
Quantum circuits and low-degree polynomials over F2

Ashley Montanaro∗

July 28, 2016

Abstract

In this work we explore a correspondence between quantum circuits and low-degree polyno-
mials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and
controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating
quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial.
We exploit this connection, which is especially clean and simple for this particular gate set,
in two directions. First, we give proofs of classical hardness results based on quantum circuit
concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum
circuits based on efficient algorithms for classes of polynomials.

1 Introduction

Quantum computers are believed to outperform classical computers for important tasks as varied
as simulation of quantum mechanics and factorisation of large integers. Although no large-scale
general-purpose quantum computer has been built as yet, quantum computation can nevertheless
already be used as a theoretical tool to study other areas of science and mathematics, without the
need for an actual quantum computer.

This work explores a simple correspondence between quantum circuits and low-degree polynomi-
als over the finite field F2, i.e. the integers modulo 2. By picking the right gate set, it turns out that
quantum circuit amplitudes have a close connection to counting zeroes of such polynomials. This
correspondence can be exploited in two directions. On the one hand, ideas about quantum circuits
can be used to prove purely classical results regarding the computational complexity of counting
zeroes of polynomials over finite fields. On the other, known classical results about polynomials
can be used to give new algorithms for simulating classes of quantum circuits.

A similar perspective has been taken by a number of previous works. Particularly relevant
is prior work of Dawson et al. [13], who showed that quantum circuit amplitudes for circuits of
Toffoli and Hadamard gates can be understood in terms of solutions to systems of polynomial
equations involving low-degree polynomials over F2. Here we use a slightly different universal
gate set: Hadamard (= 1√

2

(
1 1
1 −1

)
), Z (=

(
1 0
0 −1

)
), controlled-Z (“CZ”) and controlled-controlled-Z

(“CCZ”). This is essentially equivalent to the gate set of [13], as Toffoli gates are identical to CCZ
gates conjugated by a Hadamard gate on the target qubit. However, this small shift in perspective
seems to simplify and clarify some of the arguments involved. For example, the connection we use
associates a single polynomial with each circuit. Related ideas to [13] were used by Rudolph [36]
to give a simple encoding of quantum circuit amplitudes as matrix permanents. The set of circuits

∗School of Mathematics, University of Bristol, UK; ashley.montanaro@bristol.ac.uk.

1

we consider is a very special case of the class of “algebraic quantum circuits” studied by Bacon,
van Dam and Russell [6] in some generality.

The idea of proving classical results using quantum methods has also been explored previously;
see [14] for a survey of many results in this area. Within computational complexity alone, three
relevant examples are Aaronson’s proof of the computational hardness of computing the matrix per-
manent using the close connection between the permanent and linear-optical quantum circuits [1];
Kuperberg’s proof of the computational hardness of approximately computing Jones polynomials
by expressing these in terms of quantum circuits [31]; and Fujii and Morimae’s proof of hardness
of computing Ising model partition functions, again based on quantum circuits over a suitable gate
set [19]. More recently, together with Bremner and Shepherd [11], the present author used a cor-
respondence between low-degree polynomials and a certain class of simple quantum computations,
known as IQP circuits [37], to argue that random IQP circuits are unlikely to be efficiently simula-
ble classically. This holds even if the classical simulator is allowed to be approximate, with a fairly
generous notion of approximation.

The correspondence between low-degree polynomials and quantum circuits which we investigate
here seems particularly simple and direct. We have therefore tried to use it to highlight some of
the beautiful ideas present in previous works, and to produce an accessible introduction to com-
putational complexity issues suitable for physicists; and also an introduction suitable for computer
scientists to how one can prove classical results using the quantum circuit model.

We begin by introducing the circuit-polynomial correspondence and proving its correctness, and
go on to make some simple observations about this connection. Then, in Section 3, we introduce
the ideas from computational complexity that we will need, and in Section 3.1 show that the
correspondence can be used to prove classical hardness of exactly computing the number of zeroes
of low-degree polynomials. Similarly, in Section 3.2 we show that approximate computation of
this quantity is closely related to quantum computation. We study a new complexity measure for
polynomials motivated by this correspondence – the quantum circuit width – in Section 3.3. Then,
in Section 4, we use the circuit-polynomial correspondence to give two simple classical simulation
algorithms for classes of quantum circuits: circuits with few CCZ gates (or where the degree-3 part
of the polynomial corresponding to the circuit has a small “hitting set”, qv), and circuits whose
corresponding polynomial can be simplified by a linear transformation. We conclude in Section 5
with some open problems.

2 Circuits and polynomials

In this work, we consider quantum circuit amplitudes of the form 〈0|C|0〉, where C is a unitary
operator expressed as a circuit on ` qubits with poly(`) gates, and we write |0〉 = |0〉⊗` for concise-
ness throughout. The gates in C are picked from the set F = {Hadamard, Z, CZ, CCZ}1. Using
the gate set F will allow us to write 〈0|C|0〉 in a particularly concise form. Assume that C begins
and ends with a column of Hadamards, i.e. is of the form

H

C ′

H

H H

H H

1In fact, the Z and CZ gates are not necessary, as they can be produced from CCZ gates together with the use of
ancillas, but it will be convenient to include them.

2

x1
H

x2
• • H

x3

x4
• H

x5
•

x6
H

x7
• •

Figure 1: The internal part C ′ of a circuit C corresponding to the polynomial x1x2 +x2x3 +x4x5 +
x6x7 + x2x4 + x2x5x7 + x7.

for some circuit C ′. This is without loss of generality, as we can always add pairs of Hadamards
to the beginning or end of each line without changing the unitary operator corresponding to the
circuit. Further assume that C ′ contains at least one gate acting on each qubit. Let h be the
number of internal Hadamard gates that C contains, i.e. the number of Hadamards in C ′. Set
n = h+ ` and define a polynomial fC : {0, 1}n → {0, 1} over F2 as follows. Divide each horizontal
wire of the internal part C ′ into segments, with each segment corresponding to a portion of the
wire which is either between two Hadamard gates or to the left/right of all the Hadamard gates.
Associate a distinct variable xi with each segment of each wire. Observe that there are exactly h+`
variables in total. Each Hadamard gate now joins two segments and associates their corresponding
variables, and each Z, CZ, CCZ gate is associated with one, two or three (respectively) variables,
corresponding to the segments on which it acts. For each set of variables xi1 , . . . , xik associated
with each gate, add the corresponding term xi1 . . . xik to fC . As we are working over F2, all addition
and multiplication in fC is taken modulo 2. Note that this procedure never produces polynomials
of degree higher than 3.

As a simple example of this construction, consider the labelled circuit C ′ in Figure 1, where we
use the notation

• , •
•

, •
•
•

for Z, CZ, CCZ gates respectively.

We now show that the number of zeroes of the polynomial corresponding to C has a close
connection to 〈0|C|0〉. To be more precise, 〈0|C|0〉 is proportional to gap(fC), where the gap of a
polynomial is the difference between the number of zeroes and ones of that polynomial:

gap(fC) :=
∑

x∈{0,1}n
(−1)fC(x) = |{x : fC(x) = 0}| − |{x : fC(x) = 1}|.

A similar result was shown in [13] for circuits containing Hadamard and Toffoli gates. However,
the argument here seems somewhat simpler. Although there are several ways that the following
result can be proven, we choose to highlight a connection to the beautiful results of [10].

Proposition 1. Let C be a quantum circuit on ` qubits consisting of Hadamard, Z, CZ and CCZ
gates, starting and ending with a column of Hadamard gates, and containing h internal Hadamard
gates. Then

〈0|C|0〉 =
gap(fC)

2h/2+`
.

Proof. First consider the case where the internal part C ′ of C does not contain any Hadamard
gates (as treated in [11, Appendix B]). Let Zi denote a Z gate acting on the i’th qubit (and
similarly CZij , CCZijk). Then, for any x ∈ {0, 1}`, 〈x|Zi|x〉 = (−1)xi , 〈x|CZij |x〉 = (−1)xixj ,

3

. . . U H V . . . 7→
. . . U • H 〈0|

|0〉 H • V . . .

Figure 2: Replacing a Hadamard gate with a controlled-Z gate and postselection [10].

〈x|CCZijk|x〉 = (−1)xixjxk . As these gates are diagonal, we can obtain 〈x|C ′|x〉 simply by multi-
plying the expressions 〈x|G|x〉 for different gates G in C ′. Each gate corresponds to a term in fC
as defined above. So, for all x ∈ {0, 1}`, 〈x|C ′|x〉 = (−1)fC(x), and hence

〈0|H⊗`C ′H⊗`|0〉 =
1

2`

∑
x∈{0,1}`

〈x|C ′|x〉 =
1

2`

∑
x∈{0,1}`

(−1)fC(x) =
gap(fC)

2`
.

We can remove any Hadamard gates in C ′ using a trick from [10]. Imagine we have a Hadamard
gate on the i’th qubit. We form a new overall circuit C ′′ from C by introducing a new ancilla
qubit a initialised in the state |0〉, replacing the Hadamard gate with the gadget G = HiCZaiHa,
and changing all subsequent gates involving the i’th qubit to use qubit a (see Figure 2 for an
illustration). Then, by direct calculation, 〈0|iG|0〉a = H/

√
2, so 〈0|C ′′|0〉 = 〈0|C|0〉/

√
2. Following

this procedure for each of the h Hadamard gates in C ′, we obtain a circuit on n = ` + h qubits,
where each Hadamard gate corresponds to a product of two variables and relabelling of a qubit as
specified in the definition of fC . Taking into account the normalisation factor of 2h/2, we obtain

〈0|C|0〉 =
1

2h/2+`

∑
x∈{0,1}n

(−1)fC(x) =
gap(fC)

2h/2+`

as claimed.

It is easy to check that the formula of Proposition 1 is accurate for the example in Figure 1
(where gap(fC) = 16 and 〈0|C|0〉 = 1/2). The correspondence between circuits and polynomials
given in Proposition 1 will be the main tool used throughout this paper. We remark that all
the other amplitudes 〈x|C|y〉, x, y ∈ {0, 1}`, are also related to polynomials. This is because X
gates inserted at the start or end of C can be used to map |0〉 7→ |y〉 or |x〉 7→ |0〉, X gates can
be commuted through Hadamard gates to produce Z gates, and Z gates give linear terms in the
corresponding polynomial. Thus 〈x|C|y〉 = gap(fC + Lx,y)/2h/2+` for some linear function Lx,y

depending on x, y.

We next make some other simple observations that follow from the circuit-polynomial corre-
spondence.

2.1 Basic observations

Observation 2. There can be more than one quantum circuit C corresponding to a given polyno-
mial fC .

Proof. There are two easy ways to see this. First, as Z, CZ and CCZ gates commute, a consecutive
sequence of such gates in C can be reordered arbitrarily while still corresponding to the same
polynomial fC . Second, it is sometimes the case that CZ gates and Hadamards are interchangeable.
For example, Figure 3 shows two circuits which both correspond to the polynomial x1x2.

4

x1
•

x2
•

x1
H

x2

Figure 3: The internal part of two circuits which both correspond to the polynomial x1x2.

Observation 3. For every degree-3 polynomial f : {0, 1}n → {0, 1} with no constant term, there
exists a quantum circuit C on n qubits such that f = fC .

Proof. Produce the internal part of a circuit C on n qubits by associating a qubit with each variable
in f , and include a Z, CZ or CCZ gate between the qubits corresponding to each degree 1, 2, 3
term (respectively) in f .

We remark that the class of quantum circuits produced from the procedure in Observation 3
are IQP circuits [37]. An IQP circuit (“Instantaneous Quantum Polynomial-time”) on n qubits is a
circuit of the form H⊗nDH⊗n, where D is a circuit of poly(n) diagonal gates. It was argued in [11]
that it should be hard to sample classically from the output probability distributions of quantum
circuits of the form of Observation 3, even up to small total variation distance. The argument was
based on a plausible complexity-theoretic conjecture regarding the complexity of approximately
computing gap(f) for random degree-3 polynomials f .

Observation 4. There exists a degree-3 polynomial f : {0, 1}n → {0, 1} such that every quantum
circuit C corresponding to f requires n qubits.

Proof. Consider the polynomial containing the term xixjxk for all 1 ≤ i < j < k ≤ n, and no other
terms. As there are no degree-2 terms, any corresponding circuit C cannot contain any internal
Hadamard gates. Thus C must act on at least n qubits, with one qubit corresponding to each
variable.

Observation 5. If fC : {0, 1}n → {0, 1} corresponds to a quantum circuit C on ` qubits, then
| gap(fC)| ≤ 2n/2+`/2.

Proof. From Proposition 1, 〈0|C|0〉 = gap(fC)/2h/2+`. As 〈0|C|0〉 is a quantum circuit amplitude
and hence bounded by 1 in absolute value by unitarity, | gap(fC)| ≤ 2h/2+` = 2n/2+`/2.

These observations motivate us to define the quantum circuit width w(f) of a degree-3 polyno-
mial f over F2 as the minimal number of qubits required for any quantum circuit which corresponds
to f . For example, the family of polynomials f in Observation 4 has w(f) = n, whereas the poly-
nomial f ′ = x1x2 + x2x3 + · · · + xn−1xn has w(f ′) = 1, corresponding to a circuit whose internal
part consists of n− 1 Hadamard gates applied to one qubit.

3 Computational complexity

The theory of computational complexity studies the inherent difficulty of computational problems.
One of the main goals of this field is to classify problems into complexity classes: sets of problems
of comparable difficulty. We now give a brief, informal introduction to this area; see [35, 5] for a
full, formal treatment. The complexity classes used in this work can all be presented in terms of

5

determining properties of classical or quantum circuits. A classical circuit is a collection of AND,
OR and NOT gates connected with wires, which map an input to an output by evaluating the gates
in the natural manner. We assume that classical circuits only have one output bit, but potentially
many input bits. For each classical circuit C, we let C(x) be the output of C given the bit-string
x as input. Then we can define the following natural problems:

• Circuit SAT: given a classical circuit C, determine whether there exists x such that C(x) = 1.

• Circuit Counting: given a classical circuit C, output |{x : C(x) = 1}|.

Each of these problems corresponds to a complexity class. NP (“nondeterministic polynomial-
time”) is the class of decision problems which reduce to Circuit SAT in polynomial time, while
#P (“sharp-P” or “number-P”) is the class of functional problems which can be expressed as an
instance of Circuit Counting. The closely related class P#P is the class of functional problems
which can be solved in polynomial time, given the ability to solve any problem in the class #P. For
example, the problem of computing |{x : C1(x) = 1}| − |{x : C2(x) = 1}| for circuits C1, C2 is in
P#P. Here “polynomial time” is short for “in time polynomial in the input size”, which is the key
notion of efficiency used in computational complexity. For any complexity class C, a problem P is
said to be C-hard if it is at least as hard as every problem in C: in other words, for every problem
in C, there is a polynomial-time reduction from that problem to P.

A problem is said to be NP-complete if it is equivalent in difficulty to Circuit SAT, up to
polynomial-time reductions. Many important practical problems (such as optimal packing and
scheduling, integer programming, and computing ground-state energies of classical physical sys-

tems) are known to be NP-complete [21]. The famous P
?
=NP problem effectively asks whether

Circuit SAT can be solved in time polynomial in the size of the given circuit. Although it is widely
believed that the answer is “no”, a positive answer would have momentous consequences, implying
that any NP-complete problem could be solved in polynomial time. Observe that Circuit Counting
is at least as hard as Circuit SAT. In fact, it is conjectured that this problem is much harder. In-
deed, if there existed an efficient reduction from Circuit Counting to Circuit SAT, then the infinite
tower of complexity classes known as the polynomial hierarchy would collapse [40], a consequence
similar to P=NP and considered almost as unlikely.

Many interesting problems in physics and elsewhere are known to be #P-hard: at least as hard as
any problem in #P. These include computing Ising model partition functions [24], evaluating Jones
and Tutte polynomials [22], and exactly computing the permanent of a 0-1 matrix [41]. The intuitive
reason behind the hardness of these problems is that they involve computing a sum of exponentially
many terms. However, surprisingly, in some cases such sums can be computed efficiently (exactly or
approximately). Examples include exact computation of Ising model partition functions on planar
graphs [17, 26, 39], approximate computation of the permanent of a non-negative matrix [25], and
Valiant’s quantum-inspired “holographic algorithms” for combinatorial problems [42]. Proving #P-
hardness of a problem provides strong evidence that a clever efficient algorithm like these should
not exist for that problem.

3.1 Computational complexity of low-degree polynomials

We can use the connection between quantum circuits and polynomials to prove #P-hardness results.
It was shown by Ehrenfeucht and Karpinski [16] that computing the number of zeroes (equivalently,
the gap) of a degree-3 polynomial f over F2 is #P-hard. This implies that using the circuit-
polynomial correspondence is unlikely to give an efficient algorithm for simulating all quantum

6

circuits classically by computing quantum circuit amplitudes. However, we can go in the other
direction, and use the correspondence to obtain a quantum proof of #P-hardness of computing the
number of zeroes of f (equivalently, computing gap(f)).

Proposition 6. It is #P-hard to compute gap(f) for degree-3 polynomials f .

Proof. We will show that the problem of exactly computing 〈0|C|0〉 for an arbitrary quantum circuit
C containing Hadamard, Z, CZ, and CCZ gates is #P-hard. As computing gap(f) for arbitrary
degree-3 polynomials f would allow us to compute 〈0|C|0〉 for arbitrary circuits of this form, this
will imply the claim. To achieve this, we first show that computing 〈0|C|0〉 for an arbitrary quantum
circuit C containing Hadamard, X and Toffoli gates is #P-hard. This can easily be obtained from
a similar result of Van den Nest [43]; we include a simple direct proof here for completeness.

It is a fundamental result in the theory of reversible computation that X and Toffoli gates
together with ancillas are universal for classical computation, i.e. that given a boolean function
g : {0, 1}n → {0, 1} computed by a classical circuit C of poly(n) gates, there is a quantum circuit
C ′ of poly(n) X and Toffoli gates such that C ′|x〉I |0〉O|0〉

⊗a
A = |x〉I |g(x)〉O|0〉

⊗a
A , where the circuit

acts on a Hilbert space divided into an n-qubit input register I, a 1-qubit output register O, and
an a-qubit ancilla register A. Then let the circuit C ′′ be defined as follows:

1. Apply an X gate to the O register.

2. Apply Hadamard gates to each qubit in the I and O registers.

3. Apply C ′.

4. Apply Hadamard gates to each qubit in the I and O registers.

5. Apply an X gate to the O register.

If C ′′ is applied to the initial state |0〉, the state prepared after the second step is |+〉⊗nI |−〉O|0〉
⊗a
A .

When C ′ is applied in the third step the second and third registers are left unchanged, and the
state of the first register becomes

|ψg〉 =
1√
2n

∑
x∈{0,1}n

(−1)g(x)|x〉.

Thus 〈0|C ′′|0〉 = 〈+|⊗n|ψg〉 = 1
2n
∑

x∈{0,1}n(−1)g(x) = gap(g)/2n. So computing 〈0|C ′′|0〉 allows us
to determine gap(g), and hence the number of zeroes of g, for functions g computed by arbitrary
polynomial-size classical circuits. This problem is #P-hard by definition.

It remains to show that this same conclusion holds for circuits containing Hadamard, Z, CZ, and
CCZ gates. But this is immediate, as Toffoli gates can be produced from CCZ gates by conjugating
the target qubit by a Hadamard, and similarly X = HZH.

The #P-hardness proof of Ehrenfeucht and Karpinski [16] is not difficult. However, the quantum
proof gives a different perspective, and also lends itself to simple generalisations. For example:

Proposition 7. gap(f) remains #P-hard to compute for degree-3 polynomials where each variable
appears in at most 3 terms.

7

Proof. We show that computing gap(f) for an arbitrary degree-3 polynomial f reduces to computing
gap(f ′) for a degree-3 polynomial f ′ where each variable appears in at most 3 terms. Given f ,
we produce a corresponding quantum circuit C. Then, between each pair of gates, we insert two
Hadamard gates on each qubit to produce a new circuit C ′. As H2 = I, 〈0|C ′|0〉 = 〈0|C|0〉, so the
corresponding polynomial fC′ satisfies gap(fC′) = gap(fC), up to an easily computed scaling factor.
But each variable in fC′ is only contained within at most 3 terms, because the inserted Hadamard
gates effectively relabel all the variables between each pair of terms in the polynomial.

A similar circuit simplification to that of Proposition 7 was previously observed in [36]. Proposi-
tion 6 shows that we should not hope to find an efficient algorithm for simulating arbitrary quantum
circuits by computing the number of zeroes of low-degree polynomials. However, for some classes
of polynomials we can indeed obtain efficient algorithms (see below for some examples of this).

A natural question is whether we can improve Proposition 6 to show that even computing
the number of zeroes of degree-2 polynomials is #P-hard. It was already shown by Ehrenfeucht
and Karpinski [16] that this is unlikely to be the case, as there is a polynomial-time algorithm
for this problem. There is an alternative “quantum” way of seeing this result, as relating to ideas
around the well-known Gottesman-Knill theorem [34], which states that any quantum circuit whose
gates are all picked from the Clifford group can be efficiently simulated classically. Indeed, for any
degree-2 polynomial f : {0, 1}n → {0, 1}, by Observation 3 we can write down a quantum circuit
C on n qubits containing only Hadamard, Z and CZ gates such that 〈0|C|0〉 = gap(f)/2n. As the
gates in C are all members of the Clifford group, the state C|0〉 is a stabilizer state, as is the state
|0〉. It is known that the inner product between two arbitrary stabilizer states can be computed in
time O(n3) [2, 20, 9], implying an O(n3) algorithm for computing gap(f) for degree-2 polynomials
f : {0, 1}n → {0, 1}.

3.2 Approximate computation

Given that we have shown exactly computing gap(f) to be hard, the next natural question is
whether we can approximately compute it. We now show that this question is closely connected to
quantum computational complexity. The class of decision problems which can be solved efficiently
by a quantum computer (i.e. in time polynomial in the size of the input), with success probability
2/3, is known as BQP [45]. As with the classical complexity classes discussed previously, BQP
can be expressed in terms of circuits; however, the circuits are now quantum. Any polynomial-
time quantum computation solving a decision problem can be expressed as applying some quantum
circuit U , generated from the input in polynomial time, to the initial state |0〉, then measuring the
first qubit, and returning the measurement result.

Proposition 8. Determining gap(f) for arbitrary degree-3 polynomials f : {0, 1}n → {0, 1} up to
absolute error 1

3 · 2
(n+w(f))/2 is BQP-hard.

Proof. We first recall that solving decision problems reduces to computing quantum circuit ampli-
tudes (this is an observation of Knill and Laflamme [29]). Assume that we are given some quantum
circuit C containing only Hadamard, Z, CZ and CCZ gates, which is applied to the initial state
|0〉, followed by a measurement of the first qubit. We would like to approximately determine the
probability that this measurement outputs 1. As the set of gates {Hadamard, CCZ} is universal
for quantum computation [38, 3], this is sufficient to solve any problem in BQP. So consider the

8

following circuit C ′:

C

Z

C†

Then 〈0|C ′|0〉 = 〈0|C†Z1C|0〉 = trZ1(C|0〉〈0|C†), which is precisely the difference between the
probability that the measurement outputs 0, and the probability that it outputs 1. By the definition
of the error bounds in BQP, we have |〈0|C ′|0〉| ≥ 1/3, so it is sufficient to estimate 〈0|C ′|0〉 up to
absolute error less than 1/3 to determine whether the answer should be 0 or 1. As discussed in
Section 2, we can assume that C ′ begins and ends with Hadamards on every qubit (equivalently,
that C begins with Hadamards on every qubit).

From Proposition 1, there is a degree-3 polynomial fC′ : {0, 1}n → {0, 1}, where n = h+ `, h is
the number of Hadamard gates in the internal part of C ′ and ` is the number of qubits on which C ′

acts, such that 〈0|C ′|0〉 = gap(fC′)/2
h/2+`. So it is sufficient to determine gap(fC′) up to absolute

accuracy 1
3 · 2

h/2+` = 1
3 · 2

n/2+`/2 to solve the original decision problem. Observing that ` ≥ w(f)
by definition completes the proof.

We have seen that approximately computing gap(f) up to accuracy O(2(n+w(f))/2) is sufficient to
simulate arbitrary quantum computations. This is already sufficient to imply the known complexity
class inclusion2 BQP⊆P#P [7, 13], as it is easy to see that gap(f) can be computed exactly by
counting the number of inputs of a circuit which evaluate to 1, and hence is in P#P. Does the
implication go the other way? That is, can we use quantum computation to approximate gap(f)
up to accuracy O(2(n+w(f))/2)? If so, this would imply that approximating gap(f) up to this level
of accuracy is effectively equivalent3 to the complexity class BQP. This would give a new example
of a combinatorial problem which characterises the power of quantum computation. Several such
examples are known (e.g. [30, 4, 23, 44]), but approximately computing the number of zeroes of
degree-3 polynomials would arguably be the simplest yet.

For any quantum circuit C, the Hadamard test [4] can be used to estimate 〈0|C|0〉 up to
inverse-polynomially small absolute error. So, if we are given a circuit on ` qubits corresponding
to a polynomial f , we can estimate gap(f) up to accuracy O(2n/2+`/2). If ` = w(f), we have
achieved an approximation which matches the bound of Proposition 8. However, it is not clear how
to efficiently determine a quantum circuit corresponding to f which acts on w(f) qubits. Indeed,
even determining w(f) itself could be NP-complete.

Problem 9. What is the complexity of computing w(f) for an arbitrary degree-3 polynomial f :
{0, 1}n → {0, 1}?

To achieve a good enough level of accuracy in estimating gap(f), it would be sufficient to find
a circuit on ` qubits such that ` = w(f) +O(log n). But it is non-obvious how to obtain even this
level of accuracy.

We can also relate the quantum circuit width to the complexity of classical simulation.

Proposition 10. Given a degree-3 polynomial f : {0, 1}n → {0, 1} and a description of a quan-
tum circuit on ` qubits corresponding to f , gap(f) can be calculated exactly classically in time

2In fact, this argument also gives an alternative proof of the tighter complexity class inclusion BQP⊆AWPP, due
to Fortnow and Rogers [18].

3Technically, equivalent to the complexity class PromiseBQP [23]: the class of problems which reduce to deter-
mining whether the acceptance probability of a quantum computation is greater than 2/3 or less than 1/3, given the
promise that exactly one of these is the case.

9

O(22` poly(n)). Further, gap(f) can be approximated up to additive error ε 2n with success proba-
bility 2/3 in time O(poly(n)/ε2).

Proof. For any quantum circuit C on ` qubits containing m gates, 〈0|C|0〉 can be calculated in time
O(22`m) simply by multiplying out the matrices. If C represents f , it can be assumed to contain at
most poly(n) gates, so m = poly(n). For the second part, we can estimate |{x : f(x) = 0}|/2n by
taking the average of s random samples from f(x). Each sample can be computed in time poly(n).
By a standard Chernoff bound argument [15], in order for this estimate to be correct up to absolute
error ε with probability 2/3, it is sufficient to take s = O(1/ε2).

Using the second approach in Proposition 10, we can achieve the same level of approximation
accuracy achieved by an optimal quantum circuit by taking ε = O(2(w(f)−n)/2), giving a classical
algorithm which runs in time O(2n−w(f) poly(n)). Thus observe that, if either w(f) ≥ n−O(log n)
or w(f) ≤ O(log n), the speedup we could obtain by using a quantum algorithm to compute
gap(f) cannot be super-polynomial (but apparently for different reasons). In the former case, the
approximate classical algorithm from Proposition 10 runs in polynomial time; in the latter case,
the exact classical algorithm runs in polynomial time.

These results motivate us to further explore the concept of quantum circuit width.

3.3 Quantum circuit width

We first show that most degree-3 polynomials f have high quantum circuit width, and hence that
gap(f) cannot be approximated significantly more efficiently using this quantum circuit approach
than is possible classically.

Proposition 11. The probability that a random degree-3 polynomial f : {0, 1}n → {0, 1} with no
constant term has w(f) ≤ n− 3 is at most 2(−3n+1)/2.

Proof. We count the number of different functions which can correspond to a circuit on k qubits of
the form discussed in this work whose internal part contains n−k Hadamards (giving a polynomial
on n variables). Break the internal part of the circuit into n − k + 1 horizontal blocks such that
each Hadamard H1, . . . ,Hh begins a block. Then slide (commute) all the Z, CZ, CCZ gates in
the circuit to the left until they cannot go any further (i.e. come up against a Hadamard). Then,
except for the furthest left-hand block, each such gate acts on the qubit corresponding to the

Hadamard which begins its block. Therefore, there are at most 2(k2)+k+1 = 2k(k+1)/2+1 different
possibilities for the combination of gates in each block, except the left-hand block, where there are

2(k3)+(k2)+k = 2k(k
2+5)/6 possibilities. There are kn−k possibilities for the vertical position of the

Hadamards. Overall, we get an upper bound on the number of functions that can be produced
which is equal to

2(n−k)(k(k+1)/2+1)+k(k2+5)/6+(n−k) log2 k.

Take the rough upper bound log2 k ≤ k/2, valid for large enough k. Then the above quantity
is increasing with k and for k = n − 3 is equal to 2(n

3−4n+3)/6. On the other hand, there are

2(n3)+(n2)+n = 2(n
3+5n)/6 degree-3 polynomials on n variables with no constant term. Thus the

fraction of polynomials f such that w(f) ≤ n− 3 is at most exponentially small in n.

We next relate the quantum circuit width of a polynomial to a combinatorial parameter of
a hypergraph associated with the polynomial. A hypergraph G = (V,E) is defined by a set of

10

vertices V and a set of hyperedges E, where a hyperedge is a subset of at least 2 of the vertices. We
can associate a degree-3 polynomial f with a hypergraph G(f) by associating each variable with
a vertex, and thinking of each term involving at most 3 variables as a hyperedge between at most
3 vertices. A proper k-colouring of a hypergraph G is an assignment of colours to vertices, picked
from a set of colours of size k, such that at least two vertices within each hyperedge are assigned
different colours. The chromatic number of a hypergraph, χ(G), is defined to be the minimal k
such that there exists a proper k-colouring of G.

Proposition 12. For any degree-3 polynomial f : {0, 1}n → {0, 1}, χ(G(f)) ≤ 2w(f), and this
inequality can be tight. However, there exists a family of polynomials f : {0, 1}n → {0, 1}, for n
even, such that χ(G(f)) = 2 but w(f) = n/2.

Proof. Given a circuit for f using ` qubits, each pair of variables which are associated with the
same qubit but are not adjacent cannot be included in the same term of f . We can thus properly
colour the vertices of G(f) using at most 2` colours by associating a pair of colours (ci, di) with
each qubit, and allocating colour ci (resp. di) to those vertices which occur on line i at odd (resp.
even) times. Tightness follows from the function f(x) = x1x2 + x2x3 + · · · + xn−1xn, which has
w(f) = 1. As G(f) is a path on n vertices, χ(G(f)) = 2.

For the second part, consider the polynomial f(x) = x1x2 + x3x4 + · · · + xn−1xn. The cor-
responding graph G(f) consists of n/2 disjoint edges and hence can be properly coloured with 2
colours.

4 Polynomials and simulation of quantum circuits

We have seen that, using the construction of Proposition 8, in order to simulate a quantum circuit
– i.e. to determine the probability that, at the end of the circuit, the result of measuring the first
qubit would be 1 – it is sufficient to compute gap(f) for a related function f . One can use this idea
to easily obtain various simulation results for classes of quantum circuits.

First, as discussed in Section 3.2, any circuit containing only Hadamard, Z and CZ gates can
be simulated efficiently classically using the Gottesman-Knill theorem [34]. This result can be
generalised to circuits containing a small number of CCZ gates as follows.

Proposition 13. Let S be a hitting set for the collection of degree-3 terms of f : {0, 1}n → {0, 1}
(in other words, a set of variables such that each degree-3 term contains at least one element of S).
Then, given f and S, gap(f) can be computed in time O(2|S| poly(n)).

Proof. For any variable xi, let fxi←z denote the function obtained from f by fixing the value of xi
to z. Then it is easy to see that gap(f) = gap(fxi←0) + gap(fxi←1). Applying this recursively, for
any set S of variables, gap(f) can be computed by summing the gaps of the 2|S| functions obtained
by fixing each of the variables in S to either 0 or 1. If we choose S to include at least one variable
from each of the degree-3 terms in f , each new polynomial produced has degree at most 2, and
hence has gap computable in time O(n3) [16, 2].

Observe that, if f contains k degree-3 terms, there is always a hitting set containing k elements
(just by taking one variable from each term). More generally, we would like to find a hitting
set of minimal size h(f). This is an NP-complete problem [21], but luckily an approximation

11

• • • . . . •
• • • . . .

• . . .

• . . .

• . . .
...

...
. . . •
. . . •

Figure 4: A circuit with a hitting set of size 1 but many non-Clifford gates.

h′(f) ≤ 3h(f) can be found in polynomial time (approximating h(f) any better than this is NP-
hard [28], assuming the Unique Games Conjecture from complexity theory). We therefore have
that gap(f) can be computed in time 2O(h(f)) poly(n).

The construction of Proposition 8 produces a circuit C ′ from any circuit C on ` qubits whose
corresponding polynomial fC′ satisfies h(fC′) ≤ 2h(fC). Therefore, any polynomial-size circuit C
can be simulated in time 2O(h(fC)) poly(`). It was already shown by Aaronson and Gottesman that
circuits on ` qubits containing k non-Clifford gates can be simulated in time 2O(k) poly(`) [2], and
more recent work has improved the constant hidden in the O(k) term for circuits where the only
non-Clifford gate is the T gate [9, 8]. However, the result here is somewhat more general in that
there exist circuits with many CCZ gates whose corresponding polynomial has a small hitting set.
For example, Figure 4 illustrates a circuit on ` qubits containing CCZ gates from the first qubit to
every other pair of qubits; this circuit has

(
`−1
2

)
gates but a hitting set of size 1.

Also observe that this simulation does not seem to follow immediately from the results of
Markov and Shi [33] on simulating quantum circuits by tensor contraction in time exponential in
the tree-width of the circuit. Indeed, there exist circuits that contain only Clifford gates but have
arbitrarily high tree-width.

4.1 Simulation by linear transformations

In order to calculate gap(f) more efficiently, we can attempt to transform f into a polynomial
which is simpler in some sense. One way of doing this is to apply a linear transformation to f . The
following result is well-known in the theory of error-correcting codes [32]; we include the simple
proof for completeness.

Proposition 14. For any degree-3 polynomial f : {0, 1}n → {0, 1}, and any nonsingular linear
transformation L ∈ GLn(F2), let fL be the polynomial fL(x) = f(Lx). Then deg(fL) = 3 and
gap(fL) = gap(f).

Proof. To produce fL from f , we can replace each term xixjxk with a term (Lx)i(Lx)j(Lx)k (and
similarly for the terms dependent on 1 or 2 variables). As (Lx)i is a linear function of x over F2,
and similarly for j, k, the product of these functions is a polynomial of degree at most 3. For the
second part, as L is nonsingular, there is a one-to-one mapping between the set {x : f(x) = 0} and
the set {x : fL(x) = 0}, so gap(fL) = gap(f).

In fact, the group GLn(F2) is known to be the largest group of transformations which preserves
polynomial degree [32]. In some cases, a linear transformation can completely change a function’s

12

quantum circuit width and hence the efficiency with which its gap can be computed using the exact
algorithm of Proposition 10. As a very simple example, it is easy to show that the polynomial
x1 + · · · + xn has quantum circuit width n, but following a linear transformation that maps x1 +
· · ·+ xn 7→ x1, the resulting polynomial x1 has quantum circuit width 1.

Although we do not know a general way of minimising the quantum circuit width of a function
by applying a linear transformation, a simpler approach is to minimise the number of variables
on which the function depends. Given a polynomial f which depends on v variables, gap(f) can
be computed exactly in time O(2v poly(v)) simply by evaluating f on each of the 2v possible
assignments to the variables. It has been shown by Carlini [12] (see also Appendix B of [27]) that
the linear transformation L which minimises the number of variables in fL can be computed in
polynomial time. We therefore obtain the following corollary:

Corollary 15. Let C be a polynomial-size quantum circuit on ` qubits such that there exists a
linear transformation L such that fLC depends on v variables. Then there is a classical algorithm
which computes 〈0|C|0〉 exactly in time O(2v poly(`)).

In particular, if there exists L such that fLC depends onO(log `) variables, we obtain a polynomial-
time classical simulation of C.

5 Conclusions

In this work we have investigated a correspondence between quantum circuits and low-degree
polynomials over finite fields, and have shown that by exploiting this correspondence we can obtain
classical hardness results, as well as ideas for classical algorithms that simulate quantum circuits.
There seem to be many interesting directions in which to further explore this area. For example,
as discussed in Section 3.2, what is the complexity of computing or approximating the quantum
circuit width w(f)? Is it related to other measures of complexity of boolean functions? Low-degree
polynomials over F2 are equivalent to Reed-Muller codes [32] – can ideas from classical coding
theory be applied to understand quantum circuits? And finally, can any other useful simulation
techniques be developed by taking this perspective – perhaps for other specific classes of quantum
circuits?

Acknowledgements

This work was supported by an EPSRC Early Career Fellowship (EP/L021005/1). Some of this
work was carried out while the author was at the University of Cambridge. I would like to thank
Mick Bremner and Dan Shepherd for discussions on this topic over the last few years, and Scott
Aaronson, Miriam Backens and Richard Jozsa for helpful comments on a previous version. Special
thanks to Sophie for arriving safely, and providing many helpful distractions from completing this
work.

References

[1] S. Aaronson. A linear-optical proof that the permanent is #P-hard. Proc. Roy. Soc. Ser. A,
467(2136):3393–3405, 2011. arXiv:1109.1674.

13

[2] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A,
70:052328, 2004. quant-ph/0406196.

[3] D. Aharonov. A simple proof that Toffoli and Hadamard are quantum universal, 2003.
quant-ph/0301040.

[4] D. Aharonov, V. Jones, and Z. Landau. A polynomial quantum algorithm for approximating
the Jones polynomial. In Proc. 38th Annual ACM Symp. Theory of Computing, pages 427–436,
2006. quant-ph/0511096.

[5] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, 2009.

[6] D. Bacon, W. van Dam, and A. Russell. Analyzing algebraic quantum circuits using exponen-
tial sums, 2008. https://www.cs.ucsb.edu/~vandam/LeastAction.pdf.

[7] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411–
1473, 1997.

[8] S. Bravyi and D. Gosset. Improved classical simulation of quantum circuits dominated by
Clifford gates. Phys. Rev. Lett., 116:250501, 2016. arXiv:1601.07601.

[9] S. Bravyi, G. Smith, and J. Smolin. Trading classical and quantum computational resources.
Phys. Rev. X, 6:021043, 2016. arXiv:1506.01396.

[10] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum computa-
tions implies collapse of the polynomial hierarchy. Proc. Roy. Soc. Ser. A, 467(2126):459–472,
2011. arXiv:1005.1407.

[11] M. Bremner, A. Montanaro, and D. Shepherd. Average-case complexity versus approximate
simulation of commuting quantum computations, 2015. arXiv:1504.07999.

[12] E. Carlini. Reducing the number of variables of a polynomial. In Algebraic Geometry and
Geometric Modeling, Mathematics and Visualization, pages 237–247. Springer, 2006.

[13] C. Dawson, H. Haselgrove, A. Hines, D. Mortimer, M. Nielsen, and T. Osborne. Quantum
computing and polynomial equations over the finite field Z2. Quantum Inf. Comput., 5(2):102–
112, 2005. quant-ph/0408129.

[14] A. Drucker and R. de Wolf. Quantum proofs for classical theorems. Theory of Computing
Graduate Surveys, 2:1–54, 2011. arXiv:0910.3376.

[15] D. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized
algorithms. Cambridge University Press, 2009.

[16] A. Ehrenfeucht and M. Karpinski. The computational complexity of (XOR, AND)-counting
problems, 1990. Technical Report 8543-CS.

[17] M. Fisher. Statistical mechanics of dimers on a plane lattice. Phys. Rev., 124:1664–1672, 1961.

[18] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. In Proc. 13th

Annual IEEE Conf. Computational Complexity, pages 202–209, 1998. cs/9811023.

14

https://www.cs.ucsb.edu/~vandam/LeastAction.pdf

[19] K. Fujii and T. Morimae. Quantum commuting circuits and complexity of Ising partition
functions, 2013. arXiv:1311.2128.

[20] H. Garćıa, I. Markov, and A. Cross. On the geometry of stabilizer states. Quantum Inf.
Comput., 14(7&8):683–720, 2014.

[21] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-
Completeness. W. H. Freeman, 1979.

[22] F. Jaeger, D. Vertigan, and D. Welsh. On the computational complexity of the jones and tutte
polynomials. Math. Proc. Camb. Phil. Soc., 108:35–53, 1990.

[23] D. Janzing and P. Wocjan. A simple PromiseBQP-complete matrix problem. Theory of
Computing, 3:61–79, 2007. quant-ph/0606229.

[24] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising model.
SIAM J. Comput., 22(5):1087–1116, 1993.

[25] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.

[26] P. Kasteleyn. Dimer statistics and phase transitions. J. Math. Phys., 4(2):287–293, 1963.

[27] N. Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Proc. 22nd ACM-SIAM Symp. Discrete Algorithms, pages 1409–1421, 2011.

[28] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2− ε. J. Comput.
Syst. Sci., 74(3):335–349, 2008.

[29] E. Knill and R. Laflamme. Power of one bit of quantum information. Phys. Rev. Lett.,
81:5672–5675, 1998. quant-ph/9802037.

[30] E. Knill and R. Laflamme. Quantum computation and quadratically signed weight enumer-
ators. Inf. Proc. Lett., 79(4), 2001. quant-ph/9909094.

[31] G. Kuperberg. How hard is it to approximate the Jones polynomial? Theory of Computing,
11(6):183–219, 2015. arXiv:0908.0512.

[32] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland,
Amsterdam, 1983.

[33] I. Markov and Y. Shi. Simulating quantum computation by contracting tensor networks. SIAM
J. Comput., 38:963–981, 2008. quant-ph/0511069.

[34] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

[35] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[36] T. Rudolph. A simple encoding of a quantum circuit amplitude as a matrix permanent. Phys.
Rev. A, 80:054302, 2009. arXiv:0909.3005.

[37] D. Shepherd and M. J. Bremner. Temporally unstructured quantum computation. Proc. Roy.
Soc. Ser. A, 465(2105):1413–1439, 2009. arXiv:0809.0847.

15

[38] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quantum computing.
Quantum Inf. Comput., 3(1):84–92, 2003. quant-ph/0205115.

[39] H. Temperley and M. Fisher. Dimer problem in statistical mechanics – an exact result. Phil.
Mag., 6(68):1061–1063, 1961.

[40] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

[41] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[42] L. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.

[43] M. Van den Nest. Classical simulation of quantum computation, the Gottesman-Knill theorem,
and slightly beyond. Quantum Inf. Comput., 10(3–4):0258–0271, 2010. arXiv:0811.0898.

[44] M. Van den Nest, W. Dür, R. Raussendorf, and H. Briegel. Quantum algorithms for spin
models and simulable gate sets for quantum computation. Phys. Rev. A, 80:052334, 2008.
arXiv:0805.1214.

[45] J. Watrous. Quantum computational complexity. In Encyclopedia of Complexity and Systems
Science, pages 7174–7201. Springer New York, 2009. arXiv:0804.3401.

16

	Introduction
	Circuits and polynomials
	Basic observations

	Computational complexity
	Computational complexity of low-degree polynomials
	Approximate computation
	Quantum circuit width

	Polynomials and simulation of quantum circuits
	Simulation by linear transformations

	Conclusions

