to denote a normally distributed
random variable. Then, by the parametrisation discussed above,

r21 =
w2

1∑d
i=1w

2
i

(5.39)

Now w2
i ∼ χ2(1), so

∑d
i=2w

2
i ∼ χ2(d − 1). A standard result relating statistical

distributions states that, if X1 ∼ χ2(a) and X2 ∼ χ2(b), X1/(X1 +X2) ∼ β(a/2, b/2).
So we can split the bottom part of the sum into two halves and produce

r21 =
w2

1

w2
1 +

∑d
i=2w

2
i

∼ β(1/2, (d− 1)/2) (5.40)

�

Lemma 5.4.2. Let |a〉, |b〉 be random unit vectors in Cd. The overlap |〈a|b〉|2 follows
a beta distribution with parameters α = 1, β = d− 1 – i.e. |〈a|b〉|2 ∼ β(1, d− 1).

Proof. The proof follows the same lines as that of the previous lemma. The real and
complex parts of each component of |a〉 are normally distributed, so if wi, xi represent
independent, normally distributed random variables, we have

|a1|2 =
w2

1 + x2
1∑d

i=1w
2
i + x2

i

(5.41)

so, using the same argument as before, we have that |〈a|b〉|2 is distributed as |a1|2 ∼
β(1, d− 1). �

It is worth noting that both cases have the same expectation (1/d), but the real
case has approximately double the variance:

Var(|〈r|s〉|2) =
d− 1

d2(d/2 + 1)
, Var(|〈a|b〉|2) =

d− 1
d2(d+ 1)

(5.42)
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5.5 The distinguishability of random quantum states

We will use Lemma 5.2.3 and some results from the theory of random matrices to put
a lower bound on the probability of distinguishing multiple random quantum states.
The expected value of this lower bound will be obtained for a quite general notion of
“randomness”, but in order to get measure concentration results we will specialise to
states distributed uniformly at random (according to the Haar measure). The bound
holds in the asymptotic regime where the number of states n and the dimension d

approach a constant ratio; we also give lower bounds on the rate of convergence.

5.5.1 A little random matrix theory

In this section, we will calculate the expected value of the trace norm of a random
matrix, which (by Lemma 5.2.3) is related to the distinguishability of a set of random
states. The distribution of the trace norm (i.e. the sum of singular values) of a matrix
M is closely related to that of the eigenvalues of the matrix MM †, which is known to
statisticians as a (complex) Wishart matrix. The distribution of the eigenvalues of a
Wishart matrix is given by the Marčenko-Pastur law [101], which is stated in the form
we need in [16].

Theorem 5.5.1. (Marčenko-Pastur law) [101]

Let Rr be a family of d × n matrices with n ≥ d and d/n → r ∈ (0, 1] as n, d → ∞,
where the entries of Rr are i.i.d. complex random variables with mean 0 and variance
1. Then, as n, d→∞, the eigenvalues of the rescaled matrix 1

nRrR
†
r tend to a limiting

distribution with density

pr(x) =

√
(x−A2)(B2 − x)

2πrx
(5.43)

for A2 ≤ x ≤ B2 (where A = 1−
√
r, B = 1 +

√
r), and density 0 elsewhere.

We will translate this to a similar statement about the singular values of Rr. The
following lemma is straightforward.

Lemma 5.5.2. Let Rr be a family of d×n matrices with k/m→ r ∈ (0, 1] as n, d→∞,
where k = min(n, d) and m = max(n, d), and the entries of Rr are i.i.d. complex
random variables with mean 0 and variance 1. Then, as n, d→∞, the singular values
of Rr/

√
m tend to a limiting distribution with density

pr(y) =

√
(y2 −A2)(B2 − y2)

πry
(5.44)

for A ≤ y ≤ B (where A = 1−
√
r, B = 1 +

√
r), and density 0 elsewhere.

Proof. The lemma follows from Theorem 5.5.1 for n ≥ d by substituting y =
√
x. For

n ≤ d, note that the singular values of R are the same as those of RT , so the roles of
n and d need merely be interchanged. �
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Lemma 5.5.3. Let Rr be a family of d×n matrices with k/m→ r ∈ (0, 1] as n, d→∞,
where k = min(n, d) and m = max(n, d), and the entries of Rr are i.i.d. complex
random variables with mean 0 and variance 1. Then, as n, d → ∞, the expected trace
norm of Rr is

E(‖Rr‖1) =
m3/2

π

∫ B

A

√
(y2 −A2)(B2 − y2) dy (5.45)

where A = 1−
√
r, B = 1 +

√
r.

Proof. With probability 1, Rr will have k non-zero singular values. Let σi(Rr) denote
the value of the i’th (unsorted) singular value of Rr, for arbitrary i between 1 and k.
We have

E(‖Rr‖1) = (k
√
m) E(σi(Rr/

√
m)) = k

√
m

∫ B

A
y pr(y) dy (5.46)

and using Lemma 5.5.2 gives the desired result. �

This turns out to be an elliptic integral which cannot be expressed in terms of
elementary functions [63]. However, it is possible to produce a good lower bound,
which is tight in the case r = 1:

Lemma 5.5.4.

E(‖Rr‖1) ≥ k
√
m

√
1− r

(
1− 64

9π2

)
(5.47)

with equality when r = 1.

Proof. Deferred to Section 5.7. �

As these are asymptotic results, it is important to bound the rate of convergence of
this expected value to that given by Lemma 5.5.4. This can be done using a theorem of
Bai [15], who has shown that the Kolmogorov distance between the (rescaled) expected
empirical spectral distribution of an m × k matrix (with m ≥ k) and the asymptotic
distribution given by the Marčenko-Pastur law is O(m−5/48). After some algebra, this
may be used with Lemma 5.5.4 to give

E(‖Rr‖1) ≥ k
√
m

(√
1− r

(
1− 64

9π2

)
−O(m−5/48)

)
(5.48)

for a finite-dimensional m× k matrix Rr.

5.5.2 Random quantum states

We can apply this result, and the lower bound of Lemma 5.2.3, to estimate the dis-
tinguishability of random quantum states uniformly distributed on the complex unit
sphere in d dimensions. In fact, we may exploit the concentration of measure effects
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characteristic of high-dimensional spaces to show lower bounds on the distinguishability
of almost all ensembles of quantum states.

As discussed in Section 5.4, uniformly random quantum state may be produced
by creating a vector v, each of whose components are complex Gaussians (say vi ∼
Ñ(0, 1/d)), and normalising the result. The intuition that this normalisation step is
“almost unnecessary” [130] can be formalised as follows. It is straightforward to see
that E(‖v‖) = 1. In order to get an explicit expression for the concentration around
this expectation the following result from Appendix A of [22] can be used.

Lemma 5.5.5. (Norm concentration of Gaussian vectors) [22]

Let v be a d-dimensional random vector, each of whose components vi ∼ Ñ(0, 1/d).
Then, for any ε,

Pr[|‖v‖22 − 1| ≥ ε] < 2e−dε2/12 (5.49)

Similarly, the state matrix of an ensemble E of n equiprobable d-dimensional uni-
formly random quantum states is given by a d×nmatrix S whose columns are uniformly
random quantum states renormalised so that each column has norm 1/

√
n. Let S′ de-

note the matrix produced by rescaling each column by 1/
√
n, rather than normalising

them. We will show that S and S′ are close with high probability. Consider an arbi-
trary column of S and the same column in S′, denoted v and v′ respectively. Lemma
5.5.5 allows a bound to be put on the probability of v and v′ being far apart, as

‖v − v′‖22 = ‖(
√
n‖v′‖2 − 1)v‖22 =

1
n

(
√
n‖v′‖2 − 1)2 (5.50)

We may therefore obtain

Pr[‖v − v′‖22 ≥ ε] = Pr[(
√
n‖v′‖2 − 1)2 ≥ nε]

≤ Pr[|n‖v′‖22 − 1| ≥ nε] ≤ 2e−n2dε2/12
(5.51)

Considering all the columns in the matrices S and S′, and using the union bound, we
have

Pr[‖S − S′‖22 ≥ ε] ≤ 2ne−dε2/12 (5.52)

In order to convert this to a statement about the “distinguishability” function f(S) =
1
n‖S‖

2
1 that we are interested in, we need the following lemma, which is proved in

Section 5.8.

Lemma 5.5.6. Let S be an n × d matrix with ‖S‖2 ≤ l, and define f(S) = 1
n‖S‖

2
1.

Then the Lipschitz constant η of f , η = supx,y |f(x)− f(y)|/‖x− y‖2, satisfies η ≤ 2l.

Lemma 5.5.6 implies the following relationship, for any l > 0.

Pr
[
|(‖S′‖21 − ‖S‖21)/n| ≥ 2l

√
ε
]
≤ Pr[‖S′‖2 ≥ l] + Pr[‖S − S′‖22 ≥ ε]

≤ 2e−nd(l2−1)2/12 + 2ne−dε2/12
(5.53)
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The final result we will need is the following concentration lemma.

Lemma 5.5.7. (Concentration of Gaussian measure) [92]

Let p be a point in Rd picked in accordance with standard Gaussian measure. Then

Pr[|f(p)− E(f)| ≥ ε] ≤ 2e−ε2/2η2
(5.54)

where η is the Lipschitz constant of f , η = supx,y |f(x)− f(y)|/‖x− y‖2.

We now have all the required ingredients to prove a lower bound on the distin-
guishability of almost all quantum states.

Theorem 5.5.8. Let E be an ensemble of n equiprobable d-dimensional quantum states
picked uniformly at random. Set p = 1

r

(
1− 1

r

(
1− 64

9π2

))
− O(n−5/48) if n ≥ d, and

p = 1− r
(
1− 64

9π2

)
−O(d−5/48) otherwise. Then, for any ε ≤ p/2,

Pr[P pgm(E) ≤ p− 2ε] ≤ 2
(
(n+ 1)e−dε4/K + e−ndε2/5

)
(5.55)

where K is a constant ≤ 300.

Proof. As before, let S be the state matrix of E , and let S′ be the matrix produced by
rescaling the vectors of Gaussians which would produce S if they were normalised. The
matrix R =

√
ndS′ fulfils the criteria for the Marčenko-Pastur law (Theorem 5.5.1),

as its entries are complex random variables with mean 0 and variance 1. We therefore
have

E
(

1
n
‖S′‖21

)
≥ 1
n

E(‖S′‖1)2 =
1
n2d

E(‖R‖1)2 ≥ p (5.56)

using the lower bound on the expected trace norm of R from Lemma 5.5.4 and the
convergence result of Bai [15]. We will show that this implies a bound on 1

n‖S‖
2
1, and

hence (by Lemma 5.2.3) a bound on P pgm(E). From Lemma 5.5.7 (identifying Cd with
R2d) and eqn. (5.53), we have for any l

Pr
[
‖S‖21/n ≤ p− 2ε

]
(5.57)

≤ Pr
[
|(‖S′‖21 − ‖S‖21)/n| ≥ ε

]
+ Pr

[
|‖S′‖21/n− E

(
‖S′‖21/n

)
| ≥ ε

]
(5.58)

≤ 2
(

exp
(
−nd(l

2 − 1)2

12

)
+ n exp

(
− dε4

192 l4

)
+ exp

(
−ndε

2

4 l2

))
(5.59)

≤ 2
(

exp
(
−ndε

4

12

)
+ n exp

(
− dε

4

300

)
+ exp

(
−ndε

2

5

))
(5.60)

where, in the last line, we pick l2 = 1 + ε2 and note that ε ≤ 1/2. �

Despite the large constants that appear in these expressions, Figure 5.1 shows nu-
merical evidence that ensembles E of quantum states picked uniformly at random in
fact appear to have a value of P pgm(E) close to the asymptotic lower bound, even when
the states are (relatively) low-dimensional.
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Figure 5.1: Asymptotic bound on P pgm(E) vs. numerical results (averaged over 10 runs)
for ensembles of n = 50r 50-dimensional uniformly random states.

5.6 Discussion

This work can be seen as part of an overall programme of understanding the behaviour
of random quantum states [69, 112, 130, 135].

There is a fundamental correspondence between the mixed state obtained from an
equal mixture of uniformly random pure states, and that produced by starting with a
larger system in a uniformly random pure state, and tracing out part of the system.
Consider a d-dimensional state

ρn,d =
1
n

n∑
i=1

|ψi〉〈ψi| (5.61)

where each state in the set E = {|ψi〉} is picked uniformly at random. We can think of
ρn,d as being produced from the following dn-dimensional state (which we consider to
live in a Hilbert space Hd ⊗Hn) by tracing out the second subsystem:

|υ〉 =
1√
n

n−1∑
k=0

|υk〉|k〉 =
1√
n

n−1∑
k=0

d−1∑
l=0

αkl|l〉|k〉 (5.62)

for some coefficients αkl. As mentioned previously, the αkl will be approximately nor-
mally distributed as Ñ(0, 1/d). So, because of the normalisation factor at the front of
the sum, the overall state |υ〉 has coefficients which are approximately normally dis-
tributed and scaled as Ñ(0, 1/dn). Therefore, this state is approximately picked from
the uniform distribution on the unit sphere in Cdn. Popescu, Short and Winter [112]
obtained an upper bound on the expected trace distance of such a state ρn,d from the
maximally mixed state I/d, and used this to show, among other results, that for n� d,
ρ ≈ I/d.

Because the non-zero eigenvalues of the Gram matrix of (rescaled) states in E are
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the same as the eigenvalues of ρn,d [83], this chapter can be seen as obtaining a similar
result to [112] for the fidelity of ρn,d with the maximally mixed state, via quite different
methods. However, the bound is tighter for n close to d, and the notion of “randomness”
of the states {|ψi〉} is more general (which is simply a side-effect of relying on the
powerful Marčenko-Pastur law).

5.7 Proof of Lemma 5.5.4

In this section we will prove a lemma which immediately implies Lemma 5.5.4. See [63]
for the facts used about elliptic integrals and hypergeometric series.

Lemma 5.7.1. Let 0 ≤ r ≤ 1 and A = 1−
√
r, B = 1 +

√
r. Then

∫ B

A

√
(y2 −A2)(B2 − y2) dy ≥ rπ

√
1− r

(
1− 64

9π2

)
(5.63)

with equality at r = 0, r = 1.

Proof. We have

f(r) =
∫ B

A

√
(y2 −A2)(B2 − y2) dy (5.64)

=
B

3

(
(A2 +B2)E

(√
B2 −A2

B2

)
− 2A2K

(√
B2 −A2

B2

))
(5.65)

=
2(1 +

√
r)

3

(
(1 + r)E

(
2r1/4

1 +
√
r

)
− (1−

√
r)2K

(
2r1/4

1 +
√
r

))
(5.66)

where K(r) and E(r) are the complete elliptic integrals of the first and second kind,
respectively:

K(r) =
∫ 1

0

dx√
(1− x2)(1− r2x2)

, E(r) =
∫ 1

0

√
1− r2x2

√
1− x2

dx (5.67)

Note that f(r) may be evaluated explicitly for r = 0 and r = 1, giving 0 and 8/3 respec-
tively. Now we may apply a standard change of variables (Landen’s transformation) to
both elliptic integrals, giving

f(r) =
2(1 +

√
r)

3

(
1 + r

1 +
√
r

(
2E(
√
r)− (1− r)K(

√
r)
)
− (1−

√
r)2(1 +

√
r)K(

√
r)
)

=
4
3
(
(1 + r)E(

√
r)− (1− r)K(

√
r)
)

(5.68)

We now move to the representation of K(r) and E(r) as hypergeometric series, which
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are defined as follows (using the notation an̄ = a(a+ 1) · · · (a+ n− 1)).

2F1(a, b; c; r) =
∞∑

n=0

an̄bn̄

cn̄n!
rn (5.69)

K(r) = (π/2) 2F1(1/2, 1/2; 1; r2) , E(r) = (π/2) 2F1(−1/2, 1/2; 1; r2) (5.70)

This has the advantage that, by a transformation rule due to Gauss, we can rewrite
f(r) as a single hypergeometric series.

f(r) =
2π
3

((1 + r) 2F1(−1/2, 1/2; 1; r)− (1− r) 2F1(1/2, 1/2; 1; r)) (5.71)

= πr 2F1(−1/2, 1/2; 2; r) (5.72)

Returning to the original inequality, our task has been simplified to showing that

g(r) = 2F1(−1/2, 1/2; 2; r)2 ≥ 1− r
(

1− 64
9π2

)
(5.73)

Evaluating g(r) at 0 and 1 makes it clear that this is equivalent to showing that g(r) is
concave for 0 ≤ r ≤ 1, which would follow from showing the second derivative g′′(r) to
be negative in this region. From the rules governing differentiation of hypergeometric
series, it is easy to show that

g′′(r) =
1
32
(
2F1(1/2, 3/2; 3; r)2 − 2 2F1(−1/2, 1/2; 2; r)2F1(3/2, 5/2; 4; r)

)
(5.74)

The following hypergeometric transformation allows this to be simplified.

2F1(a, b; c; r) = (1− r)c−a−b
2F1(c− a, c− b; c; r)

⇒ g′′(r) =
1
32
(
(1− r)22F1(5/2, 3/2; 3; r)2

− 2(1− r)2 2F1(5/2, 3/2; 2; r) 2F1(3/2, 5/2; 4; r)
)

We will show that 2F1(5/2, 3/2; 3; r)2 ≤ 2F1(5/2, 3/2; 2; r) 2F1(5/2, 3/2; 4; r) for all pos-
itive r, implying that g′′(r) is negative in this region. We write out the two hypergeo-
metric series explicitly, setting kn = rn(5/2)n̄(3/2)n̄/n!.

2F1(5/2, 3/2; 3; r)2 =
∞∑

m,n=0

kmkn

3m̄3n̄
(5.75)

2F1(5/2, 3/2; 2; r) 2F1(5/2, 3/2; 4; r) =
∞∑

m,n=0

kmkn

4m̄2n̄
(5.76)

=
∞∑

m,n=0

kmkn

3m̄3n̄

(
3

3 +m

)(
2 + n

2

)
(5.77)
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=
∞∑

m=0

k2
m

3m̄3m̄

(
6 + 3m
6 + 2m

)
+

∞∑
m,n=0
m>n

kmkn

3m̄3n̄

(
3(2 + n)
2(3 +m)

+
3(2 +m)
2(3 + n)

)
(5.78)

≥
∞∑

m=0

k2
m

3m̄3m̄
+

∞∑
m,n=0
m>n

2kmkn

3m̄3n̄
= 2F1(5/2, 3/2; 3; r)2 (5.79)

where elementary methods can be used to show that the bracketed last term in eqn.
(5.78) is at least 2 for any non-negative m and n. This completes the proof of the
lemma. �

The difference between the approximation (5.63) and the actual value of the integral
(evaluated numerically) is plotted in Figure 5.2.
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Figure 5.2: Error in approximation to elliptic integral (5.63) for 0 ≤ r ≤ 1.

5.8 Lipschitz constants

This section contains derivations of the Lipschitz constants of the functions used for
concentration of measure results elsewhere in this thesis (Lemmas 5.5.6 and 6.10.4).

Lemma 5.8.1. Let S be an n × d matrix with ‖S‖2 = 1, and define f(S) = 1
n‖S‖

2
1.

Then the Lipschitz constant η of f satisfies η ≤ 2.
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Proof. Let k = min(n, d). We have

η = sup
S,T

|f(S)− f(T )|
‖S − T‖2

= sup
S,T

| ‖S‖21 − ‖S‖21 |
n‖S − T‖2

(5.80)

= sup
S,T

(
‖S‖1 + ‖T‖1

n

)
| ‖S‖1 − ‖S‖1 |
‖S − T‖2

(5.81)

≤ sup
S,T

(
‖S‖1 + ‖T‖1

n

)
‖S − T‖1
‖S − T‖2

(5.82)

≤ sup
S,T

√
k (‖S‖1 + ‖T‖1)

n
≤ 2k/n ≤ 2 (5.83)

The first inequality is a triangle inequality, and the second two are derived from

‖S‖1 =
k∑

i=1

σi(S) ≤

√√√√k

k∑
i=1

σ2
i (S) ≤

√
k‖S‖2 (5.84)

which in turn uses a Cauchy-Schwarz inequality. �

Lemma 5.8.2. Let S be a point on the nd-dimensional hypercube written down as an
n×d {−1, 1}-matrix, and let f(S) = 1

n2d
‖S‖21. Then the Lipschitz constant η of f (with

respect to the Hamming distance) satisfies η ≤ 4/nd.

Proof. The proof is very similar to that of Lemma 5.5.6. As before, let k = min(n, d).
We have

η = sup
S,T

|f(S)− f(T )|
d(S, T )

= sup
S,T

1
n2d

| ‖S‖21 − ‖S‖21 |
d(S, T )

(5.85)

≤ sup
S,T

(
‖S‖1 + ‖T‖1

n2d

)
‖S − T‖1
1
2‖S − T‖1

(5.86)

≤ sup
S,T

2
√
k (‖S‖1 + ‖T‖1)

n2d
≤ 4k/n2d ≤ 4/nd (5.87)

where, extending inequality (5.84), we use ‖S‖1 ≤
√
k‖S‖2 ≤

√
k‖S‖1. �
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Chapter 6

Quantum query complexity and

oracle identification

6.1 Introduction

In the study of quantum computation we are often concerned with finding efficient
quantum circuits for solving some computational problem, and conversely with showing
that a given problem admits no efficient quantum circuit. It is an unfortunate fact that
interesting measures of complexity (such as the minimum circuit depth or minimum
circuit size to solve a given problem) are often hard to compute.

We therefore lower our sights to a model which does not capture physical efficiency,
but which does give lower bounds on circuit size: the model of query complexity. This
chapter contains a brief introduction to the topic of quantum query complexity, followed
by a derivation of the fundamental lower bound on the quantum query complexity of
unstructured search, which has a simple application to bounding the query complexity
of the Boolean satisfiability problem (SAT). We then specialise (Section 6.5 onwards)
to a specific problem in this framework – the oracle identification problem.

In the most general version of the query complexity model, a problem P is defined
by a set of problem instances A, a set of oracle functions {fa : a ∈ A} corresponding to
these problem instances, and a function g. Our goal is to compute g(a), where a ∈ A
is a specific problem instance. We do not know a at the start of the algorithm, but can
find out information about a by making calls to fa. Our quantum algorithm alternates
“expensive” oracle query operations with “free” unitary operations which are arbitrary
but not problem-dependent, terminating with a measurement, each of whose outcomes
is associated with a different value that g(a) may take. The final state of such an
algorithm (before this measurement) can thus be written as

|ψa,t〉 = Oa UtOa Ut−1 · · ·Oa U1|ψ0〉 (6.1)
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where Oa denotes a unitary operator that encodes fa somehow (see Section 6.2 for
a discussion of this point), and the algorithm uses t queries to Oa. We say that the
algorithm succeeds with probability p if, for any problem instance a, the algorithm
outputs g(a) with probability at least p. Define the bounded-error quantum query
complexity of P , Q2(P ), as the minimum number of queries required for any quantum
algorithm to compute g(a) with success probability 2/3. Similarly, define the exact
quantum query complexity QE(P ) as the minimum number of queries necessary to
succeed with certainty. The deterministic classical decision tree complexity D(P ) is
the equivalent classical quantity, where we are restricted to classical queries to fa and
must succeed with certainty.

Decision tree complexity has long been a topic of study in classical computer science.
The generalisation to quantum query complexity was first made precise by Beals et
al. [19], but was implicitly studied previously by other authors (e.g. [64], [21]). See the
review [33] for a good introduction to these complexity measures.

How can one prove lower bounds on quantum query complexity? There is essentially
only one known “meta-technique”: define some quantity that measures the progress of
a quantum algorithm solving a problem, show that it must be low at the beginning
and high at the end, and show that it cannot increase too much with each query to the
oracle (and cannot increase at all with a non-query transformation). This technique
can be split into two sub-families: the polynomial method [19], where the quantity of
interest is the degree of a polynomial representing the function to be computed, and the
adversary method (e.g. [21, 7]), where we use some measure of “separation” of states
corresponding to inputs for which different outputs are required. These two methods
have both been successful in lower bounding the quantum query complexity of a variety
of problems, but appear (in general) to be incomparable [9].

One situation where quite strong general lower bounds can be put on quantum query
complexity is the case of computing a total Boolean function g : {0, 1}n 7→ {0, 1}.
Here, the set of problem instances is just all n-bit strings, and the oracle function
queries individual bits (A = {0, 1}n and fa(x) = ax). In this case, the quantum query
complexity can be at most polynomially smaller than the deterministic classical query
complexity. Indeed, Beals et al. showed [19] that the deterministic query complexity
D(g) = O(Q2(g)6) and D(g) = O(QE(g)4); the latter result was later improved by
Midrijānis to D(g) = O(QE(g)3) [102]. See [78] for a good review of known lower
bounds on quantum query complexity.

6.2 Oracles

Consider a classical oracle function fa(x) : {0, 1}n 7→ {0, 1}m that takes an n-bit input
to an m-bit output and is parametrised by a problem instance a. If we wish to use this
function in a quantum algorithm, we need a unitary operator to play the role of the
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oracle, i.e. a unitary operator that encodes fa in some way. There are several possible
encodings that have been considered in the literature, two of which are the phase oracle

Pa|x〉 = ω
fa(x)
2m |x〉 (6.2)

(where ωk = e
2πi
k ) and the bit oracle

Ba|x〉|y〉 = |x〉|fa(x)⊕ y〉 (6.3)

where |y〉 is an additional m-qubit output register. The phase oracle can be obtained
from the bit oracle with one query. However, obtaining the bit oracle from the phase
oracle may require more queries, or even be impossible. An example is given by the
function fa(x) = a: encoding this function by the phase oracle results in a being
returned as an unobservable global phase, so no information about a can be retrieved.

The bit oracle can be diagonalised by the use of the inverse quantum Fourier trans-
form (QFT) operating on the |y〉 register [84]. Call the 2m-dimensional QFT Q, where
Q is defined by its action on basis states: Q|x〉 =

∑
k ω

kx
2m |k〉. Then direct calculation

shows that
(I ⊗Q)Ba(I ⊗Q−1)|x〉|y〉 = ω

fa(x)y
2m |x〉|y〉 (6.4)

There is a third, and even simpler, way of encoding an oracle function as a unitary
operator: the minimal or erasing oracle [84]

Ma|x〉 = |fa(x)〉 (6.5)

For this operator to be unitary, it is clear that fa(x) must be a permutation.

6.3 Unstructured search

Perhaps the most basic problem in computer science is unstructured search. One for-
mulation of this problem is as follows. Consider a set S containing N = 2n elements,
each labelled by an n-bit binary string. S either contains one “marked” element a or
no marked elements. The function fa(x) : {0, 1}n 7→ {0, 1} returns 1 if x = a, and 0
otherwise. The problem is to find a, or output that it does not exist, with the smallest
possible number of evaluations of fa.

On a classical computer, it is clear that N oracle queries are required to succeed in
the worst case (where there is no marked element in the set). However, on a quantum
computer, Grover’s celebrated search algorithm [64] can be used to find the marked
element with constant probability, or show that it does not exist, using only O(

√
N)

queries.

It turns out that this is optimal: even on a quantum computer, unstructured search
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requires Ω(
√
N) oracle queries1. This lower bound was in fact shown before the devel-

opment of Grover’s search algorithm [21], and can be proven in a variety of ways (e.g.
[7, 19]). In view of its importance, and as it is used in several places later in this thesis,
we sketch a proof here. The proof is based on the “geometric” adversary arguments
originally introduced by [21], with some minor changes.

Consider N +1 different instances of the unstructured search problem, correspond-
ing to element number 1 . . . N being marked, or there being no marked element. We
will then have N different oracle operators {Oa}, each corresponding to a different ele-
ment being marked, and an additional oracle operator corresponding to there being no
marked element. We do not fix the way that these oracles encode the function fa, and
place only a single restriction on them: that there exists a decomposition of the overall
system into a direct sum of subspaces H0 +

⊕N
i=1Hi such that oracle Oa acts as the

identity everywhere other than Ha (the oracle corresponding to there being no marked
element must therefore be the identity operator I). The meaning of this constraint is
that, given an oracle Oa, there exist N possible subspaces in which amplitude can be
“invested”, but we should only get an oracle response if we guess the right subspace
Ha. It is easy to see that both the phase and bit oracles satisfy this constraint.

The basic idea of the proof is simple: in order to distinguish the case where there
is a marked element in the set from the case where there is not, the state produced by
running the algorithm with any oracle Oa must be “far” from the state corresponding
to use of the identity oracle operator. We will require the following lemma.

Lemma 6.3.1. (Bernstein and Vazirani [23])

Given a state |ψ?〉 promised to be either |ψ1〉 or |ψ2〉, there exists a measurement that
determines which is the case with error probability at most ε if and only if |〈ψ1|ψ2〉|2 ≤
4ε(1− ε).

Call |ψi,t〉 the state of the system after applying t oracle queries interspersed with t
arbitary unitaries Ut, where the marked element is stored in position i, and let |φt〉 be
the state at time t if there is no marked element. Assume that the algorithm finishes
at time t = T and fails with probability ε. Then, if the marked element is stored at
position i, the final state of the algorithm is

|ψi,T 〉 = UT Oi UT−1 · · ·Oi U1|ψ0〉 (6.6)

We will compare this with the result of applying the unitaries {Ut} without the oracle
queries, corresponding to there being no marked element:

|φT 〉 = UT UT−1 · · ·U1|ψ0〉 (6.7)
1In fact, Grover’s algorithm is exactly optimal and cannot be improved by even one query [134].
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Using the triangle inequality, we have

‖|ψi,T 〉 − |φT 〉‖ ≤
T∑

t=1

‖|ψi,t〉 − |φt〉‖ (6.8)

i.e. the total distance between |ψi,T 〉 and |φT 〉 cannot be more than the sum of the
distances between them at each step of the algorithm. Then, via a Cauchy-Schwarz
inequality, we have

‖|ψi,T 〉 − |φT 〉‖2 ≤ T
T∑

t=1

‖|ψi,t〉 − |φt〉‖2 (6.9)

so we can lower bound the average distance as

1
N

N∑
i=1

‖|ψi,T 〉 − |φT 〉‖2 ≤
T

N

N∑
i=1

T∑
t=1

‖|ψi,t〉 − |φt〉‖2 (6.10)

We can now find a bound on each side of this inequality. As the algorithm fails with
probability ≤ ε, we can use Lemma 6.3.1 to bound the left-hand side as follows.

1
N

N∑
i=1

‖|ψi,T 〉 − |φT 〉‖2 =
1
N

N∑
i=1

2− 2 Re(〈ψi,T |φT 〉) (6.11)

≥ 2
(
1− 2

√
ε(1− ε)

)
(6.12)

In order to bound the right-hand side, we define a “deviation” vector |Di,t〉 that, intu-
itively, measures the effect of an oracle call at time t:

|Di,t〉 = Oi|φt〉 − |φt〉 (6.13)

Now we have

|ψi,1〉 = |φ1〉+ |Di,1〉

|ψi,2〉 = |φ2〉+ |Di,2〉+OiU2|Di,1〉
...

|ψi,t〉 = |φt〉+ |Di,t〉+OiUt|Di,t−1〉+ . . .+OiUt · · ·OiU2|Di,1〉

Thus

‖|ψi,t〉 − |φt〉‖ ≤ ‖|Di,t〉‖+ ‖|Di,t−1〉‖+ . . .+ ‖|Di,1〉‖ ≤ tmax
|φ〉
‖Oi|φ〉 − |φ〉‖ (6.14)
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so we have the following inequality:

T

N

N∑
i=1

T∑
t=1

‖|ψi,t〉 − |φt〉‖2 ≤
T 2

N
max
|φ〉

N∑
i=1

‖Oi|φ〉 − |φ〉‖2 (6.15)

Now we can decompose |φ〉 as |φ〉 = |φ⊥〉+
∑N

i=1 |φi〉, where |φi〉 is the (unnormalised)
projection onto the subspace Hi on which oracle Oi acts, and |φ⊥〉 is the projection
onto the remainder. We then have

N∑
i=1

‖Oi|φ〉 − |φ〉‖2 =
N∑

i=1

‖Oi|φi〉 − |φi〉‖2 (6.16)

which will clearly be maximised when Oi|φi〉 = −|φi〉, giving

T

N

N∑
i=1

T∑
t=1

‖|ψi,t〉 − |φt〉‖2 ≤
4T 2

N

N∑
i=1

‖|φi〉‖2 ≤
4T 2

N
(6.17)

which immediately gives the overall inequality

T ≥

√√√√N
(
1− 2

√
ε(1− ε)

)
2

(6.18)

Setting ε = 1/3, we have proven the well-known Ω(
√
N) bound on unstructured search.

Note that we did not rely on knowing anything about any additional workspace used by
the algorithm, and put very weak restrictions on the way that the oracle was encoded.

6.4 Boolean satisfiability

Boolean satisfiability (SAT) is a fundamental NP-complete problem which, aside from
its central theoretical role, finds direct applications in fields ranging from computer
vision to hardware design [65]. The problem can be defined as follows: given a Boolean
expression E in conjunctive normal form (CNF), find an assignment to the variables
in E such that E evaluates to 1. For example, (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) has a
satisfying assignment a = b = 1. n will denote the number of distinct literals in E, m
the number of clauses (disjunctions) in E, and k the maximum number of literals in
each clause. The k-SAT problem results from fixing k to be a constant; even 3-SAT is
still NP-complete (although 2-SAT is in P [110]).

There are numerous classical algorithms for k-SAT that achieve improvements on
the trivial algorithm of trying all potential solutions (but still have exponential time
complexity), an example being Schöning’s O((4/3)n) randomised algorithm for 3-SAT
[117]. However, in the case of the general SAT problem, no classical algorithm is known
that achieves a time complexity of better than the trivial O(2n), although algorithms
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exist that achieve non-trivial complexities in terms of m [71].

Some proposed quantum algorithms to solve SAT [55, 73] use the following, quite
general, oracle model. The oracle is queried with an assignment to the variables in
the expression, and returns the number of unsatisfied clauses in the expression. The
goal, of course, is to find an assignment for which the oracle returns 0, or to show that
none exists. In this section, we reduce unstructured search on 2n elements to solving
an instance of SAT using this oracle, and thus show a Ω(2n/2) lower bound on SAT’s
query complexity.

This implies that quantum algorithms for SAT will need to use a more powerful
oracle model to achieve non-trivial speed-ups over classical algorithms, in contrast to
the result of van Dam et al. [47] that even the classical query complexity of the 3-SAT
problem using this oracle is only O(n3).

6.4.1 Lower bound on query complexity

Consider a set {Ei}, indexed by 0 ≤ i < 2n, of CNF expressions over the variables
x1, . . . , xn. We will choose these expressions so each has a different and unique satisfying
assignment (the binary representation of i), and all non-satisfying assignments fail to
satisfy exactly 1 clause. This can be done using no more than n clauses as follows.

Say i has binary representation (i1, . . . , in). Then define clause k of Ei as the
disjunction of k variables x1 to xk, where variables x1 through xk−1 are negated if and
only if the corresponding bit in i is 1, and variable xk is negated if and only if ik = 0.
For example, if n = 3, we have E1 = ¬x1 ∧ (x1 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x3). Thus the first
clause of Ei disallows half the possible assignments to the variables, the second clause
disallows half of the remaining assignments, and so on; it is easy to see that (i1, . . . , in)
is the only satisfying assignment, and that an assignment that does not satisfy one
clause will satisfy all the others.

But what we have defined is exactly the unstructured search problem on 2n elements:
on problem instance i, the oracle that returns how many clauses are unsatisfied by
a given assignment will return 0 if queried with (i1, . . . , in), and 1 otherwise. The
previously given lower bound on unstructured search then shows that computing SAT,
using this oracle, requires Ω(2n/2) oracle queries. Note that this technique requires
the maximum number of variables in a clause k to be allowed to approach n. If we
fix k, this technique will not be able to produce a unique satisfying assignment for
each expression without also causing the number of conflicts in other assignments to
increase.
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6.5 Oracle identification with a single query

Consider the following problem. We are given oracular access to a function fa(x) :
{0, 1}n 7→ {0, 1}m picked from a known set of N functions S. Our goal is to identify
the value of a using the minimum number of calls to the oracle. This problem clearly
fits into the query complexity framework, and is known as the oracle identification
problem (OIP).

It turns out that a number of fundamental problems can be expressed in this form.
A straightforward example of such a problem is unstructured search on N elements
(where fa(x) = 1 if x = a, and 0 otherwise). As discussed previously, this problem is
well-known to have a lower bound of N classical queries, and Ω(

√
N) quantum queries

[21]. However, search problems with more structure may require considerably fewer
queries. Here, we will consider conditions that determine whether the oracle can be
identified with a single query.

In the classical case, this will be possible if and only if fa(x) is one-to-one for some
choice of x, thus returning all the information about a immediately. In the quantum
case, the situation is more interesting. It is clear that the oracles will be perfectly
distinguishable if and only if there exists a state |ψ〉 such that, for some unitary operator
Ua encoding the function fa(x), the states {Ua|ψ〉} are orthogonal for all a. We start
by obtaining necessary and sufficient conditions on certain sets of oracle unitaries for
them to allow a to be determined with certainty using one query.

We then specialise to problems where the oracle functions are encoded by the bit
and phase oracles defined in Section 6.2, obtain some necessary and sufficient conditions
for exact single-query oracle identification, and then restrict still further, to the subclass
of problems where N = 2n, the oracle functions are Boolean and encoded by the phase
oracle, and a can be identified with a single query. In this situation, the best known
separation from classical query complexity is obtained by the Bernstein-Vazirani parity
problem [23], for which a classical computer can find a with n queries. It is natural to
ask whether a significantly better separation than this can be produced. We answer this
question strongly in the negative by showing that every oracle identification problem
of this type that can be solved with one quantum query can be solved with at most
≈ 1.71n classical queries.

Servedio and Gortler obtained [118] a much broader result than this, showing that
any oracle identification problem using q quantum queries needs only O(nq3) classical
queries2. The result here has a smaller constant and the proof is very different, being
based on structural properties of Hadamard matrices.

Finally, we move to considering a scenario where we are allowed a constant proba-
bility of error to identify the oracle. In the classical world, this ability is almost useless.

2As noted by Servedio and Gortler, this does not imply that there can be no exponential time
separation between quantum and classical computation for such problems.
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However, it will turn out that quantum computers can make better use of it: when
fa(x) is a Boolean function encoded by the phase oracle, and if a uniform probability
distribution is fixed on the choice of oracle, we will use the results of Chapter 5 to
show that almost all sets of oracles that are not too large (e.g. N = 2n) allow a to be
probabilistically determined with one query.

6.5.1 Previous work

The oracle identification problem lends itself to several natural interpretations, some
of which have been considered by other workers. It appears that study of the prob-
lem, under the name of “binary identification”, was initiated by Garey [59] in 1972.
Ambainis et al. [10] were the first to study the general OIP in the context of quantum
computation, and obtained upper bounds on query complexity for a range of oracles.
These results were extended in [11], which also considered the case of a “noisy” oracle
that sometimes gives a wrong answer. Servedio and Gortler [118], and Hunziker et
al. [80], have considered the problem from the perspective of computational learning
theory.

We now review two known examples of quantum oracle identification by a single
query. In both cases, we have N = 2n, so each oracle can be identified with an n-bit
string a. The oracle function fa(x) is encoded by the phase oracle, i.e. as a unitary
operator Ua, where Ua|x〉 = ωfa(x)|x〉, where ω is some root of unity (see Section 6.2). In
both cases, the search algorithm simply consists of applying this oracle to the uniform
superposition |ψ〉 = 1√

2n

∑
i |i〉, and noting that the possible outcomes for different

strings are all orthogonal, and hence can be distinguished immediately.

Bernstein-Vazirani parity problem

This straightforward example illustrates the power of quantum search. The scenario
is that each oracle performs the parity function fa(x) = a · x (mod 2), where a ·
x =

∑
k akxk, xk denoting the k’th bit of x. A classical algorithm requires n queries

to determine a with certainty (see Section 6.9 for details). However, Bernstein and
Vazirani showed [23] that a quantum algorithm can determine a with only a single
query to Ua, where Ua|x〉 = (−1)a·x|x〉. This can be shown by considering the inner
product between the outcomes for two oracles a, b:

〈ψ|U †bUa|ψ〉 =
1
2n

∑
i

(−1)i·(a⊕b) =
1
2n

∑
i

(−1)
P

k ik(ak⊕bk) (6.19)

This is easily seen to be zero for all a 6= b.

74



Hamming distance function

The following set of oracles can also be distinguished with a single query. Let fa(x) =
d(a, x) (mod 4), where d(a, x) represents the Hamming distance between a and x – i.e.
the number of bits where a and x differ. Hunziker and Meyer [79] (and independently
Hogg [72]) have shown that this function enables a to be found with a single query to
Ua. This oracle can be used to solve the 1-SAT problem3 in a single query [72], whereas
classically it requires n queries.

The algorithm works as follows. Consider the matrix B = 1√
2

(
1 i
i 1

)
. We have

B|a1〉 = 1√
2

∑1
x=0 i

d(a1,x)|x〉; that is, for some single-bit value a1, B takes |a1〉 to a
superposition created from the Hamming distance between a1 and the two different
possible values of x (call this superposition |ξ1〉). So, if we can produce the state |ξ1〉,
then we can obtain a1 by applying B−1. Further, if we can produce the state

⊗
k |ξk〉,

then we can obtain the full value of a by applying (B−1)⊗k. It turns out that, if fa is
encoded by the phase oracle as a unitary Ua, where Ua|x〉 = ifa(x)|x〉, we have

Ua

(
1√
2n

∑
k

|k〉

)
=
⊗

k

|ξk〉 (6.20)

The required value a can therefore be obtained with one query.

6.6 Conditions on single-query oracle identification

We now proceed to showing conditions that restrict when we can perform exact oracle
identification, first noting that this scenario is just a special case of the unitary operator
discrimination problem of Section 5.2.4.

6.6.1 Preliminaries

Consider a set S of N commuting unitary operators {Ui} (where 1 ≤ i ≤ N), operating
on an n qubit space. The 2n ×N matrix Λ whose entries consist of the eigenvalues of
the elements of S – i.e. matrix element Λij is the i’th eigenvalue of Uj – will be called
the eigenvalue matrix of S. As every element in S is unitary, every entry in Λ will have
unit modulus.

Our goal is to show conditions on the existence of a state |ψ〉 such that for all
i 6= j, 〈ψ|U †jUi|ψ〉 = 0. If this is the case, we say that S allows single-query oracle
identification. As S is simultaneously diagonalisable, we will assume that all of its
elements have been diagonalised, as this will not affect the existence of such a |ψ〉.
This can be seen by the following argument: 〈ψ|U †jUi|ψ〉 = 0⇒ 〈ψ|(U †jD†)(DUi)|ψ〉 =
0⇒ 〈ψ′|(DU †jD†)(DUiD

†)|ψ′〉 = 0 for some |ψ′〉 and any unitary D.

3See Section 6.4 for a definition of this problem.
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Also, it is worth noting that we only need to consider the case where the dimensions
of the state |ψ〉 and the operators in S are the same: for example, we do not need to
consider a setting where each operator in S only acts on part of an entangled state. To
see this, consider two arbitrary n-dimensional diagonal unitaries (say A with diagonal
elements (ai) and B with diagonal elements (bi)). We will extend these by taking
the tensor product with an m-dimensional identity operator and calculate the inner
product we get when we attempt to distinguish the operators using an arbitrary input
state |ψ〉.

〈ψ|(A† ⊗ Im)(B ⊗ Im)|ψ〉 =
m∑

j=1

n∑
i=1

ψ∗ija
∗
i biψij =

n∑
i=1

a∗i bi

 m∑
j=1

|ψij |2
 (6.21)

But this is the same as using a state |ψ′〉 with ψ′i =
∑m

j=1 |ψij |2 to distinguish the
operators A and B directly, so there was no need to add an ancilla. On the other
hand, note that if the unitaries in S do not commute, it may be necessary to add an
ancilla to distinguish them. For example, the operators {( 1 0

0 1 ) , ( 0 1
1 0 ) ,

(
1 0
0 −1

)
} cannot

be distinguished with certainty without an ancilla, but by the results in Section 5.2.4,
they can be distinguished using a 2-dimensional ancilla and a maximally entangled
state as input.

6.6.2 Single-query oracle identification

The first result in this section is the following.

Theorem 6.6.1. S allows single-query oracle identification if all the columns of Λ are
orthogonal. If N ≥ 2n, then this is a necessary condition.

Proof. We will first show that, if the columns of Λ are orthogonal, S allows single-query
oracle identification. Consider the result of applying an arbitrary unitary Uj ∈ S to the
uniform superposition |+〉 = 1√

2n

∑
i |i〉. Each result will be equal to the (normalised)

j’th column of Λ. If all the columns of Λ are orthogonal, all the results will be orthogonal
too, and hence will be distinguishable immediately.

The converse (for N ≥ 2n) will be proven as follows. First, it is immediate that for
N > 2n the task is impossible (as we would require N orthogonal states in a smaller
than N -dimensional space), so restrict to the case N = 2n. Choose an arbitrary n-qubit
input state |x〉 =

∑
i xi|i〉. Define a matrix M = (U1|x〉 U2|x〉 . . .), each column of

which is the result of applying a different oracle unitary to |x〉. As N = 2n, M will be
a square matrix. As each oracle is diagonal, we have Uk|x〉 =

∑
i Λikxi|i〉. If the results

of applying each oracle can be distinguished perfectly, it must be possible to pick an
|x〉 such that the columns of M are orthonormal. This implies that the rows of M are
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also all orthonormal. It follows that, for all i 6= j,

∑
k

(xiΛik)
(
x∗jΛ

∗
jk

)
= 0⇒ xix

∗
j

(∑
k

ΛikΛ∗jk

)
= 0 (6.22)

Thus, for all i 6= j, either xi = 0, or xj = 0, or the sum over k is zero. The former
two options are not possible, because then the rank of M would be reduced, and the
columns could not all be linearly independent (let alone orthogonal). Therefore, the
sum must be zero for all i 6= j. But this sum is precisely the pairwise inner product of
rows i and j of Λ. As Λ is square, this implies that all the columns of Λ must also be
orthogonal. �

Note that, unfortunately, the “only if” direction of this result does not hold for
N < 2n, where it is easy to produce counterexamples.

6.7 Search with a Boolean oracle function

The simplest possible scenario – one which encompasses the Bernstein-Vazirani parity
problem – is where we use a Boolean oracle function, i.e. fa(x) : {0, 1}n 7→ {0, 1}.
In the case where such a function is encoded by the phase oracle, the corresponding
eigenvalue matrix Λ will be defined by Λij = (−1)fj(i). Given the fact that two vectors
whose every entry is ±1 are orthogonal if and only if they differ in exactly half of their
components, by Theorem 6.6.1 we have

Theorem 6.7.1. A set of N oracle functions fa(x) : {0, 1}n 7→ {0, 1}, encoded by the
phase oracle, can be distinguished with one query if there exists a subset of the inputs
such that, for all a 6= b, fa(x) = fb(x) for precisely half of the inputs x in that subset.
If N ≥ 2n then this is a necessary condition.

In the case where N = 2n, the eigenvalue matrix Λ is a Hadamard matrix [66].
Hunziker et al. [80] have considered this specific problem from the perspective of classi-
cal computational learning theory, calling it concept learning from a single membership
query. Their paper shows the “if” direction of this theorem, which still holds in the
case where N < 2n. A version of this direction of the theorem can also be applied to
the bit oracle. In the case where we use the bit oracle (which we express using the
Fourier basis for the output register, see Section 6.2), the eigenvalue matrix Λ will be
the same, but augmented with 2n rows that contain only 1, corresponding to putting
0 in the |y〉 register. All but one of these rows can be removed without affecting the
existence of a submatrix of Λ with orthogonal columns. This leads to the following
theorem:

Theorem 6.7.2. A set of N oracle functions fa(x) : {0, 1}n 7→ {0, 1}, encoded by the
bit oracle, can be distinguished with one query if there exists a k-subset of the inputs

77



such that either: (a) for all a 6= b, fa(x) differs from fb(x) on precisely k/2 of the
inputs; or (b) for all a 6= b, fa(x) differs from fb(x) on precisely (k+1)/2 of the inputs.

6.8 Search with a higher-dimensional oracle function

An extension of the results in the previous section is to classical oracle functions that
return more than one bit. That is, functions {0, 1}n 7→ {0, 1}m, where m > 1. We now
give a simple sufficiency condition for oracle identification with the phase oracle.

Theorem 6.8.1. Consider a set of functions fa(x) : {0, 1}n 7→ {0, 1}m encoded by the
phase oracle and an arbitrary subset of the input T . Set cab(x) = fa(x)− fb(x) (where
fa(x) and fb(x) are considered as integers mod 2m), and set cTab(k) = |{x ∈ T : cab(x) =
k}|. Then a can be determined with one query if there exists a T such that, for all a 6= b

and for all k, cTab(k) = cTab((2
m−1 + k) mod 2m).

Proof. Use as input state the uniform superposition over the inputs in T , and consider
the inner product between the result of applying the oracle corresponding to fa to this
state, and the result of applying fb. Every pair of outputs fa(x), fb(x) of the functions
that differ by cab(x) correspond to a contribution of ωcab(x)

2m to the inner product. As
ω

cab(x)
2m + ω

2m−1+cab(x)
2m = 0, if the outputs can be paired up as stated in the theorem,

then the inner product between each two distinct columns will be zero. �

6.9 Classical vs. quantum single-query oracle identifica-

tion

It turns out that the parity and Hamming distance classical oracle functions in Section
6.5.1 can be written in a very similar way. That is, the parity of a and x is

∑
i ai ∧ xi

(where ai denotes the i’th bit of a), and the Hamming distance between a and x is∑
i ai ⊕ xi. Thus, these functions depend only on the individual bits of their inputs,

and not on combinations of these bits.

It is notable that, for both of these functions, there exists a classical algorithm to
find a using n queries. For the parity function, the algorithm consists of querying the
oracle with every possible input of Hamming weight 1; each query reveals the value of
one bit of a. For the Hamming distance function, the algorithm is the following. First,
query the oracle with the zero string: call the result z. Then query with the string
whose first bit is 1, with all other bits set to 0. The result of this query will either
be z − 1 (if a1 = 1), or z + 1 (if a1 = 0). Then set the first bit to a1, the second bit
to 1, and all other bits 0, and query once more to reveal the second bit. Repeating
this process, the same principle will apply: each query reveals one more bit of a. This
would result in n+ 1 queries, but the last query can be avoided because, once all bits
but one are known, the last bit can be deduced without calling the oracle.
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This leads to the following natural question: do any Boolean oracle functions exist
which can provide a larger quantum/classical query complexity separation? Servedio
and Gortler [118] have answered this question in the general case by showing that, for
every oracle identification problem requiring q quantum queries, there exists a classical
algorithm using O(q3 logN) queries. Here we tighten this bound by showing that, when
q = 1 and N = 2n, the constant in this expression is extremely small.

Theorem 6.9.1. Any set of 2n oracles fa(x) : {0, 1}n 7→ {0, 1} that, if encoded by the
phase oracle, can be distinguished with one quantum query, can be distinguished using
≈ 1.71n classical queries.

By Theorem 6.7.1, every such fa(x) can be expressed as a Hadamard matrix H,
where the columns are indexed by different values for a, and the rows by different values
for x. A classical oracle query consists of obtaining y = fa(x) for some choice of x,
and removing all the columns c of H where Hxc 6= (−1)y. When all columns have been
removed but one, we have found a. This process will be easiest if there exists a row of
H where half of the entries are 1 and half −1, because a query will always remove half
of the columns. Conversely, it will be difficult if almost all of the entries in each row
are 1 or −1.

Call the maximum number of “−1” entries in a row k. We can assume that k ≤ 2n−1

– i.e. at most half of the entries in each row are −1 – because, if not, we can always
multiply a row by −1 (this corresponds to blindly inverting the result of an oracle call).
The following lemma will show that k must be high, and thus classical queries must
always be “informative” and reduce the search space efficiently.

Lemma 6.9.2. Consider a matrix M whose entries are all ±1, and whose columns are
all orthogonal. Say M has n columns, and the maximum number of “−1”s contained
in any row of M is k. Then k ≥ n−1

3 .

Proof. Assume k ≤ n/2, or the lemma is trivially true. Then consider the inner product
between each two columns c and d of M . There are

(
n
2

)
such combinations of different

columns. We will look at how the inner product for each combination (c, d) is produced,
by considering each row r in turn. (c, d) will be incremented when the two entries cr
and dr are either both 1 or both −1, and will be decremented otherwise. With each
row, therefore, at least

(
n−k

2

)
combinations are incremented (there are at least n − k

“1”s in the row, so this is the minimum number of ways of choosing 2 entries that are
both 1).

Also, at most k(n−k) combinations are decremented. This can be seen by denoting
the number of “−1”s in the row by l, where l ≤ k ≤ n/2. Then the number of ways
of picking one 1, and one −1 is l(n − l). For l ≤ n/2, this is an increasing function,
and hence will be maximised by l = k. We must thus have k(n − k) ≥

(
n−k

2

)
, or it is

impossible to reduce all of the combinations which have been incremented back to 0.
This immediately leads to the required bound, k ≥ n−1

3 . �
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Therefore, each classical query must reduce the size of the search space by approx-
imately 1/3. The total number of queries required to reduce the search space to 1
element is thus at most ≈ n

log(3/2) ≈ 1.71n and Theorem 6.9.1 is proven.

6.10 Probabilistic single-query oracle identification

6.10.1 Introduction

This section is concerned with identifying Boolean functions encoded by the phase
oracle. In this scenario, the results of the previous sections may suggest that the ability
of a quantum computer to perform single-query oracle identification is limited, and that
the oracle functions that allow single-query oracle identification (e.g. the Bernstein-
Vazirani oracle) are exceptional. However, we will now show, using the results of
Chapter 5, that if we switch to a bounded-error model and fix a distribution on the
oracles, then quantum computers have a generic advantage over classical computers. In
particular, almost all sets of 2n Boolean oracle functions on n bits can be distinguished
by one quantum query with a constant probability of success > 1/2.

The formal problem specification is as follows. A set S of N Boolean functions
fa(x) : {0, 1}n 7→ {0, 1} is fixed, where each function in S is picked uniformly at
random from the set of n-bit Boolean functions. A function is picked uniformly at
random from S. The goal is to determine, with a constant probability of success and
using the minimum number of queries to the function, which function has been picked.
Clearly, a classical computer cannot identify a function picked from such a set with
probability > 1/2 in fewer than logN queries (as each query may reduce the search
space by at most half). In fact, this is almost tight. Consider a set of k random classical
queries to the unknown function f . The probability that any two of the set S of random
functions agree on all k queries is 2−k, so by the union bound they will all differ on at
least one of the queries with probability ≥ 1−

(
N
2

)
2−k. Setting k = 3 log2N makes this

success probability approach 1 for large N , showing that almost all sets of N oracles
can be distinguished with O(logN) classical queries.

In their paper introducing the oracle identification problem, Ambainis et al. [10]
developed (among other results) a hybrid quantum-classical algorithm for this “random
oracle identification” problem. However, the upper bound they obtained in the case
where N = 2n is only O(logN) queries, and thus no better than classical computation.

6.10.2 The algorithm

The quantum algorithm for identifying which random oracle function we were given is
straightforward: apply the oracle function, encoded as the phase oracle (Section 6.2),
once to the uniform superposition 1√

2n

∑
i |i〉 and use a measurement to attempt to

distinguish between the N possible states that may be produced. We now apply the
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results of Chapter 5 to determine how distinguishable these states are (see that chapter
for the notation used below).

Lemma 6.10.1. Let E be an ensemble of N 2n-dimensional states corresponding to ap-
plying the phase oracle encoding of random Boolean functions to the uniform superpo-
sition (call these random oracle states). Then the rescaled state matrix

√
N2n S(E) de-

fines a point picked uniformly at random on the N2n-dimensional hypercube {−1, 1}N2n
.

Proof. Each component of each state will be ±1/
√
N2n, with equal probability of

each. �

√
N2n S(E) is therefore a random matrix meeting the required conditions for the

Marčenko-Pastur law (Theorem 5.5.1), so we may immediately calculate a lower bound
on the expected probability of success of a specific measurement (the “pretty good
measurement”, see Section 5.2.1) applied to this ensemble.

Lemma 6.10.2. Let E be an ensemble of N 2n-dimensional random oracle states, and
set r = N/2n. Then

E(P pgm(E)) ≥

{
1
r

(
1− 1

r

(
1− 64

9π2

))
−O(N−5/48) if N ≥ 2n

1− r
(
1− 64

9π2

)
−O(2−5n/48) otherwise

(6.23)

and in particular E(P pgm(E)) ≥ 0.720−O(2−5n/48) when N ≤ 2n.

Like the sphere, the high-dimensional hypercube exhibits the concentration of mea-
sure phenomenon [92], and we can use this to show that almost all sets of oracle states
can be distinguished as easily as this expected value would suggest.

Lemma 6.10.3. (Concentration of measure on the cube) [92]

Given a function f : {−1, 1}d 7→ R defined on a d-dimensional hypercube, and a point
p on the hypercube chosen uniformly at random,

Pr[|f(p)− E(f)| ≥ ε] ≤ 2 exp
(
−2ε2

dη2

)
(6.24)

where η is the Lipschitz constant of f with respect to the Hamming distance, defined as
η = supx,y |f(x)− f(y)|/d(x, y).

Lemma 6.10.4. Let H be a point on the nd-dimensional hypercube written down as
an n× d {−1, 1}-matrix, and let f(H) = 1

n2d
‖H‖21. Then the Lipschitz constant η of f

satisfies η ≤ 4/nd.

Proof. See Section 5.8. �

Inserting this value of η into Lemma 6.10.3 gives
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Theorem 6.10.5. Let E be an ensemble of N 2n-dimensional random oracle states. Set
p = 1

r

(
1− 1

r

(
1− 64

9π2

))
−O(N−5/48) if N ≥ 2n, and p = 1− r

(
1− 64

9π2

)
−O(2−5n/48)

otherwise, where r = N/2n. Then

Pr[P pgm(E) ≤ p− ε] ≤ 2 exp
(
−N2n+1ε2

16

)
(6.25)

and we have our desired result. For example, picking N = 2n, all but an exponen-
tially small fraction of the possible sets of N oracles on n bits may be distinguished
using one query with a probability bounded away from 1/2 (in fact, to get a probability
of success greater than 1/2, we may take N/2n to be as high as ∼ 1.66). A constant
number of repetitions allows this probability to be boosted to be arbitrarily high.
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Chapter 7

Quantum search of partially

ordered sets

7.1 Introduction

Searching for an object in a set of objects that obey some structure is a fundamental task
in computer science. The archetypal example of such a task is finding an integer in a
sorted list containing n elements; in this case, binary search can find the marked integer
in O(log n) steps. At the other extreme, any (classical) search algorithm requires Ω(n)
steps to search a completely unsorted n-element list. It is of interest to find a framework
for search problems that encompasses both of these structures, and interpolates between
them.

One approach is to consider the task of searching a partially ordered set (poset).
Recall that a partial order on a set S is a relation ≤ such that, for a, b, c ∈ S, a ≤ a,
(a ≤ b) ∧ (b ≤ a)⇒ a = b, and (a ≤ b) ∧ (b ≤ c)⇒ a ≤ c. We define the relation < in
the obvious way: (a < b)⇔ (a ≤ b) ∧ (a 6= b). For any two elements a, b, either a ≤ b,
b ≤ a, or a and b are incomparable, a � b. We say that a set is totally ordered if none of
its elements are incomparable, and unstructured if all of its elements are incomparable.

There are two natural ways to model poset search. In the first model (introduced
by Linial and Saks [95], and called the concrete model here), we consider the partial
order on S to represent constraints on the structure of an unknown totally ordered set,
identified with the integers. That is, each element s ∈ S stores an integer x = S[s],
which is returned by a query to the element s. The constraint following from the partial
order on S is that if s ≤ t for some s, t ∈ S, then S[s] ≤ S[t]. The goal is to find the
location at which a (known) arbitrary integer a is stored, or to output that a is not
stored in S, using the minimum number of queries to elements of S. We will usually
assume that the integers stored in S are all distinct.

Alternatively, in the second model (introduced by Ben-Asher, Farchi and Newman
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[20], and called the abstract model here), the goal is to search for an unknown “marked”
element a ∈ S, using the minimum number of queries to an oracle, which operates in
the following way. On input of an element x ∈ S, the oracle returns one of {<,=,�}.
The first two possibilities are returned when a < x and a = x, respectively, and the
third is returned when either x < a or x and a are incomparable.

We sometimes mention an extension of the search problem to a scenario where mul-
tiple different answers are permissible. This extension is different for the two models:
in the abstract model, we consider there to be multiple marked elements in the set
to be searched, with the goal being to output any of these elements. In the concrete
model, the analogous scenario is allowing the possibility for the set to store duplicate
integers, i.e. allowing there to exist s, t 6= s such that S[s] = S[t].

To sum up, in the concrete model we know what we are searching for, but not where
to find it; in the abstract model, we do not know what we are searching for, but we
can perform powerful queries that narrow down the search space to find it.

This chapter is concerned with quantum search of posets in both of these models,
and in particular with minimising the number of queries to the set required to find
the desired element. It is well-known that Grover’s algorithm [64] can find the marked
element in an unstructured n-element set using O(

√
n) quantum queries, thus gaining

a quadratic advantage over classical computation, and that this reduction is optimal.
However, no advantage beyond a constant factor may be achieved for quantum search
of a totally ordered set [77].

We then have several questions, motivated by these two examples. Can we find
interesting quantum algorithms for search of general posets? Could a reduction in
queries of more than the quadratic factor given by Grover’s algorithm be achieved
by such an algorithm, or even an exponential reduction? And what is the structure
(or otherwise) of the posets for which a quantum computer can gain an asymptotic
advantage over classical computation?

7.1.1 New results

The first result in this chapter is that, in both the abstract and concrete models, quan-
tum algorithms can achieve no more than a quadratic reduction (up to a logarithmic
factor) in the number of oracle queries to find a marked element. The lower bounds
in the two models seem to need different proof techniques: the bound in the abstract
model follows from a reduction to the oracle identification problem, whereas we use
structural properties of posets to derive the lower bound in the concrete model.

We give general upper bounds that match these lower bounds up to logarithmic
factors. In the abstract model, the upper bound follows from an algorithm of Atici
and Servedio [13]. In the concrete model, we give a new and almost optimal quantum
algorithm that follows from Dilworth’s Theorem [49] on the decomposition of posets
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into ordered components.

These general results can be summarised as the following theorem.

Theorem 7.1.1. Let S be an n-element poset, and let D(S), QE(S) and Q2(S) be
the number of queries required for an exact classical, exact quantum, or bounded-error
quantum (respectively) algorithm to find the marked element in S. Then, in the abstract
model,

D(S) = O(Q2(S)2 log n)

Q2(S) = O(
√
D(S) log n

√
log log n)

and in the concrete model,

D(S) = O(Q2(S)2 log n)

QE(S) = O(
√
D(S) log n)

In both models, we give explicit quantum algorithms for searching specific poset
structures. In the abstract model, we give a simple (and nearly optimal) algorithm for
searching a class of forest-like posets. For an unstructured set, the algorithm reduces
to Grover search, whereas for a totally ordered set it reduces to binary search.

In the concrete model, we give an asymptotically optimal quantum algorithm for
searching posets that are derived from 2-dimensional arrays of distinct integers sorted by
rows and columns. This gives rise to an optimal quantum algorithm for an apparently
unrelated problem: finding the intersection of two sorted lists. Given two lists of at
most n integers in increasing order, the algorithm can find an element that appears in
both lists in O(

√
n) time, improving on a previous algorithm of Buhrman et al. [34],

which achieved a time complexity of O(
√
nclog

∗ n) for some constant c.

7.1.2 Previous work

Classically, the question of searching partially ordered sets seems to have first been
considered by Linial and Saks [95, 94], who characterised the query complexity of
searching posets in their concrete model. They showed that this complexity depends
solely (up to constant factors) on the number of ideals of the poset, where an ideal of
S is a subset T ⊆ S such that (x ∈ T ) ∧ (y < x) ⇒ (y ∈ T ). In particular, they give
lower and upper bounds on the complexity of searching for a marked element in an
array sorted by rows and columns, and the d-dimensional generalisation thereof.

Ben-Asher, Farchi and Newman [20] introduced the abstract model, and gave an
algorithm to find the optimal search strategy in this model for a class of tree-like posets.
In this model, it is interesting to note that the problem of determining an optimal search
strategy for arbitrary posets is NP-hard, whereas the same question restricted to trees
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is soluble in polynomial time [35]. In fact, Onak and Parys have recently obtained
an O(n3 log n)-time algorithm for finding this strategy [109], and also point out that
this model is similar to a model of search in graphs, where one queries an edge and is
returned the closest endpoint of that edge to the marked element. It was already known
that near-optimal search strategies for almost all posets can be produced efficiently [35].

In the case of quantum search, tight upper and lower bounds on query complexity
are known for search of unstructured sets [64, 28, 134]. An asymptotically tight lower
bound is known for search of totally ordered sets [6, 77]. We will also make use of
related results by Aaronson and Ambainis on spatial quantum search [1].

A related problem was previously studied by Yao [133]: given a partially sorted
set S of integers (i.e. a set promised to be sorted consistent with some partial order),
sort S. Yao obtained strong lower bounds for this problem, showing that almost no
quantum advantage can be achieved.

7.2 Preliminaries

7.2.1 Quantum query algorithms

In this chapter, the measure used of the complexity of searching a poset S is usually the
number of queries to S required to find the marked element, or report that none exists,
rather than the time required for the search (see Section 7.6 for a brief discussion of
this point). We will use the standard model of quantum query complexity introduced
in Chapter 6; that is, in order to find element a in the poset, we will make calls to an
oracle fa(x), where the input x identifies which poset element to query.

In the abstract model, we require an oracle fa(x) that returns something from the set
{<,=,�}, according to whether the unknown marked element a < x, a = x or a � x.
However, it will be convenient to instead use a Boolean oracle by adding a parameter
z ∈ {0, 1} to give an oracle function fa(x, z), which acts as follows. fa(x, 0) = 1 if
a ≤ x, and 0 otherwise. fa(x, 1) = 1 if x = a, and 0 otherwise. It is clear that a query
to fa(x) is sufficient to simulate a query to fa(x, z), and querying fa(x, 0) and fa(x, 1)
is sufficient to simulate fa(x). The query complexity in the two-parameter model may
thus only differ by a factor of at most 2 from the one-parameter model. The model
can be extended to allowing more than one marked element in an obvious way, by
parametrising the oracle with a set of marked elements A; then fA(x, 0) = 1 if there
exists a ∈ A with a ≤ x.

The concrete model is more straightforward; here, the oracle depends only on the
integers stored in the set S, and an oracle query to an element x simply returns the
integer stored at the element x, i.e. S[x]. We usually assume that, for all x 6= y,
S[x] 6= S[y].

D(S) will denote the worst-case exact classical decision tree complexity of searching
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for a single marked element in the poset S, and QE(S) the equivalent quantum query
complexity. Q2(S) is the quantum query complexity where we are allowed to err with
probability ≤ 1/3 (the “2” refers to 2-sided bounded error). Motivated by binary
search, our notion of a poset S that allows “efficient” search is one where the marked
element can be found using a number of queries that is polylogarithmic in |S| = n.

We will make frequent use of an exact variant of Grover’s quantum search algorithm
[64].

Theorem 7.2.1. (Exact Grover search [e.g. [28], [98]])

Let S be an unstructured set of n elements containing either one marked element, or
no marked elements. Then there exists an exact quantum algorithm which outputs the
marked element, or that no such element exists, using O(

√
n) queries to the set.

7.2.2 Posets

We will use standard terminology relating to posets. A chain in a poset S is a subset
T ⊆ S, all of whose elements are comparable. Conversely, an antichain is a subset
whose elements are all incomparable. The height h(S) and width w(S) of a poset S are
the size of the largest chain and antichain in S, respectively. A subset of a poset S is a
subset of the elements in S that preserves the order relations; conversely, an extension
of S preserves the elements but may add new order relations. A section of S is a subset
T ⊆ S such that (x ∈ T ) ∧ (z ∈ T ) ∧ (x < y < z)⇒ y ∈ T . A maximal element of S is
an element x ∈ S such that for all y ∈ S, y ≯ x.

A poset can be represented graphically by its Hasse diagram. A Hasse diagram
for S is an undirected graph G whose vertices are labelled by the elements of S. We
say that b covers a if b > a and there does not exist c ∈ S such that a < c < b. For
each pair of vertices a, b, if a covers b then the vertex corresponding to a in the Hasse
diagram is connected to, and positioned higher than, that corresponding to b. Figure
7.1 gives the Hasse diagrams of some example posets.
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Figure 7.1: Hasse diagrams of some posets

A poset S is said to be tree-like (forest-like) if its Hasse diagram is a tree (forest)
rooted at the maximal element(s) of S.
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7.3 The abstract model

In this section, we consider the problem of searching posets in the model studied by
Ben-Asher, Farchi and Newman [20], where a query to an element of a poset S returns
information about its relationship to the unknown marked element with respect to the
partial order on S.

7.3.1 Overall relationships

In this model, we can immediately relate quantum and classical search using a reduction
to the oracle identification problem introduced in Chapter 6. In this problem, we are
given as an oracle an unknown m-bit Boolean function f picked from a known set of
functions S, and we must identify f with the minimum number of queries to the oracle
(for the rest of this section, we will borrow terminology from computational learning
theory [118], and refer to this as exactly learning f).

Servedio and Gortler have shown [118] that the quantum and classical query com-
plexities of this task are closely related, and both depend on a parameter which we call
γS1, which is informally defined as the minimum fraction of the functions in S which
a classical algorithm can be certain of removing from consideration with a query to f .
To be precise, let S′ be a subset of S, and let S′a,b be the subset of those functions in
S′ that take value b on input a. Then

γS = min
S′⊆S,|S′|≥2

max
a∈{0,1}m

min
b∈{0,1}

|S′a,b|
|S′|

(7.1)

The main result of [118] may be stated as:

Theorem 7.3.1. [118]

Let S be a set of Boolean functions on m bits. Then the quantum query complexity
Q of exactly learning a function from S, with a bounded probability of error, obeys the
following lower bounds.

Q = Ω

(
1√
γS

)
, Q = Ω

(
log |S|
m

)
(7.2)

Also, the deterministic classical query complexity C of the same task obeys the following
upper bound.

C = O

(
log |S|
γS

)
(7.3)

Quantum and classical query complexities are thus related by C = O(log |S|Q2) =
O(mQ3).

The classical algorithm that achieves this query complexity is quite straightforward,
1This is Servedio and Gortler’s γ̂C .
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simply consisting of querying the unknown function at the input that, given an adver-
sarial response, reduces the size of the set of remaining possible functions by the largest
possible amount.

We now make a connection between the poset search problem and oracle identifi-
cation. Given a poset, the oracle associated with each possible marked element a is
a two-parameter Boolean function fa(x, z). Distinguishing between these functions is
exactly equivalent to finding the hidden a. Thus, in order to find the marked element
in an n-element poset, we need to distinguish n Boolean functions on dlog n+ 1e bits.
Theorem 7.3.1 immediately gives the following result.

Theorem 7.3.2. Let S be an n-element poset. Then D(S) = O(log nQ2(S)2).

A quadratic reduction in queries is thus the best that can be obtained using a
quantum algorithm, up to a logarithmic factor. We now turn to upper bounds on
quantum query complexity. There is a straightforward general upper bound of O(

√
n)

oracle queries for any poset. This can be seen by noting that, if the oracle fa(x, z)
is queried only with z = 1, the problem reduces to unstructured search, so Grover’s
algorithm [64] can be used.

Less trivially, Atici and Servedio [13] have given a quantum algorithm for exact
learning that can be seen as an analogue of the classical algorithm mentioned in Theo-
rem 7.3.1. This algorithm immediately applies to poset search, and moreover is efficient
(runs in time polynomial in n).

Theorem 7.3.3. [13] Let S be an n-element poset. Then

Q2(S) = O

(
log n log log n√

γS

)
(7.4)

This upper bound can actually be improved to Q2(S) = O
(
log n

√
log log n/

√
γS
)
.

The reason is that the O(log log n) factor in Atici and Servedio’s algorithm comes
from perfoming O(log log n) rounds of classical probability amplification, which can
be replaced by the use of a quantum algorithm of Buhrman et al. [29] that performs
efficient amplitude amplification to small error probabilities.

In summary, it can be seen that the quantum and classical query complexities of this
search problem are completely determined (up to logarithmic factors) by this parameter
γS . However, it is unclear whether the extension to searching for multiple marked
elements has a similar reduction to the oracle identification problem, and whether a
suitable adaptation of Atici and Servedio’s algorithm can be applied in this case.

Finally, note that one might consider a more powerful variant of search in this
model, where the oracle fa(x) is extended to return > if the marked element a > x

(so the four possible results are “<”, “=”, “>” and “incomparable”). The reduction
to the oracle identification problem clearly still holds for this variant, so the results in
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this section go through unchanged.

7.3.2 Search in forest-like posets

We say a poset is forest-like if every element in the poset is covered by at most one
other element (an example of such a poset is shown in Figure 7.1). Classically, forest-like
posets have proven to be easier to analyse; indeed, algorithms exist [20, 109] for comput-
ing the optimal classical decision tree to search these posets in polynomial time, whereas
the same problem is NP-hard for general posets [35]. In this section, we present an ex-
act quantum algorithm for searching a forest-like poset S using O

(
log n/

√
γS
)

queries,

improving on the previously mentioned bounded-error O
(
log n

√
log log n/

√
γS
)
-query

algorithm [13]. Our algorithm improves on Atici and Servedio’s in other ways too:
firstly, it reduces to an asymptotically optimal algorithm in the case of search of un-
structured and totally ordered sets; secondly, it can easily be extended to searching for
multiple marked elements, with a small penalty in query complexity.

We first consider the case of a single marked element. The principles behind the
algorithm that we will describe are very similar to those underlying Atici and Servedio’s.
Throughout the algorithm, a subset of possible places that the marked element could
be is maintained. We will show that one use of Grover’s algorithm over a set G of size
at most 1/γS can be used to reduce the size of this subset by at least half, so log n
repetitions suffice to find the marked element. Crucially, for forest-like posets where
there is a single marked element, this use of Grover’s algorithm can be made exact
(Theorem 7.2.1), thus avoiding the need for some number of repetitions to achieve a
suitable reduction in the error probability.

The algorithm is explicitly stated as Algorithm 1 below. It uses a subroutine
centralElement which requires some explanation. Define the weight wt(v) of an ele-
ment v ∈ S as wt(v) = |{x : (x ∈ S) ∧ (x ≤ v)}|. Then centralElement(S) returns
the element v ∈ S such that wt(v) is maximised, given that wt(v) ≤ d|S|/2e. Such an
element will clearly always exist. siblings(x) returns the set of elements of S that are
covered by the single element that covers x.

We will now prove an upper bound on the query complexity of Algorithm 1, via a
couple of preparatory lemmas.

Lemma 7.3.4. In each iteration of the loop, the total weight of the elements in G is
at least |T |/2.

Proof. If x is a maximal element, then the total weight of the elements in G is clearly
|T |, as every maximal element is added. If x is covered by an element p, then the total
weight of the elements in G will be wt(p) − 1. But wt(p) > d|T |/2e (as otherwise p
would have been returned by centralElement rather than x), so we are done. �

Lemma 7.3.5. In each iteration of the loop, |G| ≤ 1/γS.
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Algorithm 1 Search algorithm for forest-like posets
Input: Forest-like poset S containing n elements
Output: Marked element, or “not found”
T ← S;
while |T | > 1 do
x← centralElement(T );
if x is a maximal element of T then
G = {y : y is a maximal element of T};

else
G = {y : y ∈ siblings(x)};

end if
y ← result of exact Grover search on G;
if result is “not found” then
T ← T \{z : ∃y′ ∈ G, z ≤ y′};

else
T ← {z : z ≤ y};

end if
end while
if |T |=1 then

return single element in T ;
else

return not found;
end if

Proof. We will show that γG = 1/|G|, implying γS ≤ 1/|G|. Restrict the marked
element to being an element of G. Then an algorithm can only remove elements of G
from consideration by querying within G. This is because, if x is not a maximal element
of T , all the members of G are covered by a single element p, so the only queries that
can allow us to reject members of G are queries to members of G. Alternatively, if x is
a maximal element of T , then it is easy to see that x is actually also a maximal element
of S. So G will contain all the maximal elements of S, and again the only queries that
can allow us to reject members of G are queries to members of G. �

Theorem 7.3.6. Algorithm 1 finds the marked element in a forest-like n-element poset
S, or outputs that no such element exists, with certainty using at most O

(
log n/

√
γS
)

queries to S.

Proof. It is immediate that the algorithm is correct, as each iteration of the loop is
guaranteed to remove at least one element from T . It remains to prove an upper bound
on its query complexity. If the marked element a is in the set T at all, we are guaranteed
that either a ≤ x for either exactly one element x ∈ G, or for no elements in G. The
Grover search step will thus either reduce the search space to the elements {z} of T for
which z ≤ x, or will remove all the elements z ∈ T that are less than any element in
G from consideration. Each element of G has weight at most d|T |/2e, and by Lemma
7.3.4, their total weight is at least |T |/2. So each iteration of the loop will reduce the
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size of T by at least about half. By Lemma 7.3.5, each Grover search uses at most
O(1/

√
γS) queries, so the theorem is proven. �

In some cases, Algorithm 1 may do better than this upper bound suggests. One
such example is searching a completely unstructured set (in which case the algorithm
reduces to standard unstructured search, and thus achieves an O (

√
n) = O

(
1/
√
γS
)

query complexity). As another example, it is easy to convince oneself that Algorithm
1 finds the marked element in a poset whose Hasse diagram is a complete k-ary tree
with l levels using O(

√
kl) queries, rather than the O(

√
kl log k) queries guaranteed by

Theorem 7.3.6.

Finally, note that the extension to searching for an unknown number of marked
elements is straightforward: in this case, the exact Grover search step is replaced by
picking an element y from G uniformly at random. If there exists a marked element
a such that a ≤ y′ for some element y′ ∈ G, then the probability that y = y′ is at
least 1/

√
γS . We need to boost this success probability to Ω(1− 1/ log n) in order for

the success probability after O(log n) recursions to be Ω(1). By a result of Buhrman
et al. [29] on amplification of classical probabilistic algorithms with one-sided error,
this can be achieved using O(

√
log log n/

√
γS) iterations of picking y ∈ G uniformly at

random, giving an overall complexity of O
(
log n

√
log log n/

√
γS
)
.

7.4 The concrete model

In this section, we consider the problem of poset search in the model studied by Linial
and Saks [95], where the poset is thought of as storing partially sorted integers (or
elements from any other totally ordered set), and querying an element of the poset
returns the integer stored at that element. Note that we redefine D(S), QE(S) and
Q2(S) appropriately.

7.4.1 Overall relationships

This model appears more complex to analyse, as the complexity of the search problem
now depends not only on the structure of the poset being searched, but also on the
integers that are stored in that poset. Also, the classical analysis of Linial and Saks
[95] relies on certain properties of classical algorithms for poset search that quantum
algorithms seem not to share. For example, at the end of a correct classical algorithm
which searched unsuccessfully for the element a in S, every element x ∈ S must have
been classified according to whether x < a, x = a or x > a. Quantum algorithms
appear not to have this property.

However, we can develop a quantum lower bound that is similar to a known classical
lower bound based on the size of the largest “unsorted” subset of S, namely the size
of the largest antichain, w(S). It turns out that finding an element in such a subset
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reduces to an unstructured search problem. We begin with a lemma whose classical
part was shown by Linial and Saks [95] with a different proof.

Lemma 7.4.1. Let S be a poset and let T be a section of S. Then D(S) ≥ D(T ),
QE(S) ≥ QE(T ) and Q2(S) ≥ Q2(T ).

Proof. First, note that S can be partitioned into three disjoint subsets (or layers): the
set T ; an “upper” set U where for all u ∈ U , there is no t ∈ T such that u ≤ t; and
a “lower” set V where for all v ∈ V , there is no t ∈ T ∪ U such that t ≤ v. Assume
S has n elements, identified with the integers. Let V store the integers {1, . . . , |V |} in
some manner consistent with its partial order, and similarly let U store the integers
{|V | + |T | + 1, . . . , n}. By the definition of the partitioning of S, T can store every
permutation of the integers {|V |+1, . . . , |V |+|T |} that is consistent with its own partial
order, independently of the integers stored in the remainder of S.

Now consider an adversarial strategy where the marked element is guaranteed to be
in the set {|V |+ 1, . . . , |V |+ |T |}, and thus is stored in T . Any query to elements in U
or V will then give no information about the position of the marked element within T ,
so any classical or quantum algorithm can restrict itself to making queries to elements
in T . But any classical [exact quantum, bounded-error quantum] algorithm to find a
marked element in T that only makes queries to elements in T must use D(T ) [QE(T ),
Q2(T )] queries. �

Note that this property does not hold for arbitrary subsets of posets [95]: for ex-
ample, the following posets S, T ⊂ S have D(S) = 3 but D(T ) = 4. The theorem does
not hold at all in the abstract model of poset search discussed in the previous section.
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Lemma 7.4.2. Let S be an n-element unstructured poset. Then D(S) = n and
Q2(S) = Ω(

√
n).

Proof. Let S store an arbitrary permutation π of the integers {1, . . . , n}, and let the
marked element be a = π(1). The classical lower bound is obvious [95] (as the only
information obtained from a query to an element x ∈ S is whether a = x or a 6= x,
every element in S may need to be queried in the worst case). In the quantum case,
the lower bound of Ambainis on inverting a permutation [7] may be used to show that
any quantum algorithm to find a requires Ω(

√
n) queries. �

Theorem 7.4.3. Let S be an n-element poset. Then D(S) = Ω(w(S)) and Q2(S) =
Ω(
√
w(S)). Also, Q2(S) = Ω(log n).
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Proof. Let T be the largest antichain in S. T is unstructured, T is a section of S
and |T | = w(S). The first part of the theorem follows immediately from Lemma 7.4.1
and Lemma 7.4.2. For the second part, note that any quantum algorithm to find a
marked element in S could also be used to find a marked element in a totally ordered
set of n elements. The lower bound then follows from the lower bound of Ambainis [6]
(improved by Høyer, Neerbek, and Shi [77]) on quantum search of an ordered list. �

We now consider the question of upper bounds. It turns out that, up to a logarith-
mic factor, the width w(S) completely characterises the classical and quantum query
complexities of searching in this model. To show this, we will need the following pow-
erful combinatorial result, which says something about the decomposition of a poset
into chains.

Theorem 7.4.4. (Dilworth’s Theorem [49])

Let S be an n-element poset with w(S) = k. Then S is the union of k disjoint chains.

In fact, such a decomposition can be found in time O(n3) [25].

Lemma 7.4.5. Let S be a poset. Then we have D(S) = O(w(S) log h(S)) and QE(S) =
O(
√
w(S) log h(S)).

Proof. Decompose S into a set C containing w(S) disjoint chains, each of which contains
at most h(S) elements. The classical algorithm proceeds by searching each chain in
C in turn, using binary search. The total number of queries required is therefore
O(w(S) log h(S)).

In the quantum case, our algorithm will nest an exact binary search algorithm
within the exact variant of Grover’s search algorithm. We produce an oracle Pa which,
when given the identifier of a chain in C as input, returns whether the desired element
a is contained within that chain; each call to Pa clearly requires at most O(log h(S))
queries to the set. As the chains are disjoint, we are guaranteed that Pa will return
1 on only one input. The exact variant of Grover’s algorithm therefore requires (see
Theorem 7.2.1) O(

√
w(S)) queries to Pa to determine which chain (if any) contains a.

A final O(log h(S)) queries are used to find a within that chain, for an overall query
complexity of O(

√
w(S) log h(S)). �

If the binary search parts of this algorithm are replaced by the use of a quantum
ordered search algorithm (e.g. [40]), the query complexity can be improved by a constant
factor. Note that this algorithm actually also works in the abstract model of poset
search, thus showing that, as one might expect, search in the abstract model is always
at least as easy as in the concrete model (up to the log h(S) factor). Furthermore,
note that an extension to search where a given integer may be stored at multiple
positions in the poset is immediate: the Grover search steps are replaced by search
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for an unknown number of marked items [28] to give an O(
√
w(S) log h(S))-query

bounded-error quantum algorithm.

We can now show that the classical and quantum query complexities of poset search
in the concrete model are polynomially related.

Theorem 7.4.6. Let S be an n-element poset. Then D(S) = O(Q2(S)2 log n) =
O(Q2(S)3).

Proof. Follows immediately from the quantum lower bounds of Lemma 7.4.3 and the
classical upper bound of Lemma 7.4.5. �

7.4.2 Searching a partially sorted array

Consider the following problem. We are given a d-dimensional m1 × m2 × · · · × md

array of integers T that has been sorted in ascending order in each dimension (i.e.
(i1 ≤ j1) ∧ (i2 ≤ j2) ∧ · · · ∧ (id ≤ jd) ⇒ T (i1, . . . , id) ≤ T (j1, . . . , jd)), and must find
a given integer in this array, or output “not found”, using the minimum number of
queries to the array. It is easy to see that this structure gives rise to a partially ordered
set; see Figure 7.2 for the Hasse diagram of such a poset.
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Figure 7.2: A 3 × 3 2-dimensional array sorted by rows and columns, and its corre-
sponding Hasse diagram.

We are particularly interested in the special case where mi = m for all i. Call the
poset corresponding to such a d-dimensional array Sd,m. Linial and Saks give [95] an
O(md−1) classical algorithm for the problem of searching Sd,m, which is asymptotically
optimal. When d = 2, it is easy to see that we have w(S2,m) = m. For higher d, Linial
and Saks show that w(Sd,m) = Θ(md−1). This follows from consideration of the set of
elements that are indexed by a position (i1, . . . , id) such that

∑
k ik = m + 1; this is

clearly an antichain and can be shown to have size Θ(md−1). It is thus immediate from
Lemma 7.4.5 and Lemma 7.4.3 that there exists a quantum algorithm that searches this
poset using O(m(d−1)/2(log d+logm)) queries, which is optimal up to the (log d+logm)
factor.

However, we can immediately write down an improved algorithm achieving a com-
plexity of O(m(d−1)/2 logm) queries. The algorithm for d = 1 is just binary search.
For d = 2, we nest a binary search algorithm on the rows within Grover search on
the columns for an overall query complexity of O(

√
m logm). For d = 3, the algo-
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rithm simply performs Grover search on m copies of the d = 2 search algorithm, giving
O(m logm) queries, and so on for d > 3.

It is worth noting that this poset structure is an example where searching in the
abstract model is significantly easier than in the concrete model. Indeed, there exists a
simple O(d logm) classical algorithm for search in the abstract model: simply perform
binary search on each dimension of T .

In the following section, we will give an asymptotically optimal bounded-error quan-
tum algorithm that searches a 2-dimensional m×m array of distinct integers in O(

√
m)

queries. This then implies an asymptotically optimal O(m(d−1)/2)-query algorithm for
searching a d-dimensional m × m × · · · × m array of distinct integers. The optimal
d-dimensional algorithm follows from treating the array as the union of md−2 disjoint
2-dimensional m × m arrays. Each 2-dimensional array is searched by the optimal
algorithm, which is treated as an oracle within an overall application of quantum
search. Although the 2-dimensional search algorithm is bounded-error, a version of
quantum search which can cope with bounded-error inputs (due to Høyer, Mosca and
de Wolf [76]) can be used to achieve a constant probability of success in O(m(d−1)/2)
queries.

7.4.3 Optimal search of a 2-dimensional array sorted by rows and

columns

In this section, we give an asymptotically optimal algorithm to search for a known
integer a within an r × c 2-dimensional array of distinct integers sorted by rows and
columns. We will start by describing a classical algorithm for the same problem, which
is asymptotically (but not exactly [95]) optimal. The algorithm’s operation will be
described in terms of the original array, rather than the more abstract poset structure.
Call the d r

2e’th row of the array the central row R, and similarly let the d c
2e’th column

be the central column C.

If r ≤ c, begin by performing binary search for a on the central column, using
O(log r) queries. If r > c, do the same, but on the central row, using O(log c) queries.
Assume r ≤ c and that a is not in the central column (otherwise, a will be found by
the binary search, and can be returned immediately). Then by the end of the binary
search we will have found an element x such that x = maxx′∈C(x′ < a), and an element
y such that y = miny′∈C(y′ > a) (so y is positioned directly below x in the array).
This then implies that all elements in the array above and to the left of x are also less
than a, and similarly all elements below and to the right of y are greater than a, so
these elements can be discarded. As x and y are in the central column, we must have
excluded at least half of the elements in the array from consideration.

We are then left with two smaller instances of the same problem to solve: the
subarray below and to the left of y, and the subarray above and to the right of x. The
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algorithm proceeds to search these subarrays recursively until a is found, performing
binary search on central rows or central columns as appropriate.

1 3 5 10 13

2 4 7 11 14

6 8 9 15 21

12 16 17 20 24

18 19 22 23 25

1 3 5 10 13

2 4 7 11 14

6 8 9 15 21

12 16 17 20 24

18 19 22 23 25

1 3 5 10 13

2 4 7 11 14

6 8 9 15 21

12 16 17 20 24

18 19 22 23 25

Figure 7.3: Example of the classical algorithm’s operation when searching for the ele-
ment 11: dark grey squares are those that are searched in each round, light grey squares
have been excluded from consideration, white squares are still to be searched. Here, 11
is found with only 2 levels of recursion.

How many queries to the array does this algorithm require? Let T (m) denote the
number of queries used to search an r × c array, with m = max(r, c). Then it is easy
to see that T (m) will be maximised if each level of binary search always terminates as
close to the centre of the central column/row as possible (thus maximising the number
of queries required for binary search in the next level of recursion). We therefore have

T (m) ≤ dlog2m+ 1e+ 2T (m/2) (7.5)

and unwinding the recursion gives T (m) = O(m).

We would like to find an analogous quantum algorithm that achieves some reduction
in queries by searching the subarrays in superposition, rather than sequentially. In fact,
it turns out that we can make a general statement about when recursive classical search
algorithms can be turned into improved quantum search algorithms, which is given as
the following lemma. The proof is a fairly straightforward generalisation of a powerful
result of Aaronson and Ambainis [1], and is given in the next section.

Lemma 7.4.7. Let Pn be the problem of searching an abstract database, parametrised
by an abstract size n, for a known element which may or may not be in the database.
Let T (n) be the time required for a bounded-error quantum algorithm to solve Pn, i.e.
to find the element, or output “not found”. Let Pn satisfy the following conditions:

• If n ≤ n0 for some constant n0, then there exists an algorithm to find the element,
if it is contained in the database, in time T (n) ≤ t0, for some constant t0.

• If n > n0, then the database can be divided into k sub-databases of size at most
dn/ke, for some constant k > 1.

• If the element is contained in the original database, then it is contained in exactly
one of these sub-databases.

• Each division into sub-databases uses time f(n), where f(n) = O(n1/2−ε) for
some ε > 0.
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Then T (n) = O(
√
n).

We first show that the search problem in question fits the conditions of the lemma,
and then turn to proving it. We consider the problem to be parametrised by a “size”
m = max(r, c). Assuming that a is stored in the set and is not stored in the central
row/column, one step of the classical procedure given above will divide any array of
size m into two arrays of size at most dm/2e, exactly one of which contains a, in time
O(logm). This division can be performed recursively until the arrays are reduced to a
constant size. In the case where the binary search of the central row/column actually
finds a, the algorithm can easily be modified to not return a immediately, but to restrict
the search area in the next recursion to two subarrays, exactly one of which includes
a, and both of which are of size at most dm/2e.

There thus exists a quantum algorithm, given explicitly below, that can find an
arbitrary element a in the array in O(

√
m) time, and hence O(

√
m) queries.

7.4.4 Proof of Lemma 7.4.7

We now prove a somewhat generalised version of a powerful result that was shown by
Aaronson and Ambainis [1] in the course of their work on quantum search of spatial
regions. Informally, we would like to be able to find “cookbook” quantum algorithms
for search problems for which there exists a recursive classical algorithm. We imagine
that we are searching for a distinguished element in an abstract “database” that is
parametrised by an abstract “size” n, which is some function of the number of elements
in the database. We also imagine that we have the ability to search the database
recursively: that is, in time given by some function f(n), we can reduce the search
problem to searching k instances of databases of size ≤ dn/ke, for some constant k > 1.

It is straightforward to show that, classically, the marked element can be found
deterministically in O(n) time, by repeated use of this recursive search. An alternative
probabilistic classical algorithm for this problem would be: split the input into a number
of parts, pick one part uniformly at random, and call yourself recursively on that
part. Our quantum algorithm will apply amplitude amplification to this probabilistic
algorithm. It will turn out to be advantageous to only amplify a small number of times
within the recursive algorithm, and then to amplify again at the end. Amplifying to
high probabilities too soon is less efficient [1]; conversely, if amplitude amplification
were only applied at the end of the algorithm, we would require Ω(

√
n) iterations to

amplify the probability to a constant. If the process of dividing the input required time
f(n) = ω(1), this would hurt the overall complexity.

The fundamental amplitude amplification result of Brassard et al. [28] states that,
given a quantum algorithm A with success probability ε, we can achieve a success
probability of Ω(1) with only O(1/

√
ε) uses of A. However, here we will need a tighter

analysis due to Aaronson and Ambainis [1], as constants are important within the
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recursive algorithm.

Lemma 7.4.8. Given a quantum algorithm with success probability at least ε, then by
executing it t = 2m+ 1 times, where m ≤ π/(arcsin

√
ε)− 1/2, we can achieve success

probability at least (1− 1
3 t

2ε)t2ε.

We are now ready to give a formal definition of a quantum algorithm for recur-
sive search problems, and to upper-bound its time complexity. The algorithm and its
analysis closely follow the results on spatial search of a d-dimensional cube of [1].

Our quantum algorithm will be parametrised by two constants α and δ, whose
values we will take to be δ = ε/2, α = ε(4−3ε)

8(2−ε) , and will be based on the following
probabilistic classical algorithm:

If n ≤ n0, then find the desired element directly or output “not found” (using at
most t0 steps). Otherwise, assume that there exists an integer l such that nδ = kl 2.
Recursively divide the problem into subproblems l times, leaving nδ subproblems, each
of size at most n1−δ. Pick one of the parts at random, and call yourself recursively on
that part. Repeat until the desired element has been found.

We will perform a number of iterations of amplitude amplification on this algorithm
such that it is executed nα times. Then we have

T (n) ≤ nα

(
l−1∑
i=0

kif(n/ki) + T (n1−δ)

)
≤ nα

(
lnδf(n) + T (n1−δ)

)
= nαf ′(n) + nα(1+(1−δ))f ′(n1−δ) + nα(1+(1−δ)+(1−δ)2)f ′(n(1−δ)2) + . . .+ t0

= O(nα(1+(1−δ)+(1−δ)2+...))

= O(nα/δ)

where we define f ′(n) = lnδf(n) = O(n(1−ε)/2 log n). The fourth line follows because
(1−ε)/2 < α(1/δ−1), so for any m ≥ 0 we have f ′(n(1−δ)m

) = O(n(1−δ)m(1−ε)/2 log n) =
o(n(α/δ)(1−δ)m+1

), so the f ′(n(1−δ)m
) parts of the third line are negligible.

We now calculate a lower bound on the probability of success P (n) of this algorithm.
If there were no amplification, we would have P (n) ≥ n−δP (n1−δ) for n > n0, and
P (n) = 1 for n ≤ n0. So, by Lemma 7.4.8, we have

P (n) ≥ (1− n2α−δ/3)n2α−δP (n1−δ)

= [(1− n2α−δ/3)(1− n(2α−δ)(1−δ)/3) · · · ]n(2α−δ)(1+(1−δ)+(1−δ)2+...)

= [(1− n2α−δ/3)(1− n(2α−δ)(1−δ)/3) · · · ] Ω(n2α/δ−1)

We claim that the remaining product of bracketed terms is lower bounded by a constant
2We assume here that l and nα are integers. One can show that the need to round these quantities

up or down has no effect on the overall asymptotic complexity.
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that does not depend on n. First, note that the algorithm recurses R times, for some
R = O(log log n). Now

R∏
k=0

(1−1
3
n(2α−δ)(1−δ)k

) ≥ 1−1
3

O(log log n)∑
k=0

n(2α−δ)(1−δ)k ≥ 1−O(n2α−δ log log n) = 1−o(1)

giving the result P (n) = Ω(n2α/δ−1).

By wrapping this algorithm in another level of amplitude amplification, we can use
O(P (n)−1/2) iterations of it to achieve a constant probability of success of finding the
marked element in time O(T (n)P (n)−1/2) = O(nα/δn1/2−α/δ) = O(

√
n).

7.4.5 Finding the intersection of two increasing lists

Classically, there is a correspondence between the problem of searching in an r × c

array sorted by rows and columns and merging two sorted lists of length r and c: any
decision tree for the one problem gives a decision tree for the other [95]. However, this
does not appear to hold for quantum algorithms; indeed, it is straightforward to show,
using Holevo’s Theorem [74], an Ω(r + c) quantum query lower bound for the merge
problem. Nevertheless, we can define a natural search problem that turns out to arise
from the poset search problem.

Problem: Given two lists of integers in increasing order, output an integer that
occurs in both lists, or report that no such integer exists.

This can be thought of as a special case of the element distinctness problem [2]. It
was studied by Buhrman et al. [34], who also refer to it as the monotone claw problem (a
claw is an input on which two functions take the same value). Let the lists be denoted L
and M and be of length l and m respectively, with l ≥ m. Then the ingenious algorithm
of [34] finds an integer occuring in both lists using O(

√
lclog

∗ l) queries, where log∗ is the
iterated logarithm function and c is a constant. This algorithm can easily be translated
into the setting of poset search, and allows an m×m array that is sorted by rows and
columns, and may contain duplicates, to be searched using O(

√
mclog

∗ m) time for some
constant c.

Here, we will go in the other direction, and show that the algorithm of Section 7.4.3
can be used to find the integer occurring in both sorted lists using O(

√
l) time. As

noted in [34], there is an Ω(
√
l) lower bound for this problem, so the algorithm given

here is asymptotically optimal. However, as clog
∗ l is already a near-constant function,

the new algorithm may be only of theoretical interest, and we describe it briefly.

Consider a notional l × m array T where entry T (x, y) contains the value Lx −
Mm+1−y. Querying one entry of T uses one query to each list. As the entries in L and
M are in increasing order, it is easy to see that T is increasing along rows and columns,
and that finding a 0 entry in T corresponds to finding an element of L that also occurs
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in M . Call such an element a match. If there is only one match, it is immediate that
the algorithm of the previous section can be used to find the single 0 entry in T , or
output that no such entry exists, in time O(

√
l).

There are two possible reasons for there being more than one match. The first is
that L and M may contain duplicate elements (i.e. may be increasing but not strictly
increasing). If this is the case, and if one of the duplicate elements in L (say) is also
in M , there will be a contiguous rectangle of 0 entries in the array T (call this a zero
block), rather than a single 0. Assume that there is only one zero block. Then the
algorithm of Section 7.4.3 must be modified to ensure that, after any splitting of the
array into two subarrays, at most one of these arrays contains a 0 entry; i.e. to ensure
that the zero block does not get split across subarrays. This is necessary to ensure
that the conditions of Lemma 7.4.7 are satisfied. It is easy to see that, in each round
of recursion, the zero block can only be split if it lies across a row or column that is
used for binary search in that recursion. In order to ensure that only one of the two
subarrays produced contains part of the zero block in this case, the binary search of a
row (column) can simply be modified to split on the first or last zero entry in that row
(column), with no change to the asymptotic complexity. Call this new algorithm the
single-block algorithm.

The second case where there may be more than one match is when there is more than
one element in L that also occurs in M (or vice versa). In this case, the idea (inspired
by [1]) is to reduce the problem to searching for a single zero block by probabilistically
removing elements from the lists. The extended algorithm first runs the single-block
algorithm. Assuming that this algorithm outputs “not found”, the next step is to
produce a new pair of smaller lists L(2) and M (2), which will give rise to a notional
array T (2), where T (2)(x, y) = L

(2)
x −M (2)

m+1−y.

The reduction in size is achieved by first splitting each list into chunks of size
2. One element (picked at random) within each chunk of L is included in L(2), and
similarly for M and M (2). The single-block algorithm is then run on these smaller
lists. Assuming that the result is again “not found”, the chunk size is doubled to 4,
and the process repeats, using a chunk size of 2k in each round k. Assuming that the
single-block algorithm does not find a match in any of the O(log l) rounds, the final
output is “not found”. The time required for this overall algorithm is then bounded by
O
(∑

k

√
l/2k

)
= O(

√
l).

We sketch a proof that this algorithm succeeds with constant probability. First, it
is easy to see that there can be at most one zero block in each row and column of the
array T (k) in any round k. Using this, one can show that, if there are z zero blocks in
T , the probability that exactly one remains in T (k) is at least z/22k(1 − z/22k). If we
take k = dlog z/2e+1, this is lower bounded by a constant, so for any z the single-block
algorithm succeeds with constant probability in at least one round.
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7.5 Random partially ordered sets

Finally, we briefly discuss the generic behaviour of quantum poset search – i.e. given
a poset picked uniformly at random from the set of all n-element posets, how many
quantum queries do we require to search it? It turns out that this question is easy to
answer using a powerful (and perhaps surprising) theorem of Kleitman and Rothschild
that says that almost all posets have only three layers.

Theorem 7.5.1. (Kleitman and Rothschild [88])

Let Qn be the set of n-element posets consisting of three layers L1, L2 and L3, with
|L1|, |L3| = n/4 + o(n) and |L2| = n/2 + o(n), such that, for j > i, x ∈ Li and y ∈ Lj

implies x � y. Then the probability that an n-element partially ordered set is in Qn is
at least 1− o(1).

It is thus immediate that quantum search of a random poset in either of the two
models studied requires Θ(

√
n) queries, as all of the maximal elements in the poset will

need to be queried, contrasting with the classical Ω(n) queries required [35].

One could also consider a different model – the random graph model [35], which is
parametrised by a size n and a probability p. In this model, a poset Pn,p is produced
by taking the transitive closure of a relation Rn,p which includes each pair (x, y) ∈ [n]2

with x < y with probability p. For constant p, it is known that w(Pn,p) = O(
√

log n),
so a random poset in this model is “tall and thin” by comparison with the uniform
model. We leave the question of the complexity of quantum search of random posets
in this model open.

7.6 Conclusions

We have given general upper and lower bounds on quantum search of partially ordered
sets, in two different models. Satisfyingly, in the two cases where results were already
known on poset search (i.e. totally ordered sets and unstructured sets), our lower bounds
reduce to known lower bounds, and our new quantum algorithms are (asymptotically)
as efficient as the known most efficient algorithms. The bounds in the concrete model
are perhaps particularly interesting, because they follow from decomposing a poset
into “structured” and “unstructured” components, and show that, intuitively, almost
all the speed-up that can be obtained from quantum search of a poset S is obtained
from searching the unstructured parts of S.

Although we concentrated on the model of query complexity, our quantum algo-
rithms in both models are efficient in the sense that, given a poset S to be searched,
quantum circuits for the algorithms given here can be produced in time polynomial in
the size of S. Also, the non-query transformations used by the algorithms given here
are efficiently implementable.
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However, there are still several open questions. Firstly: in the abstract model,
is there a general lower bound of Q(S) = Ω(log n)? This would be an interesting
generalisation of the known logarithmic quantum lower bound on searching an ordered
list [6, 77]. Also, can the logarithmic factors in the quantum upper bounds in both
models be improved, perhaps by being changed into additive terms?

There are several possible extensions involving search for multiple marked elements.
In the abstract model, can a O

(
log n/

√
γS
)
-query algorithm be produced for search

for multiple marked elements in arbitrary posets? In the concrete model, could the
algorithm of Section 7.4.3 be extended to arrays that may contain duplicate elements?

103



Bibliography

[1] S. Aaronson and A. Ambainis. Quantum search of spatial regions. Theory of
Computing, 1:47–79, 2005. quant-ph/0303041.

[2] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element
distinctness problems. J. ACM, 51(4):595–605, 2004.
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[116] A. Rényi. Probability theory. North-Holland, Amsterdam, 1970.
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