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Consider an n qubit computational basis state corresponding to a bit string x, which has had an
unknown local unitary applied to each qubit, and whose qubits have been reordered by an unknown
permutation. We show that, given such a state with Hamming weight |x| ≤ bn/2c, it is possible to
reconstruct |x| with success probability 1 − |x|/(n − |x| + 1), and thus to compute any symmetric
function of x. We give explicit algorithms for computing whether or not |x| ≥ t for some t, and for
computing the parity of x, and show that these are essentially optimal. These results can be seen
as generalisations of the swap test for comparing quantum states.

I. INTRODUCTION

Consider the following scenario. Alice is a physicist
who has just completed a long quantum computing ex-
periment. Her quantum computer has produced an n
qubit state |x〉, corresponding to the bit string x. How-
ever, before she can measure the state to determine x, she
is called away from the lab. In her absence, Eve sneaks
in and sabotages the experiment. First, she applies an
arbitrary local rotation to the qubits (the same rotation
on each qubit); she then rearranges all the qubits in an
arbitrary order.

It is clearly now hopeless for Alice to determine x ex-
actly. Indeed, she cannot even determine an individual
bit of x with any probability better than guessing. But
what if she only needs to calculate f(x), for some func-
tion f? Because of the arbitrary rearrangement of the
qubits, she only has a chance of being able to compute
symmetric functions, i.e. functions f where f(x) depends
only on |x|, the Hamming weight of x. Also, because of
the arbitrary local rotation, she can only compute func-
tions f where f(x) = f(x̄), with x̄ denoting bitwise nega-
tion. This is equivalent to imposing the constraint that
|x| ≤ bn/2c.

The purpose of this note is to show that Alice can in
fact compute any f that satisfies these constraints (with
some probability, which may be low in the worst case).
Indeed, we have the following result.

Theorem 1. Let x be an n-bit string with |x| ≤ bn/2c.
Let U be an unknown and arbitrary single qubit unitary
operator, and σ be an unknown and arbitrary permuta-
tion of n qubits. Then there is a procedure which, given
σ(U⊗n|x〉), outputs |x| correctly with probability

1− |x|
n− |x|+ 1

.

Assuming that |x| is distributed uniformly at random, for
large n this corresponds to an average probability of suc-
cess of approximately 2(1− ln 2) ≈ 0.614.
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Previous work has studied the closely related question
of communicating without a shared reference frame [4].
In this setting, Alice wishes to communicate some (clas-
sical or quantum) information to Bob by sending him n
qubits, but Bob does not know Alice’s basis for each of
the qubits. The results of [4] show that, by encoding
across multiple qubits, Alice can send Bob a number of
bits that approaches n, in the large n limit. By contrast,
in the present work we do not allow prior encoding of
Alice’s information. Also note related previous work on
the problem of computation in a hidden basis [12].

Theorem 1 can be used to obtain procedures for com-
puting any symmetric function of x. These results can
be seen as generalisations of the problem of determin-
ing whether n qubits are all in the same state [13, 14],
which is in turn a generalisation of the question of de-
termining equality of two qubits, which can be solved
using the well-known swap test [3, 7]. For example,
we have the following results for the threshold function
Tht (Tht(x) = 1 ⇔ |x| ≥ t) and the parity function
(Parity(x) =

⊕
i xi).

Corollary 2. Let x be an n-bit string with |x| ≤ bn/2c.
Let U be an unknown and arbitrary single qubit unitary
operator, and σ be an unknown and arbitrary permuta-
tion of n qubits. Then there is a procedure which, given
σ(U⊗n|x〉), can compute Tht(x) with success probability
at least 1 − t/(n + 1), and can compute Parity(x) with
probability at least 1/2 + 1/(2(n+ 1)).

These success probabilities are essentially optimal, as
we will show with the following theorem.

Theorem 3. Let x be an n-bit string with |x| ≤ bn/2c.
Let U be an unknown and arbitrary single qubit unitary
operator, and σ be an unknown and arbitrary permutation
of n qubits. Let f(x) be some function such that f(k +
1) 6= f(k) for some 0 ≤ k < bn/2c. Then any procedure
that computes f(x) given access to σ(U⊗n|x〉) succeeds
with probability at most 1 − (k + 1)/(2(n − k)) in the
worst case.

This implies that, for example, one can determine
whether or not |x| = 0 very effectively, but distinguish-
ing |x| = n/2 from |x| = n/2 − 1 is hard. Interestingly,
this phenomenon also occurs in the study of quantum
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and classical query complexity [6], and more generally in
approximation theory [16, Section 3.4].

II. THE SYMMETRIC GROUP AND WEAK
SCHUR SAMPLING

The results in this note will be proven using some basic
representation theory of the symmetric group Sn, which
we now outline. Conjugacy classes of Sn are labelled by
partitions λ ` n. Each partition λ containing k parts
can be written as a non-increasing sequence of positive
integers (λ1, . . . , λk), and expressed as a Young diagram.
The diagram corresponding to the partition λ is a col-
lection of boxes arranged in left-justified rows, where the
number of boxes in row i is given by λi. Irreducible rep-
resentations (irreps) of the symmetric group are thus in
one-to-one correspondence with Young diagrams. We let
λ denote both a partition and its corresponding diagram,
and Vλ denote the corresponding irrep.

FIG. 1: The irreducible representations (3), (2,1), (1,1,1) of
the group S3.

We think of the input to our problem as an n-qubit
state |x〉 in a known basis, to which an unknown, and
arbitrary, tensor product unitary U⊗n has been applied,
followed by an unknown permutation of the qubits σ.
In order to take advantage of these symmetries, we will
use Schur-Weyl duality. This states that the space of n
qudits decomposes into a direct sum of tensor products of
subspaces corresponding to irreps of the symmetric and
unitary groups, as follows:

(Cd)⊗n ∼=
⊕
λ`n

Pλ ⊗Qdλ, (1)

where Pλ and Qdλ correspond to irreps of Sn and Ud, re-
spectively. For good introductions to Schur-Weyl duality
in the context of quantum information theory, see the
theses [11] and [9].

The Schur transform [1, 2, 11] performs an implemen-
tation of this decomposition, mapping a state in the com-
putational basis to one of the form |λ〉|p〉|q〉. In this case,
as we are indifferent to permutations of the subsystems
and local unitaries on each subsystem, we will only mea-
sure the |λ〉 register. This is known as weak Schur sam-
pling [8]. The projector onto a given value of λ is given
by (see [8] or [17, Theorem 8])

Pλ =
dλ
n!

∑
π∈Sn

χλ(π)D(π), (2)

where dλ is the dimension of the irrep Vλ, χλ is the char-
acter trVλ, and D is the defining representation of Sn

that acts by permuting the n subsystems,

D(π)|i1〉 · · · |in〉 = |iπ−1(1)〉 · · · |iπ−1(n)〉.

It is unnecessary to perform the full Schur transform to
measure λ; it suffices to use the quantum Fourier trans-
form over the symmetric group Sn, in a procedure known
as generalised phase estimation [8, 11], which can be seen
as a generalisation of the swap test [3, 7]. To perform gen-
eralised phase estimation on an n qubit state ρ, one first
prepares an ancilla register in the state 1

n!

∑
π∈Sn

|π〉.
This register is used to control a conditional permutation
of the subsystems of ρ, which is followed by an inverse
quantum Fourier transform (over Sn) on the ancilla reg-
ister. Measuring the ancilla gives a value of λ with prob-
ability tr(Pλρ). This whole procedure can be performed
efficiently, i.e. in time polynomial in n [5].

Let |x〉 be the input state and assume that x has Ham-
ming weight k ≤ bn/2c. Letting σ be an arbitrary per-
mutation of n qubits and U be an arbitrary local unitary,
we now compute tr(PλD(σ)U⊗n|x〉〈x|(U†)⊗nD(σ)†). As
Pλ commutes with local unitaries and permutations [8],
this is equal to tr(Pλ|x〉〈x|). Invariance under permu-
tation also implies that the probability of obtaining a
given outcome λ depends only on the Hamming weight
of x. The following crucial lemma allows us to write down
exactly what these probabilities are.

Lemma 4. Let Pr[`|k] denote the probability of getting
the measurement outcome corresponding to the partition
(n − `, `) when performing weak Schur sampling on an
n-bit string with Hamming weight k. Then, if ` > k,
Pr[`|k] = 0. Otherwise,

Pr[`|k] =

(
n
`

)
−
(
n
`−1

)(
n
k

) .

In particular,
∑k
`=0 Pr[`|k] = 1.

Before we prove this lemma, we show that it implies
the results stated in Section I. In the case of Theorem
1, we give an explicit algorithm that achieves the success
probability required by the theorem:

1. Perform weak Schur sampling, obtaining outcome
λ = (n− `, `).

2. Output the guess that k = `.

It is clear that this procedure, which we will term the
standard algorithm, will output the correct answer with
probability Pr[k|k] = 1− k/(n− k + 1).

One might consider more complicated strategies for in-
ferring k from weak Schur sampling. A general inference
strategy can be expressed as a matrix O, where Ok` =
Pr[output k|get outcome (n− `, `)], and

∑
k Ok` = 1 for

all `. If one wishes to maximise the worst-case probabil-
ity of outputting the correct value of k, for example, it is
required to find an O that maximises

min
k

(
k∑
`=0

Ok`

((
n
`

)
−
(
n
`−1

)(
n
k

) ))
.
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This is a linear programming problem and can be solved
exactly for small n, although we do not know a closed
form for the solution for general n.

An alternative setting for the inference problem is the
Bayesian scenario where one maximises the probability of
success assuming an a priori probability distribution on
k (see [15] for a comprehensive introduction to Bayesian
inference). Letting {pk} denote this probability distribu-
tion, the problem is to maximise

Psucc =
bn/2c∑
k=0

pk

(
k∑
`=0

Ok`

((
n
`

)
−
(
n
`−1

)(
n
k

) ))

=
bn/2c∑
`=0

((
n

`

)
−
(

n

`− 1

))bn/2c∑
k=`

Ok`
pk(
n
k

)
 .

This is clearly maximised by taking Ok` = 1 for k =
maxk′ pk′/

(
n
k′

)
, and Ok` = 0 otherwise. In the partic-

ularly natural case where we assume that the a priori
distribution on k is uniform, this maximisation in fact
shows that the standard algorithm is optimal, and gives
an average probability of success of

1
bn/2c+ 1

bn/2c∑
k=0

1− k/(n− k + 1).

For large n, this can be estimated as

1− 2
n

∫ n/2

0

k/(n− k + 1) dk

= 2
(

1− (n+ 1)
n

ln
(

n+ 1
n/2 + 1

))
≈ 2(1− ln 2) ≈ 0.614.

What about the scenario of Corollary 2, where we only
want to compute some function f(k), rather than to out-
put k? It is natural to try to produce an algorithm with
high success probability for all 0 ≤ k ≤ bn/2c. Again,
if one attempts to maximise this worst-case probability
over all strategies that consist of performing weak Schur
sampling and attempting to infer f(k) from the result,
one is led to a linear programming problem for which we
do not know a closed form solution. A more straightfor-
ward approach is to guess k using the standard algorithm
(call this guess k̃), and then to output f(k̃).

The probability that this gives the right answer can
easily be calculated for threshold functions Tht. Assum-
ing k ≥ t,

Pr[f(k̃) 6= f(k)] =
∑

`,f(`)6=f(k)

Pr[`|k]

=
1(
n
k

) t−1∑
`=0

((
n

`

)
−
(

n

`− 1

))
=

(
n
t−1

)(
n
k

) .
This is clearly maximised by k = t, giving a failure prob-
ability of at most t/(n − t + 1). On the other hand, if

k < t, note that this algorithm succeeds with certainty,
as Pr[`|k] = 0 for ` > k. We thus have a probabilis-
tic algorithm that computes the threshold function Tht
with one-sided error. This can be modified to give an
algorithm with small worst-case probability of error, as
follows.

Consider any procedure that attempts to compute an
arbitrary boolean function f(k) from f(k̃), where k is
picked to minimise the probability that f(k) = f(k̃).
Such a procedure can be parametrised by two proba-
bilities q0, q1, where q0 is the probability that the pro-
cedure outputs 0, given that f(k̃) = 0, and q1 is the
probability of outputting 0, given that f(k̃) = 1. Let
pi = Pr[f(k̃) = 0|f(k) = i] for i ∈ {0, 1}, and assume
that p0 ≥ p1. Then the probability of success of such a
procedure (in the worst case) is at least

min{q0 p0 + q1(1− p0), (1− q0)p1 + (1− q1)(1− p1)}.

We pick q1 such that these two values are equal, which
gives

q1 =
1− q0(p0 + p1)

2− p0 − p1
.

Our goal is to maximise the corresponding expression for
the probability of success,

q0 p0 + q1(1− p0) =
1 + q0(p0 − p1)− p0

2− p0 − p1
,

over q0, while still obeying the constraints 0 ≤ q0, q1 ≤ 1.
This is straightforward and gives the answer

q0 = min{ 1
p0 + p1

, 1}, q1 = max{0, 1− p0 − p1

2− p0 − p1
},

which corresponds to a maximum worst-case probability
of success of p0/(p0 + p1) when p0 + p1 ≥ 1, and (1 −
p1)/(2− p0 − p1) when p0 + p1 ≤ 1.

Applying this result to the threshold function Tht,
where p0 = 1 and p1 = t/(n − t + 1), it can easily be
seen that we obtain a two-sided error algorithm that al-
ways succeeds with probability at least 1− t/(n+ 1), as
stated in Corollary 2.

In the case of the Parity function, we can calculate
the probability that f(k̃) 6= f(k) from

Pr[k̃ is even]− Pr[k̃ is odd]

=
1(
n
k

) k∑
`=0

(−1)`
((

n

`

)
−
(

n

`− 1

))
= (−1)k

(
1− 2k

n

)
.

It is then immediate that

Pr[k̃ is even] =
{

1− k/n (k even)
k/n (k odd),
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and of course Pr[k̃ is odd] = 1 − Pr[k̃ is even]. Assume
that n is even and n/2 is also even (the cases where n
or n/2 is odd are analogous). This implies that, for k
even, we have Pr[f(k̃) = f(k)] ≥ 1/2, and for k odd,
Pr[f(k̃) = f(k)] ≥ 1/2 + 1/n. We can use the same
technique as before to get an algorithm that succeeds
with probability at least 1/2 + 1/(2(n+ 1)) in the worst
case.

III. LIMITS ON SUCCESS PROBABILITY

To prove Theorem 3, and hence to show that these
algorithms are almost optimal, consider the restricted
problem of distinguishing a bit-string x with weight k
from one with weight k + 1, as is required to compute a
symmetric function f where f(k) 6= f(k + 1).

We first argue that any procedure for computing f
might as well simply consist of weak Schur sampling and
post-processing the results. Imagine that an adversary,
as in the scenario of Section I, has performed a random
permutation and a random local rotation of each qubit
on the initial state |x〉. Then, from Alice’s perspective,
the resulting state looks like

ρ =
1
n!

∫
U

dU U⊗n
∑
σ∈Sn

D(σ)|x〉〈x|D(σ)†(U†)⊗n,

which is equal to
∑
λ`n kλPλ for some coefficients {kλ}.

(This follows from the decomposition of eqn. (1) and
Schur’s Lemma, using the fact that ρ commutes with
all permutations and local unitaries.) This implies that,
without loss of generality, a measurement strategy can be
taken as consisting of measuring λ and performing some
classical post-processing.

Let pk(`) denote the probability distribution over par-
titions (n−`, `) obtained by performing weak Schur sam-
pling on an input with weight k. We calculate the `1
distance between the distributions pk, pk+1 for arbitrary
0 ≤ k < bn/2c:

‖pk − pk+1‖1 =

(
n
k+1

)
−
(
n
k

)(
n
k+1

)
+

k∑
`=0

((
n

`

)
−
(

n

`− 1

))(
1(
n
k

) − 1(
n
k+1

))

= 2

(
1−

(
n
k

)(
n
k+1

)) = 2
(
n− 2k − 1
n− k

)
.

Using standard results on distinguishing probability dis-
tributions, this distance puts an upper bound on the
probability of success of any algorithm attempting to dis-
tinguish between weights k and k+1, and implies that the
above algorithms are asymptotically optimal. We finally
turn to the proof of Lemma 4.

IV. PROOF OF LEMMA 4

Let λ be the partition (n−`, `) and let x be a bit-string
with Hamming weight k ≤ bn/2c, assuming without loss
of generality that |x〉 = |1 · · · 10 · · · 0〉, where the first
k bits of x are 1 and the last n − k are 0. We now
calculate Pr[`|k] = tr(Pλ|x〉〈x|) using (2). It is easy to
see that tr(D(π)|x〉〈x|) = 0 unless π leaves the bit-string
x unchanged, in which case tr(D(π)|x〉〈x|) = 1. All such
permutations π can be decomposed as a direct product
of a permutation of the first k bits, and a permutation of
the last n− k bits. This implies that

tr(Pλ|x〉〈x|) =
dλ
n!

tr

 ∑
π∈Sk×Sn−k

Vλ(π)

 .

We first calculate the sum over the group Sk×Sn−k. Note
that the representation Vλ, while irreducible over Sn, is
not necessarily irreducible over Sk×Sn−k, but may split
into a direct sum of irreps. The following simple lemma,
which can be proven using Schur’s Lemma, shows that
only the trivial irrep is of interest.

Lemma 5. Let Vλ be an irreducible representation of a
finite group G. Then∑

g∈G
Vλ(g) =

{ |G| if Vλ is the trivial irrep
0 otherwise.

Each occurence of the trivial irrep in the decomposi-
tion of the representation Vλ over Sk × Sn−k will thus
give a contribution of k!(n− k)! to the sum; all other ir-
reps will contribute nothing. This number of occurrences
can be calculated using a special case of the Littlewood-
Richardson rule known as Pieri’s formula [10].

Let µ be the diagram corresponding to the trivial irrep
of Sk, for some k. Then, for any λ and ν, we define the
Littlewood-Richardson number Nλµν as the number of
ways that λ can be expanded to ν by adding k boxes
to λ, under the constraint that at most one new box is
added to each column. See Figure 2 for an illustration
of this process, and note that Nλµν is always either 0 or
1 (though this does not remain true in the more general
setting where µ can be arbitrary; then the rule is more
complicated).

FIG. 2: Expanding the diagram (2, 1) to (3, 2) using the dia-
gram (2).

Littlewood-Richardson numbers are relevant because
of the following theorem [10].

Theorem 6. Let µ be the partition (n− k). The multi-
plicity of the irrep Vλ ⊗ Vµ in the restriction of the irrep
Vν from Sn to Sk × Sn−k is equal to Nλµν .
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As we are only interested in expansions of the trivial
irrep (k) by another trivial irrep (n−k), this multiplicity
is particularly simple to calculate. Let ν be a partition of
n, λ be the partition (k), and µ be the partition (n− k).
Then, if ν has more than two parts, Nλµν = 0. (This was
expected anyway because each of the n subsystems we are
dealing with has dimension 2.) If ν has two parts, express
it as (n − `, `). Then, if k < `, Nλµν = 0. Otherwise,
Nλµν = 1.

This deals with the sum; to finish the calculation, we
need to find the dimension dλ. This can be evaluated
using the famous hook-length formula [10]. Let x be a
box in a Young diagram. Then the hook-length h(x) is
defined as the total number of boxes in the same row
and to the right of x, plus the total number in the same
column and below x, plus 1 (for x itself). See Figure 3
for an illustration.

5 4 2 1
2 1

FIG. 3: Hook-lengths of the cells in the diagram (4,2).

The hook-length formula states that

dλ =
n!∏

x∈λ h(x)
.

As we only need calculate dλ for partitions λ = (n−`, `),
this formula is particularly simple, and gives

dλ =
n!(n− 2`+ 1)
`!(n− `+ 1)!

=
(
n

`

)(
n− 2`+ 1
n− `+ 1

)
.

To sum up, we have, for ` ≤ k,

Pr[`|k] =
dλ
n!

tr

 ∑
π∈Sk×Sn−k

Vλ(π)


=

1
n!

(
n

`

)(
n− 2`+ 1
n− `+ 1

)
k!(n− k)!

=

(
n
`

)(
n
k

) (n− 2`+ 1
n− `+ 1

)
=

(
n
`

)
−
(
n
`−1

)(
n
k

) ,

where the last step is a binomial coefficient identity that
can be verified directly. For ` > k, by Pieri’s formula the
sum over Sk×Sn−k is zero. This implies that Pr[`|k] = 0
in this case, and completes the proof.

V. CONCLUSION

We conclude that it is possible to compute symmetric
functions of an n qubit state |x〉, even if a malicious ad-
versary has applied an arbitrary local rotation and an ar-
bitrary permutation to the state, even without any prior
encoding of x. This is in (perhaps surprising) contrast to
the fact that any individual bit of x cannot be retrieved.
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