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Abstract

Monte Carlo methods use random sampling to estimate numerical quantities which are hard
to compute deterministically. One important example is the use in statistical physics of rapidly
mixing Markov chains to approximately compute partition functions. In this work we describe
a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The
algorithm estimates the expected output value of an arbitrary randomised or quantum subrou-
tine with bounded variance, achieving a near-quadratic speedup over the best possible classical
algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of
the fastest known classical algorithms with rigorous performance bounds for computing partition
functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algo-
rithm can also be used to estimate the total variation distance between probability distributions
efficiently.

1 Introduction

Monte Carlo methods are now ubiquitous throughout science, in fields as diverse as statistical
physics [37], microelectronics [30] and mathematical finance [23]. These methods use randomness
to estimate numerical properties of systems which are too large or complicated to analyse deter-
ministically. In general, the basic core of Monte Carlo methods involves estimating the expected
output value p of a randomised algorithm 4. The natural algorithm for doing so is to produce k
samples, each corresponding to the output of an independent execution of A, and then to output
the average 1 of the samples as an approximation of . Assuming that the variance of the random
variable corresponding to the output of A is at most o2, the probability that the value output by
this estimator is far from the truth can be bounded using Chebyshev’s inequality:
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It is therefore sufficient to take k = O(0?/€?) to estimate p up to additive error € with, say, 99%
success probability. This simple result is a key component in many more complex randomised
approximation schemes (see e.g. [50, 37]).

Although this algorithm is fairly efficient, its quadratic dependence on o /e seems far from ideal:
for example, if 0 = 1, to estimate u up to 4 decimal places we would need to run A over 100 million
times. Unfortunately, it can be shown that, without any further information about A, the sample
complexity of this algorithm is asymptotically optimal [15] with respect to its scaling with o and
€, although it can be improved by a constant factor [29].
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We show here that, using a quantum computer, the number of uses of A required to approximate
1 can be reduced almost quadratically beyond the above classical bound. Assuming that the
variance of the output of the algorithm A is at most o2, we present a quantum algorithm which
estimates p up to additive error €, with 99% success probability, using A only 6(0/ €) times!. Tt
follows from known lower bounds on the quantum complexity of approximating the mean [45] that
the runtime of this algorithm is optimal, up to polylogarithmic factors. This result holds for an
arbitrary algorithm A used as a black box, given only an upper bound on the variance.

An important aspect of this construction is that the underlying subroutine A need not be a
classical randomised procedure, but can itself be a quantum algorithm. This enables any quantum
speedup obtained by A to be utilised within the overall framework of the algorithm. A particu-
lar case in which this is useful is quantum speedup of Markov chain Monte Carlo methods [38].
Classically, such methods use a rapidly mixing Markov chain to approximately sample from a
probability distribution corresponding to the stationary distribution of the chain. Quantum walks
are the quantum analogue of random walks (see e.g. [57] for a review). In some cases, quantum
walks can reduce the mixing time quadratically (see e.g. [3, 58]), although it is not known whether
this can be achieved in general [48, 6, 18]. We demonstrate that this known quadratic reduction
can be combined with our algorithm to speed up the fastest known general-purpose classical algo-
rithm with rigorous performance bounds [50] for approximately computing partition functions up
to small relative error, a fundamental problem in statistical physics [37]. As another example of
how our algorithm can be applied, we substantially improve the runtime of a quantum algorithm
for estimating the total variation distance between two probability distributions [13].

1.1 Prior work

The topic of quantum estimation of mean output values of algorithms with bounded variance con-
nects to several previously-explored directions. First, it generalises the problem of approximating
the mean, with respect to the uniform distribution, of an arbitrary bounded function. This has
been addressed by a number of authors. The first asymptotically optimal quantum algorithm for
this problem, which uses O(1/€) queries to achieve additive error €, seems to have been given by
Heinrich [27]; an elegant alternative optimal algorithm was later presented by Brassard et al. [11].
Previous algorithms, which are optimal up to lower-order terms, were described by Grover [25],
Aharonov [2] and Abrams and Williams [1]. Using similar techniques to Brassard et al., Wocjan et
al. [59] described an efficient algorithm for estimating the expected value of an arbitrary bounded
observable. It is not difficult to combine these ideas to approximate the mean of arbitrary bounded
functions with respect to nonuniform distributions (see Section 2.1).

One of the main technical ingredients in the present paper is based on an algorithm of Heinrich
for approximating the mean, with respect to the uniform distribution, of functions with bounded
L? norm [27]. Section 2.2 describes a generalisation of this result to nonuniform distributions,
using similar techniques. This is roughly analogous to the way that amplitude amplification [12]
generalises Grover’s quantum search algorithm [24].

The related problem of quantum estimation of expectation values of observables, an important
task in the simulation of quantum systems, has been studied by Knill, Ortiz and Somma [36]. These
authors give an algorithm for estimating tr(Ap) for observables A such that one can efficiently
implement the operator e~*4f. The algorithm is efficient (i.e. achieves runtimes close to O(1/e))
when the tails of the distribution tr(Ap) decay quickly. However, in the case where one only knows

'The O notation hides polylogarithmic factors.



Algorithm | Precondition Approximation of ;1 | Uses of A and A1
1 v(A) € ]0,1] Additive error € O(1/¢)
3 Var(v(A)) < o2 Additive error e O(c/e)
4 Var(v(A))/(E[v(A)])? < B | Relative error e O(B/e)

Table 1: Summary of the main quantum algorithms presented in this paper for estimating the mean
output value p of an algorithm A. (Algorithm 2, omitted, is a subroutine used in Algorithm 3.)

an upper bound on the variance of this distribution, the algorithm does not achieve a better runtime
than classical sampling. Yet another related problem, that of exact Monte Carlo sampling from a
desired probability distribution, was addressed by Destainville, Georgeot and Giraud [17]. Their
quantum algorithm, which uses Grover’s algorithm as a subroutine, achieves roughly a quadratic
speedup over classical exact sampling. This algorithm’s applicability is limited by the fact that its
runtime scaling can be as slow as O(v/N), where N is the number of states of the system; we often
think of NV as being exponential in the input size.

Quantum algorithms have been used previously to approximate classical partition functions and
solve related problems. In particular, a number of authors [40, 39, 4, 56, 21, 7, 22, 16, 43] have
considered the complexity of computing Ising and Potts model partition functions. These works
in some cases achieve exponential quantum speedups over the best known classical algorithms.
Unfortunately, they in general either produce an approximation accurate up to a specified additive
error bound, or only work for specific classes of partition function problems with restrictions on
interaction strengths and topologies, or both. Here we aim to approximate partition functions up
to small relative error in a rather general setting.

Using related techniques to the present work, Somma et al. [49] used quantum walks to accelerate
classical simulated annealing processes, and quantum estimation of partition functions up to small
relative error was addressed by Wocjan et al. [59]. Their algorithm, which is based on the use of
quantum walks and amplitude estimation, achieves a quadratic speedup over classical algorithms
with respect to both mixing time and accuracy. However, it cannot be directly applied to accelerate
the most efficient classical algorithms for approximating partition function problems, which use
so-called Chebyshev cooling schedules (discussed in Section 3). This is essentially because these
algorithms are based around estimating the mean of random variables given only a bound on the
variance. This was highlighted as an open problem in [59], which we resolve here.

Several recent works have developed quantum algorithms for the quantum generalisation of
sampling from a Gibbs distribution: producing a Gibbs state p «x e #H for some quantum Hamil-
tonian H [53, 47, 52, 60]. Given such a state, one can measure a suitable observable to compute
some quantity of interest about H. Supplied with an upper bound on the variance of such an ob-
servable, the procedure detailed here can be used (as for any other quantum algorithm) to reduce
the number of repetitions required to estimate the observable to a desired accuracy.

1.2 Techniques

We now give an informal description of our algorithms, which are summarised in Table 1 (for
technical details and proofs, see Section 2). For any randomised or quantum algorithm A, we write
v(A) for the random variable corresponding to the value computed by A, with the expected value of
v(.A) denoted E[v(.A)]. For concreteness, we think of A as a quantum algorithm which operates on
n qubits, each initially in the state |0), and whose quantum part finishes with a measurement of k



of the qubits in the computational basis. Given that the measurement returns outcome z € {0, 1}*,
the final output is then ¢(x), for some fixed function ¢ : {0,1}¥ — R. If A is a classical randomised
algorithm, or a quantum circuit using (for example) mixed states and intermediate measurements,
a corresponding unitary quantum circuit of this form can be produced using standard reversible-
computation techniques [5]. As is common in works based on quantum amplitude amplification
and estimation [12], we also assume that we have the ability to execute the algorithm A~!, which
is the inverse of the unitary part of A. If we do have a description of A as a quantum circuit, this
can be achieved simply by running the circuit backwards, replacing each gate with its inverse.

We first deal with the special case where the output of A is bounded between 0 and 1. Here a
quantum algorithm for approximating p := E[v(A)] quadratically faster than is possible classically
can be found by combining ideas from previously known algorithms [27, 11, 59]. We append
an additional qubit and define a unitary operator W on k + 1 qubits which performs the map
|£)]0) — |z)(\/1 — ¢(x)]0) + /¢(x)|1)). If the final measurement of the algorithm A is replaced
with performing W, then measuring the added qubit, the probability that we receive the answer
1 is precisely u. Using quantum amplitude estimation [12] the probability that this measurement
returns 1 can be estimated to higher accuracy than is possible classically. Using ¢ iterations of
amplitude estimation, we can output an estimate g such that | — p| = O(y//t + 1/t*) with high
probability [12]. In particular, O(1/e) iterations of amplitude estimation are sufficient to produce
an estimate 1 such that |z — p| < e with, say, 99% probability.

The next step is to use the above algorithm as a subroutine in a more general procedure
that can deal with algorithms A whose output is non-negative, has bounded ¢ norm, but is not
necessarily bounded between 0 and 1. That is, algorithms for which we can control the expression

lv(A)]l5 := /E[v(A)?]. The procedure for this case generalises, and is based on the same ideas as,
a previously known result for the uniform distribution [27].

The idea is to split the output of A up into disjoint intervals depending on size. Write A, ,
for the “truncated” algorithm which outputs v(A) if p < v(A) < ¢, and otherwise outputs 0. We
estimate p by applying the above algorithm to estimate E[v(A, )] for a sequence of O(log1/e)
intervals which are exponentially increasing in size, and summing the results. As the intervals [p, ¢)
get larger, the accuracy with which we approximate E[v(A, ;)] decreases, and values v(A) larger
than about 1/e are ignored completely. However, the overall upper bound on ||v(.A)||, allows us to
infer that these larger values do not affect the overall expectation p much; indeed, if 1 depended
significantly on large values in the output, the 2 norm of v(A) would be high.

The final result is that for ||v(A)||, = O(1), given appropriate parameter choices, the estimate
 satisfies |;r — p| = O(e) with high probability, and the algorithm uses A O(1/¢) times in total.
This scaling is a near-quadratic improvement over the best possible classical algorithm.

We next consider the more general case of algorithms .4 which have bounded variance, but whose
output need not be non-negative, nor bounded in ¢5 norm. To apply the previous algorithm, we
would like to transform the output of A to make its £2 norm low. If v(.A) has mean p and variance
upper-bounded by o2, a suitable way to achieve this is to subtract x from the output of A, then
divide by . The new algorithm’s output would have ¢5 norm upper-bounded by 1, and estimating
its expected value up to additive error ¢/o would give us an estimate of 1 up to e. Unfortunately,
we of course do not know g initially, so cannot immediately implement this idea. To approximately
implement it, we first run A once and use the output 7m as a proxy for u. Because Var(v(A)) < o2,
m is quite likely to be within distance O(o) of u. Therefore, the algorithm B produced from A by
subtracting m and dividing by ¢ is quite likely to have £» norm upper-bounded by a constant. We
can thus efficiently estimate the positive and negative parts of E[v(B)] separately, then combine



and rescale them. The overall algorithm achieves accuracy e in time O(c/€).

A similar idea can be used to approximate the expected output value of algorithms for which
we have a bound on the relative variance, namely that Var(v(A)) = O(p?). In this setting it turns
out that O(1/e) uses of A suffice to produce an estimate pi accurate up to relative error e, i.e. for
which |z — p| < eu. This is again a near-quadratic improvement over the best possible classical
algorithm.

1.3 Approximating partition functions

In this section we discuss (with details in Section 3) how these algorithms can be applied to the
problem of approximating partition functions. Consider a (classical) physical system which has
state space (2, together with a Hamiltonian H :  — R specifying the energy of each configuration?
x € Q. Here we will assume that H takes integer values in the set {0,...,n}. A central problem is
to compute the partition function

2(8) = Y e )

€

for some inverse temperature 3 defined by 8 = 1/(kgT), where T is the temperature and kp is
Boltzmann’s constant. As well as naturally encapsulating various models in statistical physics, such
as the Ising and Potts models, this framework also encompasses well-studied problems in computer
science, such as counting the number of valid k-colourings of a graph. In particular, Z(oo) counts
the number of configurations = such that H(z) = 0. It is often hard to compute Z(j) for large
B but easy to approximate Z(f) ~ || for 8 ~ 0. In many cases, such as the Ising model, it is
known that computing Z(co) exactly falls into the #P-complete complexity class [34], and hence
is unlikely to admit an efficient quantum or classical algorithm.

Here our goal will be to approximate Z(3) up to relative error €, for some small e. That is, to
output Z such that |Z — Z(8)| < € Z(8), with high probability. For simplicity, we will focus on
B = oo in the following discussion, but it is easy to see how to generalise to arbitrary .

Let 0= 5y < 81 < -+ < By = o0 be a sequence of inverse temperatures. A standard classical
approach to design algorithms for approximating partition functions [55, 19, 10, 50, 59] is based
around expressing Z () as the telescoping product

Z(B1) Z(B2) Z(Br)
Z(Bo) Z(B1)  Z(Be—1)

If we can compute Z(fy) = |2, and can also approximate each of the ratios o := Z(B;+1)/Z (i)
accurately, taking the product will give a good approximation to Z(fy). Let m; denote the Gibbs
(or Boltzmann) probability distribution corresponding to inverse temperature f3;, where

Z(Be) = Z(fo)

mi(x) = Z(lﬂz) e BiH (x)

To approximate «; we define the random variable

Yi(x) = e~ (Bit1—Bi)H(z)

Then one can readily compute that E,[Y;] = «a;, so sampling from each distribution 7; allows us
to estimate the quantities «;. It will be possible to estimate «; up to small relative error efficiently

*We use z to label configurations rather than the more standard o to avoid confusion with the variance.



if the ratio E[Y;?]/E[Y;)? is low. This motivates the concept of a Chebyshev cooling schedule [50]:
a sequence of inverse temperatures 3; such that E[Y;?]/E[Y;]> = O(1) for all i. It is known that,
for any partition function problem as defined above such that |2| = A, there exists a Chebyshev

cooling schedule with ¢ = O(y/log A) [50].

It is sufficient to approximate E[Y;] up to relative error O(e/f) for each i to get an overall
approximation accurate up to relative error e. To achieve this, the quantum algorithm presented
here needs to use at most O(f/¢) samples from Y;. Given a Chebyshev cooling schedule with ¢ =

O(v/log A), the algorithm thus uses O((log A)/€) samples in total, a near-quadratic improvement
in terms of € over the complexity of the fastest known classical algorithm [50].

In general, we cannot exactly sample from the distributions m;. Classically, one way of approx-
imately sampling from these distributions is to use a Markov chain which mixes rapidly and has
stationary distribution ;. For a reversible, ergodic Markov chain, the time required to produce
such a sample is controlled by the relazation time 7 := 1/(1 — |A\1]) of the chain, where \; is the
second largest eigenvalue in absolute value [38]. In particular, sampling from a distribution close
to m; in total variation distance requires (1) steps of the chain.

It has been known for some time that quantum walks can sometimes mix quadratically faster [3].
One case where efficient mixing can be obtained is for sequences of Markov chains whose stationary
distributions 7 are close [58]. Further, for this special case one can approximately produce coherent
“quantum sample” states |7) = > o \/7(z)|z) efficiently. Here we can show (Section 3.2) that the
Chebyshev cooling schedule condition implies that each distribution in the sequence 71,..., 71
is close enough to its predecessor that we can use techniques of [58] to approximately produce any
state |m;) using 5(€ﬁ) quantum walk steps each. Using similar ideas we can approximately reflect

about |m;) using only O(1/7) quantum walk steps.

Approximating E[Y;] up to relative error O(e//) using our algorithm requires one quantum sam-
ple approximating |7;), and O(£/€) approximate reflections about |7;). Therefore, the total number
of quantum walk steps required for each i is 6(€ﬁ /€). Summing over i, we get a quantum algo-
rithm for approximating an arbitrary partition function up to relative error € using 5((log A)\T/€)
quantum walk steps. The fastest known classical algorithm [50] exhibits quadratically worse de-
pendence on both 7 and e.

In the above discussion, we have neglected the complexity of computing the Chebyshev cool-
ing schedule itself. An efficient classical algorithm for this task is known [50], which runs in
time O((log A)7). Adding the complexity of this part, we finish with an overall complexity of

O((log A)y/7(\/T + 1/€)). We leave the interesting question open of whether there exists a more
efficient quantum algorithm for finding a Chebyshev cooling schedule.

1.4 Applications

We now sketch several representative settings (for details, see Section 3.4) in which our algorithm
for approximating partition functions gives a quantum speedup.

e The ferromagnetic Ising model above the critical temperature. This well-studied statis-
tical physics model is defined in terms of a graph G = (V, E) by the Hamiltonian H(z) =
= 2 (uw)eE Zuzv, Where [V| =n and 2z € {+1}". The Markov chain known as the Glauber
dynamics is known to mix rapidly above a certain critical temperature and to have as its
stationary distribution the Gibbs distribution. For example, for any graph with maximum
degree O(1), the mixing time of the Glauber dynamics for sufficiently low inverse temperature
B is O(nlogn) [44]. In this case, as A = 2", the quantum algorithm approximates Z(53) to



within relative error e in O(n?/2 /e 4+ n?) steps. The corresponding classical algorithm [50]
uses O(n?/€?) steps.

e Counting colourings. Here we are given a graph G with n vertices and maximum degree
d. We seek to approximately count the number of valid k-colourings of GG, where a colouring
of the vertices is valid if all pairs of neighbouring vertices are assigned different colours. In
the case where k > 2d, the use of a rapidly mixing Markov chain gives a quantum algorithm
approximating the number of colourings of G up to relative error € in time 6(713/ 2/e +n?),
as compared with the classical O(n2/e2) [50].

e Counting matchings. A matching in a graph G is a subset M of the edges of G such
that no pair of edges in M shares a vertex. In statistical physics, matchings are studied
under the name of monomer-dimer coverings [26]. Our algorithm can approximately count
the number of matchings on a graph with n vertices and m edges in O(n*?m1/? Je 4+ n’m)
steps, as compared with the classical O(n?m/e?) [50].

Finally, as another example of how our algorithm can be applied, we improve the accuracy
of an existing quantum algorithm for estimating the total variation distance between probability
distributions. In this setting, we are given the ability to sample from probability distributions p
and ¢ on n elements, and would like to estimate the distance between them up to additive error
€. A quantum algorithm of Bravyi, Harrow and Hassidim solves this problem using O(y/n/e®)
samples [13], while no classical algorithm can achieve sublinear dependence on n [54].

Quantum mean estimation can significantly improve the dependence of this quantum algorithm
on €. The total variation distance between p and ¢ can be described as the expected value of the

random variable R(z) = %, where z is drawn from the distribution » = (p + ¢)/2 [13].

For each z, R(z) can be computed up to accuracy e using O(y/n/e/2) iterations of amplitude
estimation. Wrapping this within O(1/¢) iterations of the mean-estimation algorithm, we obtain
an overall algorithm running in time O(y/n/€*/?). See Section 4 for details.

2 Algorithms

We now give technical details, parameter values and proofs for the various algorithms described
informally in Section 1.2. Recall that, for any randomised or quantum algorithm A, we let v(.A)
be the random variable corresponding to the value computed by A. We assume that A takes no
input directly, but may have access to input (e.g. via queries to some black box or “oracle”) during
its execution. We further assume throughout that A is a quantum algorithm of the following form:
apply some unitary operator to the initial state |0"); measure k < n qubits of the resulting state in
the computational basis, obtaining outcome 2 € {0, 1}*; output ¢(z) for some easily computable
function ¢ : {0,1}* — R. We finally assume that we have access to the inverse of the unitary part
of the algorithm, which we write as A~

Lemma 1 (Powering lemma [35]). Let A be a (classical or quantum) algorithm which aims to
estimate some quantity u, and whose output |1 satisfies |u — | < € except with probability v, for
some fized v < 1/2. Then, for any 6 > 0, it suffices to repeat A O(log1/d) times and take the
median to obtain an estimate which is accurate to within € with probability at least 1 — §.

We will also need the following fundamental result from [12]:



Theorem 2 (Amplitude estimation [12]). There is a quantum algorithm called amplitude es-
timation which takes as input one copy of a quantum state |1¢), a unitary transformation U =
2|10) (| — I, a unitary transformation V.= I — 2P for some projector P, and an integer t. The
algorithm outputs a, an estimate of a = (Y |P|Y), such that

a(l—a) 72

d—al <2 T
la —a|] <2 ; +t2

with probability at least 8 /7%, using U and V t times each.

The success probability of 8/72 can be improved to 1 — § for any § > 0 using the powering
lemma at the cost of an O(log1/§) multiplicative factor.

2.1 Estimating the mean with bounded output values

We first consider the problem of estimating E[v(A)] in the special case where v(.A) is bounded
between 0 and 1. The algorithm for this case is effectively a combination of elegant ideas of Brassard
et al. [11] and Wocjan et al. [59]. The former described an algorithm for efficiently approximating
the mean of an arbitrary function with respect to the uniform distribution; the latter described
an algorithm for approximating the expected value of a particular observable, with respect to an
arbitrary quantum state. The first quantum algorithm achieving optimal scaling for approximating
the mean of a bounded function under the uniform distribution was due to Heinrich [27].

Input: an algorithm A such that 0 < v(A) < 1, integer ¢, real § > 0.

Assume that A is a quantum algorithm which makes no measurements until the end of the
algorithm; operates on initial input state |0"); and its final measurement is a measurement of
the last k£ < n of these qubits in the computational basis.

1. If necessary, modify A such that it makes no measurements until the end of the algorithm;
operates on initial input state |0™); and its final measurement is a measurement of the last
k < n of these qubits in the computational basis.

2. Let W be the unitary operator on k + 1 qubits defined by
Wa)|0) = [2) (/1= 6(@)]0) + Ve(@)I1))

where each computational basis state x € {0,1}¥ is associated with a real number ¢(z) €
[0, 1] such that ¢(z) is the value output by A when measurement outcome x is received.

3. Repeat the following step O(log 1/§) times and output the median of the results:

(a) Apply t iterations of amplitude estimation, setting [¢) = (I @ W)(A ® I)|0"+1),
P=1I|1)(1].

Algorithm 1: Approximating the mean output value of algorithms bounded between 0 and 1 (cf. [11,
27, 59])

Theorem 3. Let 1)) be defined as in Algorithm 1 and set U = 2|¢)(y| — I. Algorithm 1 uses
O(log1/6) copies of the state A|0™), uses U O(tlog1/d) times, and outputs an estimate f such



that
i~ E[p(A)]| < C (W i 1)

t 2

with probability at least 1 — &, where C is a universal constant. In particular, for any fixed 6 > 0
and any € such that 0 < e < 1, to produce an estimate |1 such that with probability at least 1 — 4,
|t — E[v(A)]] < eElv(A)] it suffices to take t = O(1/(ey/E[v(A)])). To achieve | — E[v(A)]| < €
with probability at least 1 — & it suffices to take t = O(1/e).

Proof. The complexity claim follows immediately from Theorem 2. Also observe that W can be
implemented efficiently, as it is a controlled rotation of one qubit dependent on the value of ¢(z) [59].
It remains to show the accuracy claim. The final state of A, just before its last measurement, can
be written as

) = Al0"™) = Z%y% |2)
for some normalised states |i,). If we then attach an ancilla qubit and apply W, we obtain

W) = (e W)U DI0)0) = 3 aslis)le) (VI=6@)[0) + Vo)) .

We have
(| Ply) = Z\am E[v(A)]-

Therefore, when we apply amplitude estimation, by Theorem 2 we obtain an estimate i of u =

E[v(A)] such that
1 — 2
SR

with probability at least 8/7%. The powering lemma (Lemma 1) implies that the median of
O(log1/6) repetitions will lie within this accuracy bound with probability at least 1 — 4. O

Observe that U = 2[¢)(¢p| — I can be implemented with one use each of A and A~!, and
V =1 — 2P is easy to implement.

It seems likely that the median-finding algorithm of Nayak and Wu [45] could also be generalised
in a similar way, to efficiently compute the median of the output values of any quantum algorithm.
As we will not need this result here we do not pursue this further.

2.2 Estimating the mean with bounded /; norm

We now use Algorithm 1 to give an efficient quantum algorithm for approximating the mean output
value of a quantum algorithm whose output has bounded ¢ norm. In what follows, for any algorithm
A, let Ay, Az y, Asy, be the algorithms defined by executing A to produce a value v(A) and:

o A_,: If v(A) < z, output v(A), otherwise output 0;
o A, If z <w(A) <y, output v(A), otherwise output 0;

o As,: If y <w(A), output v(A), otherwise output 0.



In addition, for any algorithm .4 and any function f : R — R, let f(\A) be the algorithm produced by
evaluating v(A) and computing f(v(.A)). Note that Algorithm 1 can easily be modified to compute
E[f(v(A))] rather than E[v(.A)], for any function f: R — [0, 1], by modifying the operation W.

Our algorithm and correctness proof are a generalisation of a result of Heinrich [27] for com-
puting the mean with respect to the uniform distribution of functions with bounded L? norm, and
are based on the same ideas. Write ||v(A)||, := v/E[v(A)?].

Input: an algorithm A such that v(A) > 0, and an accuracy € < 1/2.
1. Set k = [logy 1/€], to = [D ”10521/5-‘ , where D is a universal constant to be chosen later.

2. Use Algorithm 1 with ¢ = g, § = 1/10 to estimate E[v(Ag1)]. Let the estimate be 1.
3. Fort=1,... k:

(a) Use Algorithm 1 with ¢ = to, § = 1/(10k) to estimate E[v(Age-14¢)/2]. Let the
estimate be fig.

4. Output g = o + lezl 270,

Algorithm 2: Approximating the mean of positive functions with bounded ¢ norm

Lemma 4. Let |¢) = A|0™), U = 2|y) (| — I. Algorithm 2 uses O(log(1/e€)loglog(1/€)) copies
of |¢), uses U O((1/€)log®?(1/€)loglog(1/e)) times, and estimates E[v(A)] up to additive error
e(|lv(A)||y + 1) with probability at least 4/5.

Proof. We first show the resource bounds. Algorithm 1 is run ©(log 1/¢€) times, each time with pa-
rameter 6 = §2(1/(log1/¢)). By Theorem 3, each use of Algorithm 1 consumes O(loglog1/¢) copies
of |¢) and uses U O((1/€)+/log(1/€)loglog(1/€)) times. The total number of copies of |¢)) used is
O(log(1/€) loglog(1/e)), and the total number of uses of U is O((1/€)log?(1/€)loglog(1/€)).

All of the uses of Algorithm 1 succeed, except with probability at most 1/5 in total. To estimate
the total error in the case where they all succeed, we write

k
E[v(A)] = E[v(Ao,)] + Y 2E[v(Age-1 50)/2] + E[v(Aspe)]

(=1

and use the triangle inequality term by term to obtain

k
|8 = Elo(A)l < [fo — Efo(Ao,)]l + Y 2% — Efo(Agi1 2¢)/2]] + Efo(Asan)].
=1

Let p(z) denote the probability that A outputs x. We have

2
Elo(Asor)] = Y p(x)z < 2% S p(a)e? = ||'U(;I:)||2'
x>2k -
By Theorem 3,
o — Efo( Ao < C (IE[;(;%H N t10>
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and similarly
Elvo(Age-190)]
to /2 + %

|fie — E[v(Age1 9¢)/2°]| < C

So the total error is at most

k E[v(Age-1 o
Cx@M%M+%+§pg Sk e I B 1))

to to 20/2 2 ok

(=1

We apply Cauchy-Schwarz to the first part of each term in the sum:

k k 1/2
Z 272, [Efu(Age-r 50)] < VE <Z 2KE[”<A22—172€)}> < V2k|lv(A)]ly,
=1 =1

where the second inequality follows from

A B 2
E[U(AQZ*1,2£)] = Z p(.%').ZU < % Z p(x)xQ — W
201 g2t

20-1<z <2t
Inserting this bound and using E[v(Ap1)] < 1, we obtain

1+wmwmm+%“>+mmw,

t% to t% 2k

m—EMAmsc<j+
0

Inserting the definitions of tg and k, we get an overall error bound

| = E[u(A)]]
C € €2 1 1/2 de 9
=D (m T Dlogy1/e T V2e|o(A)]l; (1  og, 1/¢ 1/6>  Diogy 17c | T €Il
C € de 9
< & (e 5+ 2l + 5 ) + A

= (& (14 5 e 2eal) + ez

using 0 < € < 1/2 in the second inequality. For a sufficiently large constant D, this is upper-bounded
by e(|lv(A)[|y + 1)? as claimed. O

Observe that, if E[v(A)?] = O(1), to achieve additive error ¢ the number of uses of A that
we need is O((1/€)log*?(1/€)loglog(1/€)). By the powering lemma, we can repeat Algorithm 2
O(log 1/6§) times and take the median to improve the probability of success to 1 — ¢ for any § > 0.

2.3 Estimating the mean with bounded variance

We are now ready to formally state our algorithm for estimating the mean output value of an
arbitrary algorithm with bounded variance. For clarity, some of the steps are reordered as compared
with the informal description in Section 1.2. Recall that, in the classical setting, if we wish to
estimate E[v(.A)] up to additive error e for an arbitrary algorithm A such that

Var(v(A)) = E[(v(A) — E[v(A)])?] < 0%,
we need to use A Q(0?/€?) times [15].

11



Input: an algorithm A such that Var(v(A)) < o? for some known o, and an accuracy e such
that € < 40.

1. Set A= AJo.
2. Run A’ once and let m be the output.
3. Let B be the algorithm produced by executing A’ and subtracting m.

4. Apply Algorithm 2 to algorithms —B/4 and B>o/4 with accuracy €/(320) and failure
probability 1/9, to produce estimates -, gt of E[v(—B<g)/4] and E[v(B>0)/4], respec-
tively.

5. Set i = m — 4~ + 47

6. Output o .

Algorithm 3: Approximating the mean with bounded variance

Theorem 5. Let [¢p) = A|0"), U = 2|¢)(p| — I. Algorithm 3 uses O(log(o/€)loglog(a/e€)) copies
of 1), uses U O((c/€) log®? (o /€) loglog(a/€)) times, and estimates E[v(A)] up to additive error e
with success probability at least 2/3.

Proof. First, observe that m is quite close to ' := E[v(A’)] with quite high probability. As
Var(v(A')) = Var(v(A))/o? < 1, by Chebyshev’s inequality we have

Prfo(A') — /| > 8] <

O =

We therefore assume that |m — p/| < 3. In this case we have

Bz = E[(B)Y"? =E[((v(A) - &) + (1 —m))*]'/?
E[(v(A)) = @]/ + E[(u' — m)*]/?
4,

IA A

where the first inequality is the triangle inequality. Thus ||v(B)/4||2 < 1, which implies that
[0(=B<o)/4ll2 <1 and [[v(Bxo)/4[2 < 1.

The next step is to use Algorithm 2 to estimate E[v(—B<¢)/4] and E[v(B>¢)/4] with accuracy
€/(320) and failure probability 1/9. By Lemma 4, if the algorithm succeeds in both cases the
estimates are accurate up to €/(8c). We therefore obtain an approximation of each of E[v(—B<o)]
and E[v(B>o)] up to additive error ¢/(20). As we have

E[v(A)] = o E[v(A)] = o(m — E[vo(~B<o)] + E[v(Bx0)])

by linearity of expectation, using a union bound we have that o approximates E[v(A)] up to
additive error e with probability at least 2/3. O

2.4 Estimating the mean with bounded relative error

It is often useful to obtain an estimate of the mean output value of an algorithm which is accurate
up to small relative error, rather than the absolute error achieved by Algorithm 3. Assume that

12



we have the bound on the relative variance that Var(v(A))/(E[v(A)])? < B, where we normally
think of B as small, e.g. B = O(1). Classically, it follows from Chebyshev’s inequality that the
simple classical algorithm described in the Introduction approximates E[v(.A)] up to additive error
eE[v(A)] with O(B/€?) uses of A. In the quantum setting, we can improve the dependence on ¢
near-quadratically.

Input: An algorithm A such that v(A) > 0 and Var(v(A))/(E[v(A)])? < B for some B > 1,
and an accuracy € < 27B/4.

1. Run A k = [32B] times, receiving output values vy, ..., v, and set m = %21?21 v;.

2. Apply Algorithm 2 to A/m with accuracy 2¢/(3(2v/B + 1)?) and failure probability 1/8.
Let 1z be the output of the algorithm, multiplied by m.

3. Output p.

Algorithm 4: Approximating the mean with bounded relative error

Theorem 6. Let [¢) = A|0"), U = 2|¢) (| — I. Algorithm 4 uses O(B + log(1/€) loglog(1/¢))
copies of |1, uses U O((B/e)log®?(B/e)loglog(B/e)) times, and outputs an estimate fi such that

Pr{|fi — E[o(A)]| 2 e Elp(A)]] < 1/4.

Proof. The complexity bounds follow from Lemma 4; we now analyse the claim about accuracy.
m is a random variable whose expectation is E[v(.A)] and whose variance is Var(v(A))/[32B]. By
Chebyshev’s inequality, we have

4Var(m)  4Var(v(A))
S TEm2  32BIERA)L =

We can thus assume that E[v(A)]/2 < m < 3E[v(.A)]/2. In this case, when we apply Algorithm 2
to A/m, we receive an estimate of E[v(.A)]/m which is accurate up to additive error
2e(lo(A)lly /m+1)? _ eEp(A)]2[lo(A)lly /Elo(A)] +1)* _ eE[o(A)]
32VB+1)2 m(2VB +1)2 - om
except with probability 1/8, where we use ||[v(A)||, /E[v(A)] < v/B. Multiplying by m and taking

a union bound, we get an estimate of E[v(.A)] which is accurate up to € except with probability at
most 1/4. O

Pr{jin — Efi] > [E[]|/2 5

Once again, using the powering lemma we can repeat Algorithms 3 and 4 O(log1/6) times and
take the median to improve their probabilities of success to 1 — ¢ for any ¢ > 0.

To see that Algorithms 3 and 4 are close to optimal, we can appeal to a result of Nayak
and Wu [45]. Let A be an algorithm which picks an integer = between 1 and N uniformly at
random, for some large N, and outputs f(z) for some function f : {1,...,N} — {0,1}. Then
E[v(A)] = {x : f(x) = 1}|/N. It was shown by Nayak and Wu [45] that any quantum algorithm
which computes this quantity for an arbitrary function f up to (absolute or relative) error e must
make at most Q(1/e) queries to f in the case that [{z : f(x) = 1}| = N/2. As the output of A
for any such function has variance 1/4, this implies that Algorithms 2 and 4 are optimal in the
black-box setting in terms of their scaling with €, up to polylogarithmic factors. By rescaling, we
get a similar near-optimality claim for Algorithm 3 in terms of its scaling with o.
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3 Partition function problems

In this section we formally state and prove our results about partition function problems. We first
recall the definitions from Section 1.3. A partition function Z is defined by

2(8) =3 A1
z€e)

where (3 is an inverse temperature and H is a Hamiltonian function taking integer values in the set
{0,...,n}. Let 0 = By < 1 < -+ < By = 00 be a sequence of inverse temperatures and assume
that we can easily compute Z(8y) = |2|. We want to approximate Z(oco) by approximating the
ratios «; := Z(Bi+1)/Z(0;) and using the telescoping product

Z(B1) Z(B2) Z(Be)
Z(Bo) Z(B1)  Z(Be-1)

Finally, a sequence of Gibbs distributions 7; is defined by

Z(Be) = Z(Bo)

1
_ P (@)

3.1 Chebyshev cooling schedules

We start by motivating, and formally defining, the concept of a Chebyshev cooling schedule [50].
To approximate a; we define the random variable

Yi(x) = e~ (Bit1—Bi)H(z)

Then

i T L Z(Bin1)
E Y; = Ew- }fz — BiH (z) ,—(Bi+1—B:)H(z) — Bi+1H (x) — + = qy.
)= B = gy 2 e 700 2" 26) "

xeQ)
The following result was shown by Dyer and Frieze [19] (see [50] for the statement here):

Theorem 7. Let Yy, ...,Y; 1 be independent random variables such that E[Y;?]/E[Y;]> < B for all
i, and write Y = E[Y)|E[Y1] ... E[Y;_1]. Let &; be the average of 16B(/€® independent samples from
Y;, and setY = agay...cap_1. Then

Pr(1-e)Y <Y < (1+¢)Y] > 3/4.

Thus a classical algorithm can approximate Z(co) up to relative error € using O(B¢?/e?) sam-
ples in total, assuming that Z(0) can be computed without using any samples and that we have
E[Y?]/E[Yi]* < B. To characterise the latter constraint, observe that we have

21 ~BiH(2) = 2(Bi1—Bi) H(x) _ _1 (Bi—280)H(w) _ Z(2Bi1 = i)
B = gy 2 ¢ e = 20y ° =T 2

e €N

SO
E[Y?] _ Z(2Bi1 — Bi) Z(Bi)
(E[Yi])? Z(Bi+1)?
This motivates the following definition:
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Definition 1 (Chebyshev cooling schedules [50]). Let Z be a partition function. Let By, ..., B¢ be
a sequence of inverse temperatures such that 0 = fg < B1 < --- < By = co. The sequence is called
a B-Chebyshev cooling schedule for Z if

Z(2Bi41 — Bi) Z(Bi)
ZB? 0

for all i, for some fized B.

Assume that we have a sequence of estimates a; such that, for all i, |@; — «;| < (€/2¢) a;; with
probability at least 1 — 1/(4¢). We output as a final estimate

Z = Z(0) oy ... g1

By a union bound, all of the estimates a; are accurate to within (€/2¢) «;, except with probability
at most 1/4. Assuming that all the estimates are indeed accurate, we have

Z
Z(o0)

1—e/2<(1—¢/(20)" < <(A+e/20) <e/?<1+e

for € < 1. Thus |Z — Z(c0)| < € Z(00) with probability at least 3/4.

Using these ideas, we can formalise the discussion in Section 1.3.

Theorem 8. Let Z be a partition function with || = A. Assume that we are given a B-Chebyshev
cooling schedule 0 = By < f1 < --- < B¢ = 00 for Z. Further assume that we have the ability to
exactly sample from the distributions m;, i = 1,...,£—1. Then there is a quantum algorithm which
outputs an estimate Z such that

Pr[(1 —¢€)Z(00) < Z < (14 €)Z(c0)] > 3/4.

- 2
(P25t () e (%) -0 (1)
€ € € €

Proof. For each i = 1,...,¢ — 1, we use Algorithm 4 to estimate E[Y;] up to additive error
(e/(20))E[Y;] with failure probability 1/(4¢). As the f; form a B-Chebyshev cooling schedule,
E[Y?]/E[Y;)? < B, so Var(¥;)/E[Y;]* < B. By Theorem 6, each use of Algorithm 4 requires

0] (Bé log3/2 (B£> log log <B€) log €>
€ € €

samples from 7; to achieve the desired accuracy and failure probability. The total number of

samples is thus
2
) <B£ log ¢ log®/2 (Bﬁ) log log (BZ))
€ € €

as claimed. n

USIng

samples in total.
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3.2 Approximate sampling

It is unfortunately not always possible to exactly sample from the distributions ;. However, one
classical way of approximately sampling from each of these distributions is to use a (reversible,
ergodic) Markov chain which has unique stationary distribution ;. Assume the Markov chain has
relaxation time 7, where 7 := 1/(1 —|A1]), and A1 is the second largest eigenvalue in absolute value.
Then one can sample from a distribution 7; such that ||7; — ;|| < € using O(7log(1/(emmin,i))) steps
of the chain, where myin; = ming |m;(x)| [38]. We would like to replace the classical Markov chain
with a quantum walk, to obtain a faster mixing time. A construction due to Szegedy [51] defines
a quantum walk corresponding to any ergodic Markov chain, such that the dependence on 7 in the
mixing time can be improved to O(y/7) [48]. Unfortunately, it is not known whether in general the
dependence on Tin,; can be kept logarithmic [48, 18]. Indeed, proving such a result is likely to be
hard, as it would imply a polynomial-time quantum algorithm for graph isomorphism [6].

Nevertheless, it was shown by Wocjan and Abeyesinghe [58] (improving previous work on us-
ing quantum walks for classical annealing [49]) that one can achieve relatively efficient quantum
sampling if one has access to a sequence of slowly varying Markov chains.

Theorem 9 (Wocjan and Abeyesinghe [58]). Let My, ..., M, be classical reversible Markov chains
with stationary distributions g, . .., m, such that each chain has relaxation time at most 7. Assume
that |(m;|mit1)|? > p for some p > 0 and all i € {0,...,7 — 1}, and that we can prepare the state
|mo). Then, for any e > 0, there is a quantum algorithm which produces a quantum state |7, ) such
that |||77r) — |7 )|0%) || < €, for some integer a. The algorithm uses

O(rv/Tlog?(r/€)(1/p) log(1/p))
steps in total of the quantum walk operators W; corresponding to the chains M.

In addition, one can approximately reflect about the states |m;) more efficiently still, with a
runtime that does not depend on 7. This will be helpful because Algorithm 4 uses significantly
more reflections than it does copies of the starting state.

Theorem 10 (Wocjan and Abeyesinghe [58], see [59] for version here). Let My, ..., M, be classical
reversible Markov chains with stationary distributions mo, . .., m such that each chain has relazation
time at most T. For each i there is an approximate reflection operator R; such that

Ri|9)|0%) = (2[u) (] — I)|g)|0%) + [€),

where |¢) is arbitrary, b = O((log7)(log1/e)), and |&) is a vector with |||£)|| < €. The algorithm
uses O(y/Tlog(1/€)) steps of the quantum walk operator W; corresponding to the chain M;.

In our setting, we can easily create the quantum state |mp), which is the uniform superposition
over all configurations z. We now show that the overlaps |(m;|m;1)|? are large for all i. We go via
the chi-squared divergence

2 — ol V(x)_ 2_ V<33)2_
Com= Tt (555 -1) =551

e e

As noted in [50], one can calculate that

_ Z(Bi)Z(2Bi+1 — Bi)
X2 (i, mi) = Z(ﬂHBQ -1 (1)
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Therefore, if the 3; values form a Chebyshev cooling schedule, x?(m11,m) < B — 1 for all i. For
any distributions v, m, we also have

H

1 m(x)
T T < S =
zeQV (z) zeQ
by applying Jensen’s inequality to the function x +— 1/y/z. So, for all 4, |(m;|m;+1)|? > 1/B. Note
that in [50] it was necessary to introduce the concept of a reversible Chebyshev cooling schedule to
facilitate “warm starts” of the Markov chains used in the algorithm. That work uses the fact that
one can efficiently sample from m;,1, given access to samples from m;, if x?(m;, m41) = O(1); this
is the reverse of the condition (1). Here we do not need to reverse the schedule as the precondition
|(mi|miv1)]? > Q(1) required for Theorem 9 is already symmetric.

We are now ready to formally state our result about approximating partition functions. We
assume that e is relatively small to simplify the bounds; this is not an essential restriction.

Theorem 11. Let Z be a partition function. Assume we have a B-Chebyshev cooling schedule
Bo=0<P1 < P2 < < fp=o00 for B=0O(1). Assume that for every inverse temperature [3;
we have a reversible ergodic Markov chain M; with stationary distribution m; and relaxzation time
upper-bounded by 7. Further assume that we can sample directly from My. Then, for any § > 0
and € = O(1/y/log?), there is a quantum algorithm which uses

O((2\/7/€) log™2(£/€) log(¢/5) log log (¢ /€)) = O(F/7 e)
steps of the quantum walks corresponding to the M; chains and outputs Z such that
Pr[(1—€)Z(0) < Z < (14 €)Z(x0)] > 1—6.

Proof. For each i, we use Algorithm 4 to approximate a; up to relative error €/(2¢), with failure
probability «, for some small constant . This would require R reflections about the state |mg,), for
some R such that R = O((¢/€) log®?(¢/¢) loglog(¢/e)), and O(log(¢/e)loglog(¢/€)) copies of |78,)-

Instead of performing exact reflections and using exact copies of the states |m;), we use approx-
imate reflections and approximate copies of |m;). By Theorem 10, O(y/7log(1/¢,)) walk operations
are sufficient to reflect about |m;) up to an additive error term of order ¢,. By Theorem 9, as we
have a Chebyshev cooling schedule, a quantum state |7;) such that |||7;) — |m:)|0°)]| < €5 can be
produced using O(¢+/7 log?({/es)) steps of the quantum walks corresponding to the Markov chains
My, ..., M;.

We choose €, = v/R, €5 = 7. Then the final state of Algorithm 4 using approximate reflections
and starting with the states |7;) rather than |m;) can differ from the final state of an exact algorithm
by at most Re, + €; = 27 in o norm. This implies that the total variation distance between the
output probability distributions of the exact and inexact algorithms is at most 2, and hence by a
union bound that the approximation is accurate up to relative error €/(2¢) except with probability
3. For each i, we then take the median of O(log(¢/d)) estimates to achieve an estimate which is
accurate up to relative error €/(2¢) except with probability at most 6/¢. By a union bound, all
the estimates are accurate up to relative error €/(2¢) except with probability at most J, so their
product is accurate to relative error € except with probability at most 9.

The total number of steps needed to produce all the copies of the states |7;) required is thus
O(L - £+/T(log? £) - log(¢/€) loglog(£/€) - log(¢/5))
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and the total number of steps needed to perform the reflections is
O(-/T(logR) - R -log(¢/4)).

Adding the two, substituting the value of R, and using ¢ = O(1/+/log?), we get an overall bound
of

O((£/7/€)1og**(¢/€) log(£/5) loglog(¢/e)) = O(£*v/7/e)

as claimed. n

We remark that, in the above complexities, we have chosen to take the number of quantum
walk steps used as our measure of complexity. This is to enable a straightforward comparison with
the classical literature, which typically uses a random walk step as its elementary operation for
the purposes of measuring complexity [50]. To implement each quantum walk step efficiently and
accurately, two possible approaches are to use efficient state preparation [14] or recently developed
approaches to efficient simulation of sparse Hamiltonians [9].

Finally, we mention that one could also consider a more general setting for approximate sam-
pling. Imagine that we would like to approximate the mean p of some random variable chosen
according to some distribution 7, but only have access to samples from a distribution 7 that ap-
proximates 7 (using some method which, for example, might not be a quantum walk). In this case,
one can show that the estimation algorithm does not notice the difference between 7 and 7 and
hence allows efficient estimation of u. See Appendix A for the details.

3.3 Computing a Chebyshev cooling schedule

We still need to show that, given a particular partition function, we can actually find a Chebyshev
cooling schedule. For this we simply use a known classical result:

Theorem 12 (Stefankovic, Vempala and Vigoda [50]). Let Z be a partition function. Assume that
for every inverse temperature 3 we have a Markov chain Mg with stationary distribution mg and
relazation time upper-bounded by 7. Further assume that we can sample directly from My. Then,
for any § > 0 and any B = O(1), we can produce a B-Chebyshev cooling schedule of length

¢ = O(y/log A(log n)(log log A))
with probability at least 1 — §, using at most
Q = O((log A)((logn) + loglog A)*7log(1/4))
steps of the Markov chains.

We remark that a subsequent algorithm [28] improves the polylogarithmic terms and the hidden
constant factors in the complexity. However, this algorithm assumes that we can efficiently generate
independent samples from distributions approximating mg for arbitrary 8. The most efficient general
algorithm known [50] for approximately sampling from arbitrary distributions 75 uses “warm starts”
and hence does not produce independent samples.

Combining all the ingredients, we have the following result:

Corollary 13. Let Z be a partition function and let € > 0 be a desired precision such that € =
O(1/+/1oglog A). Assume that for every inverse temperature 3 we have a Markov chain Mg with
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stationary distribution mg and relazation time upper-bounded by 7. Further assume that we can
sample directly from My. Then, for any d > 0, there is a quantum algorithm which uses

O(((log A)(log? n)(loglog A)*\/7/€) log™?((log A)/€) log((log A) /6) log log((log A) /¢)
+ (log A)((logn) + loglog A)5T log(1/4)))
= O((log A)v/T(1/e + /7))

steps of the Mg chains and their corresponding quantum walk operations, and outputs Z such that

Pr[(1—€)Z(c0) € Z < (1 +€)Z(c0)] > 1 -

&

The best comparable classical result known is O((log A)7/e?) [50]. We therefore see that we
have achieved a near-quadratic reduction in the complexity with respect to both 7 and €, assuming
that € < 1/4/7. Otherwise, we still achieve a near-quadratic reduction with respect to e.

Note that, if we could find a quantum algorithm that outputs a Chebyshev cooling schedule
using O((log A)+/7) steps of the Markov chains, Corollary 13 would be improved to a complexity
of O((log A)\/7/e). Tt is instructive to note why this does not seem to be immediate. The classical
algorithm for this problem [50] needs to approximately sample from Markov chains Mg for arbitrary
values of 5. To do this, it starts by fixing a nonadaptive Chebyshev cooling schedule 0 < ] <
By < -+ < By = oo of length ¢ = O(log A). When the algorithm wants to sample from Mg with
i< B<pl 11, the algorithm uses an approximate sample from M, g s a “warm start”. To produce
one sample corresponding to each 3] value requires O(KT) samples, because each M 3! also provides
a warm start for M, Bl . But, in the quantum case, this does not work because, by no-cloning, the
states |7r32> cannot be reused in this way to provide warm starts for multiple runs of the algorithm.

3.4 Some partition function problems

In this section we describe some representative applications of our results to problems in statistical
physics and computer science.

The ferromagnetic Ising model. This well-studied statistical physics model is defined in
terms of a graph G = (V, E') by the Hamiltonian

H(z)=—- Z ZuZy,

(u,w)ERE

where |V| = n and z € {£1}". A standard method to approximate the partition function of the
Ising model uses the Glauber dynamics. This is a simple Markov chain with state space {+1}",
each of whose transitions involves only updating individual sites, and whose stationary distribution
is the Gibbs distribution 1
— - ,BH(»)

mg(2) 705 e .
This Markov chain, which has been intensively studied for decades, is known to mix rapidly in
certain regimes [41]. Here we mention just one representative recent result:

Theorem 14 (Mossel and Sly [44]). For any integer d > 2, and inverse temperature 8 > 0 such
that (d — 1) tanh 8 < 1, the mizing time of the Glauber dynamics on any graph of maximum degree
d is O(nlogn).
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(More precise results than Theorem 14 are known for certain specific graphs such as lattices [42].)
As we have A = 2", in the regime where (d — 1)tanh 8 < 1 the quantum algorithm approximates
Z($3) to within e relative error in O(n%/2/e 4+ n?) steps. The fastest known classical algorithm with
rigorously proven performance bounds [50] uses time O(n?/e?). We remark that an alternative
approach of Jerrum and Sinclair [34], which is based on analysing a different Markov chain, gives a
polynomial-time classical algorithm which works for any temperature, but is substantially slower.

Counting colourings. Here we are given as input a graph G with n vertices and maximum
degree d. We seek to approximately count the number of valid k-colourings of GG, where a colouring
of the vertices is valid if all pairs of neighbouring vertices are assigned different colours, and k£ =
O(1). In physics, this problem corresponds to the partition function of the Potts model evaluated
at zero temperature. It is known that the Glauber dynamics for the Potts model mixes rapidly in
some cases [20]. One particularly clean result of this form is work of Jerrum [31] showing that this
Markov chain mixes in time O(nlogn) if k£ > 2d. As here A = k™, we obtain a quantum algorithm
approximating the number of colourings of G up to relative error € in 6(n3/ 2/e + n?) steps, as
compared with the classical O(n2/e2) [50].

Counting matchings. A matching in a graph G is a subset M of the edges of G such that no

pair of edges in M shares a vertex. In statistical physics, matchings are often known as monomer-
dimer coverings [26]. To count the number of matchings, we consider the partition function

ACIEED D

Mem

where M is the set of matchings of G. We have Z(0) = | M|, while Z(c0) = 1, as in this case
the sum is zero everywhere except the empty matching (0° = 1). Therefore, in this case we seek
to approximate Z(0) using a telescoping product which starts with Z(co). In terms of the cooling
schedule 0 = By < f1 < -+ < B¢ = 00, we have

Z(Be—1) Z(Be—2)  Z(Bo)
Z(Be) Z(Be—1)  Z(B1)

As we have reversed our usage of the cooling schedule, rather than looking for it to be a B-Chebyshev
cooling schedule we instead seek the bound

Z(28; — Biv1)Z(Bis1)
Z(5:? =P

to hold for all ¢ = 0,...,¢ — 1. That is, the roles of 8; and [;+1 have been reversed as compared
with (1). However, the classical algorithm for printing a cooling schedule can be modified to output
a “reversible” schedule where this constraint is satisfied too, with only a logarithmic increase in
complexity [50]. In addition, it was shown by Jerrum and Sinclair [33, 32| that, for any [, there is
a simple Markov chain which has stationary distribution m, where

1 _
W(M):m Z e BIMI

MeM

Z(Bo) = Z(Br)

and which has relaxation time 7 = O(nm) on a graph with n vertices and m edges. Finally, in the
setting of matchings, A = O(n!2"). Putting these parameters together, we obtain a quantum com-
plexity O(n3/2m'/2 /e +n’m), as compared with the lowest known classical bound O(n?m/e?) [50].
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4 Estimating the total variation distance

Here we give the technical details of our improvement of the accuracy of a quantum algorithm of
Bravyi, Harrow and Hassidim [13] for estimating the total variation distance between probability
distributions. In this setting, we are given the ability to sample from probability distributions p
and ¢ on n elements, and would like to estimate |[p — ¢ = L[lp — qll1 = %er[n] Ip(x) — q(z)]
up to additive error e. Classically, estimating ||p — ¢|| up to error, say, 0.01 cannot be achieved
using O(n®) samples for any o < 1 [54], but in the quantum setting the dependence on n can be
improved quadratically:

Theorem 15 (Bravyi, Harrow and Hassidim [13]). Given the ability to sample from p and q, there
is a quantum algorithm which estimates ||p — q|| up to additive error e, with probability of success
1 — 6, using O(y/n/(36°)) samples.

Here we will use Theorem 3 to improve the dependence on € and § of this algorithm. We will
approximate the mean output value of the following algorithm, which was a subroutine previously
used in [13].

Let p and g be probability distributions on n elements and let r = (p + ¢)/2.
1. Draw a sample x € [n] according to r.

2. Use amplitude estimation with ¢ queries, for some ¢ to be determined, to obtain estimates
p(z), q(x) of the probability of obtaining outcome x under distributions p and q.

3. Output [p(z) — q(@)|/(p(x) + q(x)).

Algorithm 5: Subroutine for estimating the total variation distance

If the estimates p(x), g(x) were precisely accurate, the expected output of the subroutine would

be
B 3 (MO A LS o)~ a0 = I~ .

z€[n] xe [n]

We now bound how far the expected output E of the algorithm is from this exact value. By linearity
of expectation,

|E-E| = | r@Eld(z) —d()]| < Y r(@)E[d(z) - d(z)]]

z€[n] z€[n]

where d(z) = |p(z) — q(x)|/(p(x) + g(2)), d(x) = [B(x) — G(=)|/(P(x) + §(x)). Note that d(z) is a

random variable. Split [n] into “small” and “large” parts according to whether r(x) < ¢/n. Then
E-El < Y r@Ede)-d@)]+ Y r@E[d)-d@)]
z,r(x)<e/n z,r(z)>e/n

< e+ Y r(@E[d) —d@)]]

z,r(x)>e/n
using that 0 < d(z), c?(w) < 1. From Theorem 2, for any 6 > 0 we have

2

T
p( )+7T
/ 12

P(z) = p(a)] < 27
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except with probability at most d, using O(tlog1/d) samples from p. If ¢t > 4w /(n/p(z) + q(x))
for some 0 < 7 < 1, this implies that

_ 21/ p(x)\/p(@) + q()
() — p(x)| < pm

m*n*(p(x) + q(x))
1672

+ < n(p(z) +q())
except with probability at most 6. A similar claim also holds for |g(z) — ¢(x)|. We now use the
following technical result from [13]:

Proposition 16. Consider a real-valued function f(p,q) = (p — q)/(p + q) where 0 < p,q < 1.
Assume that |p — pl, |¢ — q] < n(p +q) for some n < 1/5. Then |f(p,q) — f(p,q)| < 5n.

By Proposition 16, for all z such that ¢ > 47 /(n/p(x) + q(x)) we have |d(z) — d(x)| < 5n,
except with probability at most 26. We now fix t = [10v/27y/ne3/2]. Then, for all z such that
p(z) + q(x) > 2¢/n, |d(x) — d(z)| < € except with probability at most 26. Thus, for all  such that
r(z) > €/n,

El|d(z) — d(z)]] < 26 + (1 — 28)e < 26 + €.
Taking § = €, we have
|E — B| < 4e

for any €, using O(y/ne 3/?log(1/€)) samples. It therefore suffices to use O(y/ne=%/2log(1/e))
samples to achieve |E — E| < ¢/2. As the output of this subroutine is bounded between 0 and 1, to
approximate E up to additive error €¢/2 with failure probability 0, it suffices to use the subroutine
O((1/€)log(1/5)) times by Theorem 3. So the overall complexity is O((y/n/€%/?)log(1/€)log(1/4)).
For small ¢ and § this is a substantial improvement on the O(y/n/(¢26°)) complexity stated by
Bravyi, Harrow and Hassidim [13].
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A Stability of Algorithm 3

It is often the case that one wishes to estimate some quantity of interest defined in terms of samples
from some probability distribution 7, but can only sample from a distribution 7 which is close to
7 in total variation distance (for example, using Markov chain Monte Carlo methods). We now
show that, if Algorithm 3 is given access to samples from 7 rather than 7, it does not notice the
difference. We will need the following claim.

Claim 17. For any z,y € [0,1],

| arcsin x — arcsiny| < g\/m
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Proof. We use a standard addition formula for arcsin to obtain

|arcsinz — arcsiny| = |arcsin(zy/1 — 2 — yv/1 — 22)|
T
SN BN |
< E \% |‘T2 - y2|7

2
where the first inequality is sin@ > (2/7)0 for all € [0,7/2], and the second inequality is

a0 < Vla—bl(a+0) = V]a? 7],

valid for all non-negative a and b. O

Lemma 18. Let A and B be algorithms with distributions D4 and Dg on their output values, such
that ||Da — Dgl| < 7, for some . Assume that Algorithm 3 is applied to A, and uses the operator
U =2Y)(p| — I T times, where [1p) = A|0). Then the algorithm estimates E[v(B)] up to additive

error € except with probability at most 3/10 + \%T\ﬁ.

Lemma 18 is reminiscent of the hybrid argument for proving lower bounds on quantum query
complexity [8]: if the distributions D 4 and Dpg are close, and the amplitude amplification algorithm
makes few queries, it cannot distinguish them. However, here the quantifiers appear in a different
order: whereas in the setting of lower-bounding quantum query complexity we wish to show that
there exist pairs of distributions which are indistinguishable by any possible algorithm, here we
wish to show that one fixed algorithm cannot distinguish any pair of close distributions.

Also note that Wocjan et al. [59] proved a similar result in the setting where we are given access
to an approximate rotation U ~ U. However, the result here is more general, in that we do not
assume that |¢) = B|0) is close to [¢), but merely that the measured probability distributions are
close.

Proof. We first use the calculations for the output probabilities of the amplitude estimation algo-
rithm from [12] when applied as in Theorem 3 with ¢ queries to an algorithm with mean output
value p4, and another with mean output value pp.

For z,y € R, define d(z,y) = min,cyz |z+x—y|. 27d(z,y) is the length of the shortest arc on the
2z and e?™. Let wy and wp be defined by sinwy = LA, sinwp = up, and
set A = d(wa,wp). Finally, let M 4 and Mp be the distributions over the measurement outcomes
when amplitude estimation is applied to estimate pa, pup.

unit circle between e

The distribution on the measurement outcomes of the amplitude estimation algorithm after ¢
uses of the input operator, when applied to a phase of w, is equivalent [12] to that obtained by
measuring the state

1 TiWw
|St(w)) = 7i > ePmely),
yeE(t]

so the total variation distance between the distributions M 4 and Mg obeys the bound

sin?(7tA)

CMal2<1— S L LR
[Mag = Mp||* <1 —[(Sei(wa)|Si(wn))] 2sin?(rA)’

where the first equality is standard [46] and the second equality is [12, Lemma 10]. Using the

inequalities
93
0 — g S sin @ S 0,
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valid for # > 0, we obtain

- s (TA=(@AP/6ND (AN (mtA)?
M- Ml <1 - (TESEENE) g (1 (AN < (AN

As we have

. s
A =min |z +ws —wp| < |lwa —wp| < SV |pa — ps
2€EZ 2

by Claim 17, we have

2

T
My — Mgl < —t — .
[Ma B||_2\/§ A — 1Bl

Within Algorithm 2, Theorem 3 is applied to v(Age-1 5¢)/ 2¢ for various values of £. We have

[Ev(Age1 9) /2] = E[v(Bye1 20)/2]| = ~ Y. @lPrlo(A) = 2] - Pr[o(B) = 2]

9¢
20-1< g2t
< > |Pr[v(A) = 2] - Pr[v(B) = 2]

= 2|Da—Dgll <2v.

Thus, for each run of the algorithm which uses A ¢ times,

2
T
Ma— Mgl < j,)tﬁ-

This is equivalent to the output of the algorithm being a probabilistic mixture of Mp and some
2
other distribution M, where the probability of it being M is at most %t\ﬁ

Algorithm 3 uses A T times in total. Each use of A is either within Algorithm 2 or one separate

sample from v(A) in Algorithm 3. We can similarly think of this sample as being taken from B,

except with probability at most v < %\ﬁ Taking a union bound over all uses of A, we get the

claimed bound. O
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