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In this work we use the concept of quantum fingerprinting to develop a quantum communication
protocol in the simultaneous message passing model that calculates the Hamming distance between
two n-bit strings up to relative error ε. The number of qubits communicated by the protocol is
polynomial in logn and 1/ε, while any classical protocol must communicate Ω(

√
n) bits. Motivated

by the relationship between Hamming distance and vertex distance in hypercubes, we apply the
protocol to approximately calculate distances between vertices in graphs that can be embedded into
a hypercube such that all distances are preserved up to a constant factor. Such graphs are known
as `1-graphs. This class includes all trees, median graphs, Johnson graphs and Hamming graphs.
Our protocol is efficient for `1-graphs with low diameter, and we show that its dependence on the
diameter is essentially optimal. Finally, we show that our protocol can be used to approximately
compute `1 distances between vectors efficiently.

I. INTRODUCTION

Imagine that two separated parties (Alice and Bob)
each have some data, and would like to determine how
alike their data is, using the minimal amount of com-
munication possible. Also imagine that they are not al-
lowed to communicate with each other, but are each only
allowed to send a single message to a third party (“ref-
eree”), and do not share any prior information with each
other. This communication model is known as the si-
multaneous message passing (SMP) model with private
randomness [1]. It encapsulates, for example, a scenario
where it is not clear in advance whose data sets are to
be compared. Another motivation comes from crypto-
graphic scenarios. For example, it could be that the in-
puts to the two parties are controlled by an adversary,
who has access to any previously shared randomness and
can choose the inputs such that the protocol fails [2]; al-
ternatively, Alice and Bob may simply want to find an
efficient protocol which hides their data from the referee.

A natural strategy for completing this task is for each
of Alice and Bob to compress their data to some kind of
“sketch” [3, 4], and send the sketches to the referee, who
uses them to determine the distance between the corre-
sponding original data sets. Unfortunately, even for one
of the simplest distance measures possible – testing equal-
ity of n-bit strings – and even if Alice and Bob are allowed
a small probability of failure, this task requires Ω(

√
n)

bits of classical communication to the referee [5]. In com-
parison, if Alice and Bob are allowed access to a shared
random bit-string, this complexity drops to O(1) [6].

Remarkably, the use of quantum information allows
an exponential reduction in the complexity of equality-
testing. If Alice and Bob encode their n-bit strings as
particular quantum states called quantum fingerprints,
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then there exists a quantum protocol that communicates
only O(log n) qubits [7] and succeeds with arbitrarily
high constant probability.

This surprising result sparked significant interest from
the perspective of computer science [8, 9] and informa-
tion theory [10], as well as physics. Theoretically, it
has been used to shed new light on the two-slit exper-
iment [11] and detailed studies of fingerprinting schemes
using few qubits have been undertaken [12, 13]. Proof-of-
principle quantum fingerprinting experiments have been
carried out with states of 1 qubit realized using linear
optics [14] and nuclear magnetic resonance [15]. More
recently, a variant of the quantum fingerprinting protocol
based on coherent states [16] has also been implemented
experimentally, surpassing the best known classical pro-
tocols [17] and even the classical theoretical limit [18].

However, equality is just one distance measure, and a
very special one. Here we seek other measures of distance
for which quantum information can achieve a similar ex-
ponential advantage. In addition to the inherent theo-
retical interest of this question in terms of giving insight
into the expressive power of quantum states, quantum
protocol for more general distance measures could find
significantly broader applications.

One example where quantum fingerprinting has been
generalised is an efficient quantum communication proto-
col of Kumar et al. based on coherent states [19], which
can approximately compute the Euclidean distance be-
tween unit vectors up to low additive error. This protocol
is directly based on the use of the swap test to approx-
imate `2 distances between quantum states [7]. There
are many other distance measures of practical relevance
where it is less clear whether similar techniques to quan-
tum fingerprinting can be applied.

A. Our results

Our main result is a quantum protocol for approxi-
mately computing another distance measure, the Ham-
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ming distance, up to low relative error. This notion of
accuracy is important when one wishes to compare ob-
jects that are similar; for example, when one of the ob-
jects is produced by a small number of errors affecting
the other [20]. Approximating the Hamming distance be-
tween two n-bit strings up to additive accuracy εn (anal-
ogous to the accuracy achieved by the protocol of [19])
would give no useful information in this situation.

In the setting we consider, Alice and Bob are given
x, y ∈ {0, 1}n, respectively. Their goal is to approxi-
mately calculate the Hamming distance d(x, y) between
x and y, i.e., they must output dε(x, y) such that (1 −
ε)d(x, y) ≤ dε(x, y) ≤ (1 + ε)d(x, y). Pang and El Gamal
[21] proved a lower bound of Ω(n) for exactly calculating
the Hamming distance in the multi-round two-party clas-
sical communication model. Here we describe a quantum
protocol that approximately computes the Hamming dis-
tance in the SMP model by communicating poly(log n)
qubits.

Theorem 1. There is a quantum protocol in the SMP
model with private randomness which communicates
O((log n)2(log log n)/ε5) qubits and computes the Ham-
ming distance between n-bit strings up to relative error ε,
for any ε = Ω(1/ log n), with failure probability bounded
above by an arbitrarily small constant.

The protocol is based on a subroutine which deter-
mines whether, for some threshold δ, d(x, y) ≤ δ or
d(x, y) ≥ (1 + ε)δ. This subroutine maps x and y to N -
bit strings Ax, Ay such that in the first case, d(Ax,Ay)
is low (less than αN , for some constant α), whereas in
the second case, d(Ax,Ay) is high (greater than βN , for
some constant β > α). Alice and Bob then encode the
strings Ax and Ay as quantum superpositions, which the
referee can distinguish between using the swap test [7].

Note that there exists a corresponding classical pro-
tocol in the SMP model with shared randomness, with
a similar complexity. One way to see this is that the
quantum protocol is ultimately based on the use of the
swap test to approximately compute the inner product
between unit vectors, for which there is an efficient clas-
sical protocol in this model [22].

We then generalise Theorem 1 to other distance mea-
sures: in particular, those which can be interpreted as
distances in graphs. A graph G = (V,E) is fixed in ad-
vance, and each of Alice and Bob is given a vertex of G (v
and w, respectively). They aim to approximately com-
pute dG(v, w), the length of a shortest path in G between
v and w, up to relative error ε.

We first observe that Theorem 1 can be applied to give
an efficient protocol for this problem whenever there is a
distance-preserving embedding of G into the hypercube:
the graph whose vertex set is {0, 1}m, for some m, and
where two vertices are connected by an edge whenever
their Hamming distance is 1. In fact, this can be gener-
alised further, to graphs which are embeddable into the
hypercube such that distances are preserved up to a con-
stant factor k. Such graphs are known as `1-graphs, be-

cause it turns out that this criterion is equivalent to the
existence of a distance-preserving embedding of the graph
in `1 [23]. The class of `1-graphs includes all trees, me-
dian graphs, Hamming graphs, and Johnson graphs [23].
(We include in the Appendix a characterization of `1-
graphs which we were not able to find in the literature.)

Distances in `1-graphs are used in a variety of appli-
cations, a few of which we outline here. Partial cubes
(`1-graphs with embedding constant k = 1) were ini-
tially introduced by Graham and Pollak [24] as a model
for interconnection networks in the Bell System, with dis-
tances between vertices corresponding to the number of
hops between ‘loops’ in their network. Antimatroids (a
specific subclass of `1-graphs) are used as structures to
represent the required steps to develop a student’s knowl-
edge in a certain topic, and the distance between two
points that represent concepts in these structures corre-
sponds to the length of a student’s learning path [25].
The Barnes-Hut tree method in many-body physics [26]
provides a systematic way of determining the degree of
‘closeness’ between two different particles. The distance
between two nodes in the tree is linked to this ‘closeness’
property and can be used for various purposes, e.g., to
calculate gravitational forces in star clusters and study
galaxy evolution [27]. Tree structures are also used in bi-
ology, where phylogenetic trees classify organisms based
on overall similarity, and the distance between vertices is
related to genetic or mutation distance [28].

Our protocol is efficient for `1-graphs G whose diam-
eter diam(G) is low, where the diameter is defined as
diam(G) = maxv,w dG(v, w).

Theorem 2. Let G = (V,E) be an `1-graph with |V |
vertices, and let v, w ∈ V . There is a quantum protocol in
the SMP model with private randomness which communi-
cates O((log diam(G))(log log diam(G))(log log |V |)/ε5)
qubits and computes dG(v, w) up to relative error ε,
for any ε = Ω(1/ log diam(G)), with failure probability
bounded above by an arbitrarily small constant.

For any graph G, even testing equality between ver-
tices requires Ω(

√
log |V |) bits of classical communica-

tion in the SMP model without shared randomness [5],
so this is an exponential separation for those `1-graphs
where, for example, diam(G) = O(log |V |). dG(v, w) can
be computed trivially using O(log |V |) bits of classical
communication, by sending the labels of v and w to the
referee. So for graphs G where diam(G) is close to |V |,
Theorem 2 gives little or no improvement on the classi-
cal complexity. One may wonder whether this is simply
a limitation of our protocol, but we show that this is not
the case.

Theorem 3. Given a graph G with diameter diam(G),
any one-way quantum communication protocol that com-
putes dG(v, w) up to relative error ε < 1/4 with fail-
ure probability 1/3 must transmit at least Ω(log diam(G))
qubits.

As every protocol in the SMP model implies a one-way
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protocol, this shows that the complexity of our protocol
is nearly optimal in terms of its dependence on diam(G).

Finally, we show that our protocol for approximately
computing the Hamming distance can be used to give
an efficient protocol for approximately computing the `1
distance between vectors in Rn.

Theorem 4. Let x, y ∈ [−1, 1]n such that each entry of
x and y is specified by a k-bit string, with k = O(log n).
There is a quantum protocol in the SMP model which
communicates O((log n)2(log log n)/ε5) qubits and com-
putes ‖x − y‖1 up to relative error ε, for any ε =
Ω(1/ log n), with failure probability bounded above by an
arbitrarily small constant.

A natural special case of Theorem 4 is where x and
y are probability distributions. Then our result enables
Alice and Bob to determine the distance between two
distributions, one of which is a small perturbation of the
other.

Two interesting questions which remain open are
whether one can find a similar result to Theorem 2 which
holds for all graphs, without the restriction to `1-graphs,
and if the communication complexity dependence on ε,
currently at 1/ε5, can be improved.

B. Related work

The Hamming distance is a fundamental distance mea-
sure and has been studied in various forms. In the
context of quantum communication complexity, Liu and
Zhang [29] gave a quantum sketching protocol for the
related “threshold” problem of determining whether the
Hamming distance is larger than d, for some d. Their
protocol usesO(d log n) communication, improving a pre-
vious O(d log2 n) protocol of Gavinsky, Kempe and de
Wolf [30]. Huang et al. [31] had previously proven an
Ω(d) lower bound for even the two-way quantum commu-
nication complexity of the threshold Hamming distance
problem, together with an O(d log d) upper bound in the
classical SMP model with public randomness.

A key ingredient in the upper bound of Huang et al.
is a protocol which communicates O(1) bits and distin-
guishes between the case that the Hamming distance is
at most d, and the case that the Hamming distance is
at least 2d, for arbitrary d. Their protocol can be seen
as a variant of our Lemma 2 below with N = 1; simi-
lar analysis shows that it could be generalised to distin-
guish between Hamming distance d and Hamming dis-
tance (1+ε)d with O(1/ε2) bits of communication. Using
a generic construction of Yao [8], improved by Gavin-
sky, Kempe, and de Wolf [9], this implies a quantum
sketching protocol for the same task which communicates

2O(1/ε2) log n qubits. Using a similar approach to our
work, this in turn implies a protocol which solves the ap-
proximate Hamming distance problem by transmitting

2O(1/ε2) poly log n qubits. This is the same asymptotic
complexity as our protocol for constant ε, but in practice

the 2O(1/ε2) factor makes the protocol infeasible for even
modest values of ε.

Classically, there has also been substantial work on ap-
proximately computing the Hamming distance between
a small “pattern” and a larger string, both locally and in
a distributed context (see [32] and references therein).

More generally, the field of communication complexity
studies the amount of communication needed between
two or more parties to solve a particular problem [1, 33].
We now give a brief summary of this area. The simplest
and most illustrative scenario is the one in which two
parties, called Alice and Bob, each possesses some piece
of information, often encoded into some string, so that
Alice has x ∈ X and Bob has y ∈ Y , and they want to
compute some function f(x, y). Since each does not know
the piece of information the other has, they will need to
communicate information in order to compute f(x, y).
The most straightforward way to solve the problem is
to have Alice and Bob exchange their entire string, but
sometimes more efficient protocols exist. This communi-
cation model was first introduced by Yao in 1979 [34].

An important variant of this usual general communi-
cation scenario is the model of quantum communication
complexity, again introduced by Yao [35], where now Al-
ice and Bob each has a quantum computer and they ex-
change qubits instead of bits and/or make use of shared
entanglement. The question is whether Alice and Bob
can now compute f with less communication than in the
classical case; in some cases, this is known to be possi-
ble [1].

The above communication scenarios can be narrowed
down by imposing some restrictions on the communica-
tion process between Alice and Bob, and by restricting
or allowing resources like randomness and entanglement.
The three most common communication models are the
one-way, the multi-round two-party and the simultane-
ous message passing (SMP) models. In the multi-round
two-party model both Alice and Bob can communicate
with the other. On the other hand, in the one-way model
only one party can communicate with the other, e.g. Al-
ice communicates with Bob. Finally, in the SMP model
Alice and Bob are only allowed to send messages to a
third party, called the referee, who then computes f(x, y).
The SMP model was also introduced by Yao (1979) [34]
and is the weakest reasonable model of communication
complexity. Considering the SMP model in particular,
Buhrman et al. [7] proved that, if f is the equality func-
tion, then a communication reduction from Θ(

√
n) bits

to Θ(log n) qubits is possible.

Later, Yao showed that any classical SMP proto-
col with shared randomness that transmits O(1) bits
and computes a function on n bits implies a quantum
SMP protocol without shared randomness that trans-
mits O(log n) qubits [8]. This result was generalised by
Gavinsky et al. [9], who gave a quantum SMP protocol
that simulates any 2-way quantum communication pro-
tocol with shared entanglement, at communication cost
exponential in the cost of the original protocol. How-
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ever, Gavinsky et al. also proved that for most functions,
quantum fingerprinting protocols, which are a subclass
of quantum SMP protocols, are exponentially worse than
classical deterministic SMP protocols.

Recently, more exotic communication models based on
indefinite causal structures were used to demonstrate ex-
ponential quantum advantage. Wei et al. [36] and Guérin
et al. [37] showed such an exponential communication
advantage by using the concept of a quantum switch (a
device that controls the order in which two transforma-
tions are performed) to coherently superpose the one-way
communication path of information in a tripartite set-
ting, i.e., from Alice to Bob and then to the referee or
from Bob to Alice and then to the referee.

II. THE PROTOCOL

In this section we present our protocol for approximat-
ing the Hamming distance d(x, y) between two strings
x, y ∈ {0, 1}n up to relative error ε in the SMP model.
That is, Alice and Bob seek the referee to output dε(x, y)
such that (1 − ε)d(x, y) ≤ dε(x, y) ≤ (1 + ε)d(x, y). Call
this problem HAMε.

We first state a lemma that is going to be useful for
our protocol and which encapsulates results on quantum
fingerprinting by Yao [8].

Definition 1. Given an N -bit string x, define the quan-
tum state

|hx〉 =
1√
N

N∑
i=1

|i〉|xi〉, (1)

where xi is the i-th bit of x.

Lemma 1 (Yao [8]). Given the N -bit strings x and
y, their Hamming distance d(x, y) can be estimated up
to additive accuracy Nε with failure probability δ using
O(log(1/δ)/ε4) copies of |hx〉 and |hy〉.

Proof. Given the N -bit strings x and y, we encode them
with the states |hx〉 and |hy〉, respectively. Note that

〈hy|hx〉 =
1

N

N∑
i=1

〈yi|xi〉 = 1− d(x, y)

N
. (2)

The swap test [7] is a test which outputs either 0 or 1 on
input |hx〉|hy〉, and outputs 1 with probability

1

2

(
1− |〈hy|hx〉|2

)
. (3)

We apply the swap test to k copies of |hx〉|hy〉, for some
k to be determined. Let Xi correspond to the outcome
of the i-th swap test. In [8] it is proven that

Pr
[∣∣η̃ − |〈hy|hx〉|∣∣ ≥ ε] ≤ 2e−kε

4/32, (4)

where η̃ =
√

1− 2
k

∑
iXi. We hence conclude that

Pr
[∣∣d̃− d(x, y)

∣∣ ≥ Nε] ≤ 2e−kε
4/32, (5)

where d̃ = N
(

1−
√

1− 2
k

∑
iXi

)
. Setting δ as the

probability of error, we see that it is sufficient to use
k = O(log(1/δ)/ε4) copies of the states to estimate
d(x, y) up to additive accuracy Nε with failure proba-
bility δ.

(Given that we aim to approximately compute the
inner product between |hx〉 and |hy〉 in Lemma 1, the
reader may wonder why the Hadamard test [38] was not
used instead, given that this test allows direct estima-
tion of 〈hy|hx〉. The reason is that the Hadamard test
requires the ability to produce the coherent superposi-
tion 1√

2
(|0〉|hx〉 + |1〉|hy〉), which is not available to the

referee.)
In the following, we use the notation |z| to mean the

number of entries equal to 1 in a string z ∈ {0, 1}n.

Lemma 2. Consider an N × n matrix A over F2 whose
entries are randomly chosen from {0, 1}, and equal to 1
with independent probability 1/(2d) for some d ≥ 1. Fix
ε > 0. Then there exist values δ1 < δ2 that do not depend
on N and n, such that δ2− δ1 = Θ(ε) and for any η > 0:

• for all z ∈ {0, 1}n such that |z| ≤ d, PrA
[
|Az| ≥

Nδ1 +Nη
]
≤ e−2Nη2 ;

• for all z ∈ {0, 1}n such that |z| ≥ (1 + ε)d,

PrA
[
|Az| ≤ Nδ2 −Nη

]
≤ e−2Nη2 .

Hence, for sufficiently large N = Θ(n/ε2), with high
probability over the choice of A, it is sufficient to deter-
mine |Az| up to additive accuracy Θ(Nε) to distinguish
between the cases |z| ≤ d and |z| ≥ (1 + ε)d.

Proof. It is shown in [39] that for any z, Pr[(Az)i = 1] =
1
2

(
1− (1− 1/(2d))|z|

)
and that the probabilities of this

event for |z| ≤ d and |z| ≥ (1+ε)d are bounded by values
δ1, δ2 that do not depend on N and n and are separated
by Θ(1− e−ε/2) = Θ(ε). That is,

PrA [(Az)i = 1] ≤ δ1 =
1

2

(
1−

(
1− 1

2d

)d)
if |z| ≤ d, (6a)

PrA [(Az)i = 1] ≥ δ2 =
1

2

(
1−

(
1− 1

2d

)(1+ε)d
)

if |z| ≥ (1 + ε)d.
(6b)

The expected value of |Az| =
∑
i(Az)i then satisfies

E[|Az|] ≤ Nδ1 if |z| ≤ d, (7a)

E[|Az|] ≥ Nδ2 if |z| ≥ (1 + ε)d. (7b)
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If |z| ≤ d so that E[|Az|] ≤ Nδ1, by a Chernoff
bound [40] we obtain

PrA
[
|Az| ≥ Nδ1 +Nη

]
≤ e−2Nη2 . (8)

By the same token, if |z| ≥ (1 + ε)d, so that E|Az|] ≥
Nδ2, we obtain

PrA
[
|Az| ≤ Nδ2 −Nη

]
≤ e−2Nη2 . (9)

Taking a union bound over all z ∈ {0, 1}n in both
cases, we have

PrA
[
∃z s.t. |z| ≤ d and |Az| ≥ Nδ1 +Nη

]
≤ 2ne−2Nη2 = en ln 2−2Nη2 ,

PrA
[
∃z s.t. |z| ≥ (1 + ε)d and |Az| ≤ Nδ2 −Nη

]
≤ 2ne−2Nη2 = en ln 2−2Nη2 ,

(10)

so that it is sufficient to choose N = Ω(n/η2) to bound
the probability that either case occurs by an arbitrarily
small constant. Choosing η = cε for a sufficiently small
constant c, we have |Az| ≤ N(δ1 + cε) if |z| ≤ d, and
|Az| ≥ N(δ2 − cε) if |z| ≥ (1 + ε)d. Therefore, it is suf-
ficient to determine |Az| up to additive accuracy O(Nε)
to distinguish these two cases.

The map A in Lemma 2 can be interpreted as a linear
code. Such codes are also used in quantum fingerprinting
protocols [7, 17], but here, unlike previous protocols, we
choose the matrix A to be sparse and random. This
enables us to control its behaviour when acting on strings
z such that |z| ≈ d, when d is small.

We now describe our protocol based on the two pre-
vious Lemmas. In this protocol, Alice and Bob have al-
ready agreed beforehand on the matrix A, guaranteed to
exist by Lemma 2, to be used. We stress that this matrix
is fixed in advance and does not need to be chosen using
shared randomness.

Protocol 1. Consider the following subroutine for arbi-
trary d ∈ [1, n] and δ > 0: Alice and Bob encode their
n-bit strings x and y as Ax and Ay, respectively, where A
is picked according to Lemma 2 and multiplication is over
F2. They send O((log 1/δ)/ε4) copies of the quantum
states |hAx〉 and |hAy〉 to the referee, who performs swap
tests and estimates the Hamming distance d(Ax,Ay) up
to accuracy Nε with failure probability δ. By Lemma
2, this is sufficient to determine whether d(x, y) ≤ d or
d(x, y) ≥ (1 + ε)d with failure probability δ.

Alice and Bob then apply this subroutine to the se-
quence S of values d

0, 1, 1 + ε, (1 + ε)2, . . . (11)

where the last element in S corresponds to the minimal k
such that (1 + ε)k+1 > n; there are O(log n/ log(1 + ε)) =
O((log n)/ε) elements in the sequence. (In the case d = 0,

they use the standard quantum fingerprinting protocol in-
stead.) Given the O((log n)/ε) results, the referee out-

puts the minimal d̃ such that the subroutine returned
“d(x, y) ≤ d̃”.

We first show that, if each use of the subroutine suc-
ceeds, the overall algorithm achieves the required level of
accuracy. By the definition of S, there exist consecutive
elements d0, d1, d2 ∈ S such that d0 ≤ d(x, y)/(1 + ε),
d(x, y)/(1 + ε) ≤ d1 ≤ d(x, y), d(x, y) ≤ d2 ≤ (1 +
ε)d(x, y). Then on input d2 the subroutine must re-
turn “d(x, y) ≤ d2”, while for input d0 it must return

“d(x, y) ≥ (1 + ε)d0”, so the output d̃ is either d1 or d2

and hence

(1− ε)d(x, y) ≤ d(x, y)

1 + ε
≤ d̃ ≤ (1 + ε)d(x, y).

Setting δ = O(ε/ log n) and using a union bound over
the O((log n)/ε) uses of the subroutine, the probability
that any of the subroutines fails can be upper-bounded
by an arbitrarily small positive constant.

The overall communication complexity is

O
(
((log n)/ε) · (log (1/δ)/ε4) · (log n+ log 1/ε)

)
=

O
(
(log n)2(log log n)/ε5

)
, (12)

assuming that ε ≥ 1/ log n. This completes the proof of
Theorem 1.

III. MEASURING DISTANCES IN GRAPHS

In the following, for an arbitrary graph G and vertices
v, w, let dG(v, w) denote the distance between v and w
in G, i.e. the length of a shortest path between v and
w. Also, the hypercube graph Qn is defined as the graph
with vertex set {0, 1}n, where distance between vertices
is the Hamming distance.

The algorithm from last section for approximately
measuring the Hamming distance between two strings
in the SMP model can be slightly modified to approx-
imately compute the distance between two vertices in
specific graphs in the SMP model. That is, to solve
the following problem: for some graph G = (V,E),

and given vertices v, w as input, output d̃ such that
(1 − ε)dG(v, w) ≤ d̃ ≤ (1 + ε)dG(v, w). Call this prob-
lem DISε[G]. The idea is to embed a given graph G into
a hypercube graph such that all the distances between
vertices are preserved or rescaled by a constant factor.
Once this embedding is achieved, the hypercube struc-
ture allows the equivalence between vertex distance in
the graph and Hamming distance, so that a binary string
can be associated with each vertex and the algorithm can
be applied to these binary strings.

The downside of the above approach is that it cannot
be applied to any given graph, since most graphs are not
isometrically embeddable into a hypercube. The graphs
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which can be isometrically embedded into hypercubes are
known as partial cubes [41, 42].

The identification of which graphs are partial cubes
is an interesting question by itself. The class of partial
cubes is relatively broad. The most important examples
are hypercubes, trees [43] and median graphs [44]. It also
includes other significant classes, e.g. tope graphs of ori-
ented matroids (specially graphs of regions of hyperplane
arrangements) [45, 46], antimatroids [46, 47], weak order-
ings [46], bipartite (6, 3)-graphs [23], tiled partial cubes
[48] and netlike partial cubes [49].

Partial cubes can be fully characterized via Djoković’s
Characterization [50, 51], introduced by Djoković in
1973. It connects the property of isometric embedding to
bipartiteness and convexity of some specific sub-graphs
of the original graph. Here a set is said to be convex if
it is closed under taking shortest paths, i.e., if the short-
est paths between any two points from the set are also
contained in the set. Djoković’s Characterization states,
more specifically, that a connected graph G can be iso-
metrically embedded into a hypercube if and only if G is
bipartite and G(a|b) is convex for each edge (a, b) of G,
where G(a|b) := {x ∈ V (G)| dG(x, a) < dG(x, b)} is the
set of the vertices closer to a than b. In other words, to
check if a graph is a partial cube, one needs to check first
if the graph is bipartite. Apart from that, one chooses an
edge and constructs the set of all vertices that are closer
to one vertex of the chosen edge than the other vertex.
Then one needs to check if all shortest paths connect-
ing any two vertices from this set only pass through the
vertices of the set. If yes, the set is said to be convex
and the same procedure is repeated for another edge of
the original graph. If all sets constructed in this way are
convex, then the graph is a partial cube.

Since the original protocol is unaffected if all distances
are rescaled by a constant factor, the idea of partial cubes
can be expanded by the following definitions.

Definition 2 ([23, 52]). Given two connected and un-

weighted graphs G and H, we write G
k
↪→ H and say that

G is a scale k embedding of H if there exists a mapping
σ : V (G)→ V (H) such that dH(σ(a), σ(b)) = k · dG(a, b)
for all nodes a, b ∈ V (G).

It is clear that partial cubes are just graphs which can
be embedded in a hypercube with a scale 1 embedding.
An example of a graph which is not a partial cube, but
can be embedded in a hypercube with a scale k embed-
ding for k > 1, is a triangle, which embeds into Q3 with
k = 2.

Definition 3 ([51]). A graph G is said to be an `1-graph
if its path metric dG is `1-embeddable, i.e. there is a
map f between V (G) and Rm, for some m, such that
dG(v, w) = ‖f(v)− f(w)‖1.

Theorem 5 ([23]). A graph G is an `1-graph if and only
if it admits a scale embedding into a hypercube.

This means that the graphs we are interested in are
`1-graphs. This class of `1-graphs includes new graphs
that are not partial cubes, e.g. Hamming graphs, half
cubes and Johnson graphs are 2-embeddable into a hy-
percube [23]. In the Appendix we developed a similar
characterization for `1-graphs and the final result is the
following theorem, which is Djokovic’s characterization
without the bipartite requirement.

Theorem 6. A graph G is an `1-graph if and only if
G(a|b) is convex for each edge (a, b) of G.

By allowing the rescaling of all the distances by an
even factor we can relax the bipartite requirement, but
not the convexity of theG(a|b) subgraphs. As an example
of a direct consequence of the above result, it is known
that graphs of the form C2n and C2n�K2 for n ≥ 2 are
partial cubes, where Cn is a cycle on n vertices, Kn is
the complete graph with n vertices, and � denotes the
Cartesian product [41]; therefore all graphs of the form
Cn and Cn�K2, for n ≥ 2, are `1-graphs.

Before stating the communication protocol in the SMP
model to approximately measure the distance between
two vertices in an `1-graph, we state the Johnson-
Lindenstrauss lemma [9, 53, 54], which is going to be
useful to reduce the protocol complexity. Note that we
use Dirac notation for vectors which are not necessarily
normalized.

Lemma 3 (Johnson-Lindenstrauss lemma). Consider
0 < ε < 1/2 and a positive integer n. Then for any
set U of k vectors in Rn, there is a linear map f : Rn →
RO((log k)/ε2) such that for all |u〉, |v〉 ∈ U ,

(1− ε)‖|u〉− |v〉‖2 ≤ ‖f |u〉− f |v〉‖2 ≤ (1 + ε)‖|u〉− |v〉‖2.

To find a map f achieving the bounds of Lemma 3, one
can choose it at random from an appropriate distribution.
A number of different constructions of such random maps
are known; one simple example is a suitably normalised
projection onto a random subspace of Rn.

As mentioned, e.g., in [9], if the set U includes the 0-
vector, then the map f also approximately preserves the
inner product between all the pairs of vectors in U . This
implies the following Lemma.

Lemma 4. Let 0 < ε < 1/2. Let U be a set of unit
vectors in Rn and let f : Rn → Rm be a linear map such
that, for all |u〉, |v〉 ∈ U ∪ {~0},

(1− ε)‖|u〉− |v〉‖2 ≤ ‖f |u〉− f |v〉‖2 ≤ (1 + ε)‖|u〉− |v〉‖2.

Define the unit vectors |ũ〉 = f |u〉/‖f |u〉‖ for all |u〉 ∈ U .
Then ∣∣∣∣∣〈ũ|ṽ〉∣∣− ∣∣〈u|v〉∣∣∣∣∣ ≤ 4ε

for all |u〉, |v〉 ∈ U .
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Proof. For clear notation, define |u′〉 := f |u〉. By the
conditions on f , we have that{

1− ε ≤ 〈u′|u′〉 ≤ 1 + ε,

(1− ε)‖|u〉 − |v〉‖2 ≤ ‖|u′〉 − |v′〉‖2 ≤ (1 + ε)‖|u〉 − |v〉‖2

for all |u〉, |v〉 ∈ U , where the first line was obtained
by taking the 0-vector as one of the vectors and using
linearity of f . From the above inequalities it follows that

(1 + ε)〈u|v〉 − 2ε ≤ 〈u′|v′〉 ≤ (1− ε)〈u|v〉+ 2ε.

These new inequalities in turn lead to

〈ũ|ṽ〉 ≥ (1 + ε)〈u|v〉 − 2ε

1 + ε
≥ 〈u|v〉 − 2ε

and

〈ũ|ṽ〉 ≤ (1− ε)〈u|v〉+ 2ε

1− ε
≤ 〈u|v〉+ 4ε,

using that 0 < ε < 1/2. Therefore∣∣∣∣∣〈ũ|ṽ〉∣∣− ∣∣〈u|v〉∣∣∣∣∣ ≤ ∣∣∣〈ũ|ṽ〉 − 〈u|v〉∣∣∣ ≤ 4ε.

Consider applying Lemma 1 to the normalized quan-

tum states |h̃x〉 and |h̃y〉 that are produced by using
the Johnson-Lindenstrauss lemma, in the sense that the
original states |hx〉, |hy〉 in Lemma 1 are replaced with

the states |h̃x〉, |h̃y〉. We argue that this does not
change the parameters of the lemma substantially. To

see that, we note
∣∣η̃−|〈hy|hx〉|∣∣+∣∣|〈h̃y|h̃x〉|−|〈hy|hx〉|∣∣ ≥∣∣η̃ − |〈h̃y|h̃x〉|∣∣ and hence

∣∣η̃ − |〈h̃y|h̃x〉|∣∣ ≥ 5ε =⇒∣∣η̃ − |〈hy|hx〉|∣∣ ≥ ε, which means

Pr
[∣∣η̃ − |〈h̃y|h̃x〉|∣∣ ≥ 5ε

]
≤ Pr

[∣∣η̃ − |〈hy|hx〉|∣∣ ≥ ε], (13)

where η̃ is as defined in Lemma 1.
With this in mind, and recalling that diam(G) is de-

fined to be the diameter of the graph G, i.e., the great-
est distance between any pair of vertices, we present the
communication protocol.

Protocol 2. Alice and Bob each hold vertices u, v ∈
V (G), respectively, from a graph G which admits a scale
k embedding into a hypercube Qn, for some n. Their ver-
tex images are the n-bit strings x, y ∈ Qn, respectively.
The communication protocol to measure (1 ± ε)dG(u, v)
can be divided into three parts.

First, given d ∈ [1,diam(G)] and a matrix A picked
according to Lemma 2, Alice and Bob encode their n-
bit strings x and y as Ax and Ay, respectively, where
multiplication is over F2. Differently from the original
protocol, Alice and Bob apply the Johnson-Lindenstrauss
lemma to their data Ax and Ay, which are then encoded

into the quantum states |h̃Ax〉 and |h̃Ay〉. There are |V |

possible vectors to encode, so the number of qubits to be
used is reduced from O(log n+log(1/ε)) to O(log log |V |+
log(1/ε)).

Second, Alice and Bob send O((log 1/δ)/ε4) copies of

their quantum states |h̃Ax〉 and |h̃Ay〉 to the referee, who
performs swap tests and estimates the Hamming distance
d(Ax,Ay) up to accuracy Nε with failure probability δ,
and from this decides if d(x, y) ≤ d or d(x, y) ≥ (1 + ε)d.

The third and final part is to apply the first and second
parts to the sequence S of values d

0, 1, 1 + ε, (1 + ε)2, . . . (14)

where the last element in S corresponds to the min-
imal k such that (1 + ε)k+1 > diam(G); there are
O((log diam(G))/ε) elements in the sequence. Based on

the results from the swap tests, the referee outputs d̃ such
that (1− ε)d(x, y) ≤ d̃ ≤ (1 + ε)d(x, y), in the same way
as in Protocol 1.

Setting δ = O(ε/ log diam(G)), the overall communi-
cation complexity is then

O((log diam(G))(log log diam(G))(log log |V |)/ε5), (15)

assuming that ε ≥ 1/(log diam(G)).
The performance of the protocol is limited by the di-

ameter of the graph. It is known that log∆−1 |V | − 2
∆ ≤

diam(G) < |V |, where ∆ is the maximum vertex de-
gree [55]. If diam(G) = O(log |V |), the overall com-
plexity is polyloglog in |V |. On the other hand, if
diam(G) = Θ(|V |), the overall complexity is polylog in
|V |, which is no better than the trivial protocol where
Alice and Bob send their entire inputs to the referee.

A. Lower bound

One can ask if there could exist other protocols sub-
stantially more efficient than ours. In order to answer
this, we prove a lower bound on the quantum communi-
cation complexity for the problem of approximately cal-
culating the graph distance between two vertices on a
graph, which demonstrates that our protocol is essen-
tially optimal in terms of the dependence of its complex-
ity on the graph diameter. We do not know whether the
5th-power dependence on ε is optimal, and suspect that
it may not be.

The idea behind our proof is to transform the approxi-
mate graph distance problem into the problem of approx-
imating the modulus of the difference between two inte-
gers. We then show that two uses of a protocol for this
approximate modulus problem can compute the greater
than function in the one-way communication model. It
was shown by Zhang [56] that the one-way quantum com-
munication complexity of this problem is maximal, im-
proving a previous lower bound of Klauck [57] by a log-
arithmic term. The bound of [56] is used to obtain the
lower bound for the approximate modulus problem, and
hence for the approximate graph distance problem.
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The first step of our proof is to show that two uses of a
protocol for the approximate modulus problem can solve
the greater than function in the one-way communication
model. Consider the greater than problem (GT) defined
by the Boolean function GT : {0, 1}m×{0, 1}m → {0, 1}
as

GT(x, y) =

{
1 if x ≥ y,
0 if x < y,

where x and y are interpreted as m-bit integers. Given
0 ≤ ε < 1, consider the approximate modulus problem
where Alice and Bob are each given an integer x and
y (respectively), each expressed as an m-bit string, and

seek to output d̃ such that (1−ε)|x−y| ≤ d̃ ≤ (1+ε)|x−y|.
Call this problem MODε. In the following we prove that
two uses of this protocol suffice to solve the GT problem.

Let P be a quantum communication protocol in the
one-way communication model which solves a problem f
with failure probability δ. Denote by Q1(P) the commu-
nication cost of the protocol P (in qubits) and denote by
Q1(f) = minP Q

1(P) the minimum communication cost
over all protocols P that solve f with failure probability
1/3.

Lemma 5. For any ε < 1/4, Q1(GT) = O(Q1(MODε)).

Proof. Let PMOD be a communication protocol for
MODε in the one-way communication model with fail-
ure probability 1/6. (We can obtain a protocol
which achieves this failure probability and communicates
O(Q1(MODε)) qubits using O(1) repetitions of the pro-
tocol which achieves failure probability 1/3 and commu-
nicates Q1(MODε) qubits.)

Two uses of PMOD suffice to obtain a communication
protocol for GT in the one-way communication model
with failure probability 1/3 as follows: Alice and Bob
apply the protocol PMOD using x and y as inputs and
Bob obtains z0 ∈ [(1 − ε)|x − y|, (1 + ε)|x − y|]. They
both apply the same protocol again, but now Bob inputs
y + z0 (Alice still inputs x). Bob obtains z1. If z0 < z1,
then x < y and he outputs 0. Otherwise, x ≥ y and he
outputs 1.

To see why this protocol works (assuming that each
use of PMOD succeeds), note that if x < y, then (2 −
ε)|x− y| ≤ |x− y − z0| ≤ (2 + ε)|x− y|, and hence

(2− ε)(1− ε)|x− y| ≤ z1 ≤ (2 + ε)(1 + ε)|x− y|.

If x ≥ y, then 0 ≤ |x− y − z0| ≤ ε|x− y|, and hence

0 ≤ z1 ≤ ε(1 + ε)|x− y|.

For x < y we want to have z0 < z1, i.e. 1 + ε < (2 −
ε)(1 − ε), which holds if ε < 2 −

√
3. And for x ≥ y

we need z0 ≥ z1, i.e. ε(1 + ε) ≤ 1 − ε, which holds if

ε ≤
√

2 − 1. Therefore, by taking ε < 1/4, for example,
one can distinguish the cases x < y and x ≥ y through a
comparison between z0 and z1.

Given that every protocol for MODε in the one-way
communication model implies a protocol for GT, we con-
clude that Q1(GT) = O(Q1(MODε)).

The next step is to reduce the approximate modu-
lus problem to the approximate graph distance problem,
which we achieve as follows. Let G be a graph with diam-
eter diam(G). By the definition of diameter, there exists
a path graph Pn ⊆ G with n = diam(G). Therefore, a
lower bound for the approximate graph distance problem
on Pn implies a lower bound for the same problem on G.

The vertices of Pn can be listed in the order
v1, v2, ..., vn such that the edges are (vi, vi+1), where
i = 1, 2, ..., n − 1. A given vertex vi can then be labeled
by a binary string xi ∈ {0, 1}m, with m = Θ(log n), and
hence, given vi, vj ∈ G, dG(vi, vj) = |xi − xj |. There-

fore, a communication protocol which outputs d̃ such that
(1 − ε)dG(vi, vj) ≤ d̃ ≤ (1 + ε)dG(vi, vj) is equivalent to
a communication protocol which solves MODε on inputs
xi, xj . So computing an approximate modulus reduces
to computing an approximate graph distance.

With this in mind, we can state our lower bound.

Theorem 7. Given a graph G with diameter diam(G),
the quantum communication complexity for the prob-
lem DISε[G] in the one-way communication model with
ε < 1/4 and failure probability 1/3 is Q1(DISε[G]) =
Ω
(

log diam(G)
)
.

Proof. As mentioned before, the approximate graph dis-
tance problem on a path graph Pn ⊆ G with n =
diam(G) should be at least as hard as the same prob-
lem on G, i.e. Q1(DISε[G]) ≥ Q1(DISε[Pn]). More-
over, DISε[Pn] is equivalent to MODε on inputs of size
m = Θ

(
log diam(G)

)
, hence Q1(DISε[G]) ≥ Q1(MODε).

According to Lemma 5, Q1(MODε) = Ω(Q1(GT)),
but Q1(GT) = Θ(m) [56], therefore Q1(DISε[G]) =
Ω
(

log diam(G)
)
.

The above result for the one-way communication
model also holds for the SMP model. It then states that
our communication protocol is optimal in terms of its
dependence on diam(G).

IV. MEASURING `1 DISTANCES

As seen in the previous sections, our communication
protocol for approximating the Hamming distance can
be adapted to `1-graphs. A graph G is said to be an `1-
graph if there exist vectors u1, ..., un ∈ Rm for some m,
and with n = |V (G)|, such that dG(vi, vj) = ‖ui − uj‖1
for all vi, vj ∈ V (G). This connection between graphs
and `1-norm suggests an application of our approximate
Hamming distance protocol to `1 distances. More specif-
ically, consider the following problem: Alice and Bob are
each given a vector x, y (respectively) from [−1, 1]d. Each
entry of each vector is specified by k bits, for some k (1
bit to specify the sign, and k − 1 bits z1, . . . , zk−1 to
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specify a binary fraction z12−1 +z22−2 + · · ·+zk−121−k).
Alice and Bob’s task is to approximate the `1 distance
between x and y up to relative error ε in the SMP model.

A natural special case of this problem is where Al-
ice and Bob are each given a probability distribution
x, y ∈ Rd, respectively, and are asked to approximately
compute the `1 distance between them (equivalently, the
total variation distance, which is defined as half the `1
distance). This corresponds to the special case where
xi, yi ≥ 0 for all i, and

∑
i xi =

∑
i yi = 1.

Alice and Bob can use our approximate Hamming dis-
tance protocol to approximately compute ‖x − y‖1: the
idea is to map these vectors into a Hamming metric
via a unary representation [58]. Each entry z ∈ [−1, 1]
of each vector is mapped to a 2k-bit string s(z) such
that the first 2k−1(z + 1) bits of s(z) are set to 1, and
the remaining bits are set to 0. Then, for any z, w,
|z−w| = d(s(z), s(w))/2k−1. Letting s(x) denote the re-
sult of applying this map to each entry of x and concate-
nating the results, we have ‖x−y‖1 = d(s(x), s(y))/2k−1

for bit strings s(x), s(y) of length m = 2kd. So we can
use our usual communication protocol (Protocol 1) to
deliver an estimate of ‖x− y‖1 up to relative error ε us-
ing O((log2m)(log logm)/ε5) qubits of communication,
which is O((log2 d)(log log d)/ε5) when k ≤ log d.

The use of a unary representation may seem wasteful,
but a straightforward binary representation would not
preserve distances correctly for all inputs. There is also
a lower bound that the communication complexity of this
problem must have at least a linear dependence on k: by
the lower bound on the complexity of the MODε problem
that follows from Lemma 5, Ω(k) bits of communication
are required to approximately compute ‖x−y‖1 even for
d = 1. Finally, the protocol can easily be extended to
the setting where x, y ∈ [−M,M ]d, for some M ≥ 1, by
rescaling the vectors appropriately.

V. CONCLUSIONS

We developed an efficient quantum communication
protocol to approximately compute the Hamming dis-
tance between two n-bit strings in the SMP model up to
relative error ε, which uses Õ((log n)2/ε5) qubits of com-
munication, whereas any classical communication proto-

col needs to transmit at least Ω(
√
n) bits. We stress that

the protocol approximates the Hamming distance up to a
relative, and not additive, error, so that small Hamming
distances are approximated accurately.

The Hamming distance protocol was modified to ap-
proximate the distance between any two vertices in a
graph. This modification was based on embedding the
graph into a subgraph of the Hamming cube such that all
distances are preserved up to a constant factor. This re-
quirement restricts the class of graphs to which the orig-
inal Hamming distance protocol can be applied. Graphs
with this property are known as `1-graphs. The mod-
ified quantum communication protocol to approximate
the vertex distance in `1-graphs in the SMP model up
to relative error ε transmits Õ(log(diam(G))/ε5) qubits,
where diam(G) is the diameter of the graph, so the pro-
tocol is only efficient for low diameter graphs. A lower
bound on the number of communicated qubits needed to
approximate the vertex distance shows that this limita-
tion of our protocol is due to the problem itself. More
specifically, we proved that any one-way quantum proto-
col to approximate the distance between any two vertices
in a graph needs to communicate at least Ω(log diam(G))
qubits. Finally, the original Hamming distance protocol
was also modified to approximate the `1-norm between
two vectors x, y ∈ [−1, 1]d specified by k ≤ log d bits.

Two interesting questions remain open: can one find
a similar result to Theorem 2 which holds for all graphs,
without the restriction to `1-graphs? And can one im-
prove the communication complexity dependence on ε,
currently at 1/ε5?

No new data were created during this study.
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Appendix A: `1-Graphs Characterization

In this appendix we shall prove Theorem 6. Remember
that G(a|b) := {x ∈ V (G)| dG(x, a) < dG(x, b)}.

Theorem 6. A graph G is an `1-graph if and only if
G(a|b) is convex for each edge (a, b) of G.

This theorem is a generalization of Djoković’s Char-
acterization [50, 51] for partial cubes by introducing the
concept of scale k embedding, which is linked to the con-
cept of `1-graphs. A partial cube is then just a special
case of `1-graphs.

While the idea of scale k embedding and some of its
properties related to partial cubes were already stud-
ied, we could not find a clear and direct characteriza-
tion for `1-graphs as it is stated in Theorem 6, similar
to Djoković’s. For example, in [52] it is proved that a
graph is embeddable into a hypercube with an odd scale
if and only if it is 1-embeddable into a hypercube, mean-
ing that odd scale embeddings do not add anything new.
This makes sense since an odd scale embedding cannot
alter the bipartiteness requirement.

The proof of the theorem is sketched as follows. The
direction (i) =⇒ (ii) is a direct generalization of
Djoković’s proof (see [51]). On the other hand, the direc-
tion (ii) =⇒ (i) does not follow Djoković’s proof, but
instead introduces the idea of a k-rescaling map which
transforms a given connected and unweighted graph into
a new graph by adding k−1 new vertices on each original
edge. In this way, the original distances are rescaled by a
factor of k. We show in Lemma 7 that if k is even, then
this new graph is bipartite. Also, we show in Lemma 9
that this map preserves the convexity of subgraphs. This
means that, if the sets G(a|b) are convex for each edge
(a, b), then the new rescaled graph will fulfill the require-
ments from Djoković’s Characterization for k even and
is, therefore, a partial cube. Since the original vertices
are a subset of the new ones, the original graph is an
`1-graph.

In all the following, let G = (V,E) be a connected and
unweighted graph. We start by proving (i) =⇒ (ii).

Lemma 6. If G is an `1-graph, then G(a|b) is convex
for each edge (a, b) of G.

Proof. Let (a, b) be an edge of G, let x, y ∈ G(a|b) and
z ∈ V (G) lying on a shortest path from x to y. Consider a
hypercube scale k embedding σk : V → Qn in which node
a is labeled by σk(a) = 0n (where cj = ccc · · · c means c
repeated j times), node b is labeled by σk(b) = 1k0n−k

and nodes x, y, z are labeled by the strings X,Y, Z. Given
a n-bit string A, we define its i-th bit as Ai.

We first prove that v ∈ G(a|b) if and only if [σk(v)]i 6= 1
for i ∈ [1, k]. Consider that [σk(v)]i 6= 1 for i ∈ [1, k].
Therefore dQn

(σk(v), σk(b)) = k+ dQn
(σk(v), σk(a)) and

hence v is closer to a than b, i.e., v ∈ G(a|b). Now con-
sider that v ∈ G(a|b). This means dQn

(σk(v), σk(a)) = lk
and dQn

(σk(v), σk(b)) = (l + 1)k for some l ∈ N. Sup-
pose that [σk(v)]i = 1 for m indices i in [1, k]. There-
fore dQn(σk(v), σk(b))− k+m = dQn(σk(v), σk(a))−m,
which gives (l + 1)k − k +m = lk −m =⇒ m = 0, i.e.,
[σk(v)]i 6= 1 for i ∈ [1, k].

Given this, then Xi, Yi 6= 1 for i ∈ [1, k], and
dQn

(X,Y ) = dQn
(X,Z) + dQn

(Z, Y ) since dG(x, y) =
dG(x, z)+dG(z, y). This implies that Zi 6= 1 for i ∈ [1, k],
i.e., z ∈ G(a|b). This shows that the set G(a|b) is con-
vex.

To prove (ii) =⇒ (i), we first make the following
definitions.

Definition 4. Let Gk : G→ G(k) be the k-rescaling map
which adds k − 1 new nodes on every edge e ∈ E. The
resulting graph G(k) = (V (k), E(k)) is called the k-rescaled
image of G. Also, G(1) = G. It is straightforward that
|E(k)| = k|E| and |V (k)| = |V |+ (k − 1)|E|.

Definition 5. Let v ∈ V . We define G ⊕ (v, v′) as the
graph G′ = (V ′, E′) obtained by connecting an extra node
v′ to the node v, so that V ′ = V ∪ {v′} and E′ = E ∪
(v, v′). If v′ = v, we define G⊕ (v, v) = G.
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Definition 6. Let Gk : G → G(k). Given (u, v) ∈ E,
we define the set V (k)(u, v) := {w ∈ V (k)| dG(k)(u,w) <
k and dG(k)(v, w) < k}.

The set V (k)(u, v) is just the nodes added between the
nodes u, v ∈ V . With the above definition, V (k) = V ∪(⋃

e∈E V
(k)(e)

)
.

We now state the following auxiliary lemmas.

Lemma 7. The k-rescaled image G(k) of G is bipartite
if k is even.

Proof. A graph G is bipartite if and only if it does not
contain an odd cycle. If G does not have cycles, then
neither does G(k), since the k-rescaling map Gk cannot
create cycles. Therefore G(k) is bipartite. Now suppose
G has cycles. Given a cycle S ⊆ V , its k-rescaled image
S(k) = Gk(S) is such that |S(k)| = k|S|. If S is an even
cycle, then so is S(k). If S is an odd cycle, then S(k) is an
even cycle if k is even. Therefore S(k) cannot have odd
cycles for k even and hence is bipartite.

Lemma 8. Let S ⊆ V and v ∈ S. Take a completely new
vertex v′ /∈ V . Construct the new graph G′ = G⊕ (v, v′)
and consider the new subset S′ = S∪{v′}. If S is convex,
then so is S′.

Proof. Let x, y ∈ S′ and z ∈ V ∪ {v′} be such that
dG′(x, y) = dG′(x, z) + dG′(y, z). We have two cases:
Either x, y ∈ S or, without loss of generality, x = v′

and y ∈ S. If x, y ∈ S, then it is straightforward that
z 6= v′, otherwise the node v ∈ S would be traversed
twice. Therefore z ∈ V and since S is convex, z ∈ S ⊂ S′
and S′ is convex. On the other hand, if x = v′ and
y ∈ S, the fact that v′ is only connected to v implies
that dG′(v′, y) = dG′(v′, z) + dG′(y, z) ⇐⇒ dG(v, y) =
dG(v, z)+dG(y, z), which, together with S being convex,
means that z ∈ S ⊂ S′.

Lemma 9. Let G(k) = (V (k), E(k)) be the k-rescaled
image of G. Then S ⊆ V is convex if and only if
S(k) = Gk(S) ⊆ V (k) is convex.

Proof. We start by proving S convex =⇒ S(k) convex.
Given U ⊆ V , we write U (k) = U ∪ U ′, where U ′ =⋃
e∈E U

(k)(e) is the set of added nodes. Let x, y ∈ S(k)

and z ∈ V (k) be such that dG(k)(x, y) = dG(k)(x, z) +
dG(k)(z, y). We will show that z ∈ S(k). Let us define the
sets A = {a ∈ V | dG(k)(x, y) = dG(k)(x, a) + dG(k)(a, y)}
and A′ = {a ∈ V ′| dG(k)(x, y) = dG(k)(x, a)+dG(k)(a, y)},
i.e., A is the set of original nodes that lie in the shortest
path between x and y, while A′ is the set of added nodes
that lie in the shortest path between x and y. Note that
z ∈ A ∪ A′. Suppose A = ∅. This means that x, y ∈
S(k)(e) for some edge e ∈ E. Therefore we must have
z ∈ S(k)(e) ⊆ S(k).

Now suppose A 6= ∅. Let a(x), a(y) ∈ A be the closest
nodes to x and y, respectively. We must have a(x) ∈ S
(and a(y) ∈ S) since either x ∈ S and then a(x) = x, or

x ∈ S(k)(e) for some edge e, and then a(x) is an endnode
of e. We can have two situations: either a(x) = a(y) or
a(x) 6= a(y).

Suppose a(x) = a(y). Since x 6= y, this means that x ∈
S(k)(a(x), v1) and y ∈ S(k)(a(x), v2), for some v1, v2 ∈ V
such that v1 6= v2, i.e., they are added nodes to two
different edges with the common node a(x). Therefore
either z ∈ S(k)(a(x), v1) or z ∈ S(k)(a(x), v2) or z = a(x),
which lead to z ∈ S(k).

Suppose then that a(x) 6= a(y). Consider for now
that z ∈ A. Since S is convex and dG(k)(a(x), a(y)) =
dG(k)(a(x), z) + dG(k)(a(y), z) ⇐⇒ dG(a(x), a(y)) =
dG(a(x), z) + dG(a(y), z), we conclude that z ∈ S, i.e.
A ⊆ S. Now consider that z ∈ A′, so z ∈ V (k)(v1, v2)
for some nodes v1, v2 ∈ V . We must have v1, v2 ∈ S.
Indeed, if x ∈ V (k)(v1, v2) (or y), by construction x ∈
S(k) and x ∈ V (k)(v1, v2) =⇒ v1, v2 ∈ S. And if
x, y /∈ V (k)(v1, v2), it implies that v1, v2 ∈ A ⊆ S. Hence
z ∈ S(k)(v1, v2) ⊆ S(k). Thus z ∈ S(k) in all cases, so
S(k) is convex.

We now prove the other direction, S(k) convex =⇒
S convex. Let x, y ∈ S and z ∈ V be such that
dG(x, y) = dG(x, z) + dG(z, y). Suppose z /∈ S. Re-
membering the equivalence between dG(k) and dG, this
implies that ∃z ∈ V ⊂ V (k) but z /∈ S(k) such that
dG(k)(x, y) = dG(k)(x, z) + dG(k)(z, y) for x, y ∈ S ⊂ S(k),
which is a contradiction since S(k) is convex. We con-
clude that z ∈ S and S is convex.

The above lemmas lead to the following one.

Lemma 10. Let G(k) = (V (k), E(k)) be the k-rescaled
image of G. If G(a|b) is convex for each (a, b) ∈ E, then
G(k)(a′|b′) is also convex for each (a′, b′) ∈ E(k).

Proof. Consider the edge (a′, b′) ∈ E(k) such that a′, b′ ∈
{a, b} ∪ V (k)(a, b) for a, b ∈ V , i.e., (a, b) ∈ E is the
original edge. We note that the subgraph G(k)(a′|b′) is
just Gk

(
G(a|b)

)
⊕ (a,w1) ⊕ (w1, w2) ⊕ · · · ⊕ (wj , a

′) for

j = dG(k)(a, a′)−1 (if dG(k)(a, a′) = 1, then Gk
(
G(a|b)

)
⊕

(a, a′), and if a = a′, then just Gk
(
G(a|b)

)
). Since G(a|b)

is convex, by Lemma 9 Gk
(
G(a|b)

)
is also convex, and

by Lemma 8 G(k)(a′|b′) is convex.

Finally, with the above lemmas, we can prove (ii) =⇒
(i) in Theorem 6.

Lemma 11. If G(a|b) is convex for each edge (a, b) of
G, then G is an `1-graph.

Proof. Consider the k-rescaled graph G(k) = (V (k), E(k))
corresponding to G for k even. By Lemma 7, G(k) is
bipartite. By Lemma 10, G(k)(a′|b′) is convex for each
(a′, b′) ∈ E(k). Therefore, by Djokovic’s characteriza-
tion G(k) can be isometrically embedded into a hyper-
cube [50]. Since V ⊂ V (k), we conclude that G can be
k-embedded into the same hypercube, i.e., it is an `1-
graph.
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