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We use the class of commuting quantum computations known as IQP (Instantaneous Quantum Polynomial
time) to strengthen the conjecture that quantum computers are hard to simulate classically. We show that, if
either of two plausible average-case hardness conjectures holds, then IQP computations are hard to simulate
classically up to constant additive error. One conjecture relates to the hardness of estimating the complex-
temperature partition function for random instances of the Ising model; the other concerns approximating the
number of zeroes of random low-degree polynomials. We observe that both conjectures can be shown to be valid
in the setting of worst-case complexity. We arrive at these conjectures by deriving spin-based generalisations of
the Boson Sampling problem that avoid the so-called permanent anticoncentration conjecture.

Quantum computers are conjectured to outperform classi-
cal computers for a variety of important tasks ranging from
integer factorisation [1] to the simulation of quantum me-
chanics [2]. However, to date there is relatively little rigor-
ous evidence for this conjecture. It is well established that
quantum computers can yield an exponential advantage in
the query and communication complexity models. But in the
more physically meaningful model of time complexity, there
are no proven separations known between quantum and clas-
sical computation.

This can be seen as a consequence of the extreme difficulty
of proving bounds on the power of classical computing mod-
els, such as the famous P vs. NP problem. Given this diffi-
culty, the most we can reasonably hope for is to show that
quantum computations cannot be simulated efficiently clas-
sically, assuming some widely believed complexity-theoretic
conjecture. For example, any set of quantum circuits that can
implement Shor’s algorithm [1] provides a canonical example,
with the unlikely consequence of efficient classical simulation
of this class of quantum circuits being the existence of an effi-
cient classical factoring algorithm. However, one could hope
for the existence of other examples that have wider-reaching
complexity-theoretic consequences.

With this in mind, in both [3] and [4] it was shown that the
existence of an efficient classical sampler from a distribution
that is close to the output distribution of an arbitrary quantum
circuit, to within a small multiplicative error in each output
probability, would imply that post-selected classical computa-
tion is equivalent to post-selected quantum computation. This
consequence is considered very unlikely as it would collapse
the infinite tower of complexity classes known as the Polyno-
mial Hierarchy [5] to its third level. In both works this was
proven even for non-universal quantum circuit families: com-
muting quantum circuits in the case of [3], and linear-optical
networks in [4]. These non-universal families are of physi-
cal interest because they are simpler to implement, and easier
to analyse because of the elegant mathematical structures on
which they are based. However, in physically realistic scenar-
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ios where the quantum computer and its corresponding classi-
cal simulator are allowed to be accurate up to a small additive
error, these results have little meaning.

One important recent step to addressing this was proposed
by Aaronson and Arkhipov [4], who gave a sophisticated
argument based on counting complexity that approximately
sampling from the output probability distribution of a net-
work of noninteracting photons (a problem known as Boson
Sampling) should be classically hard, even up to a reason-
able additive error bound. This major breakthrough rests on
two tantalising but as yet unproven conjectures: the so-called
permanent anticoncentration conjecture and the permanent-
of-Gaussians conjecture.

In this paper we propose a generalisation of the Boson Sam-
pling argument of [4] that is native to spin systems, specif-
ically to the class of commuting quantum circuits known as
IQP (Instantaneous Quantum Polynomial time), which was
introduced in [6] and [3]. In our opinion this leads to a math-
ematically simpler setting, while still apparently retaining the
essential complexity-theoretic ingredients. This simplicity al-
lows us to prove the IQP analogues of the permanent anticon-
centration conjecture. The only remaining conjecture to prove
is an IQP analogue of the permanent-of-Gaussians conjecture,
of which we find two natural examples.

Informally (see [3] for the formal definition) an n-qubit
IQP circuit C is a quantum circuit which takes as input the
state |0〉⊗n, whose gates are diagonal in the Pauli-X basis, and
whose n-qubit output is measured in the computational basis.
We say that a classical sampler of an IQP circuit is accurate
up to error ε in `1 norm if its output probability distribution
has total variation distance at most ε/2 from that of C. We can
now state the main result of this paper:

Theorem 1. Assume either Conjecture 2 or 3 below is true. If
it is possible to classically sample from the output probability
distribution of any IQP circuit C in polynomial time, up to
an error of 1/192 in `1 norm, then any problem in #P can be
solved in FBPPNP. Hence the Polynomial Hierarchy collapses
to its third level.

Loosely speaking, the complexity class #P appearing in
this theorem is the class of problems reducible to counting
the number of solutions of an NP problem [5]; FBPPNP is the
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class of problems that can be solved by randomised classi-
cal polynomial-time computation equipped with an oracle that
can solve any problem in NP. Theorem 1 is based around two
natural conjectures, one of which is native to computer sci-
ence, and other common in condensed-matter physics. Each
conjecture straightforwardly relates to a family of IQP cir-
cuits. Essentially the result states that if we assume either
of our conjectures, then there is no way of efficiently simu-
lating these families of quantum circuits without a major re-
evaluation of the existing status-quo of complexity theory.

The first conjecture is based on the complexity of one of
the most commonly studied models of statistical physics, the
Ising model. Consider the partition function

Z(ω) =
∑

z∈{±1}n
ω
∑
i<j wijzizj+

∑n
k=1 vkzk , (1)

where the exponentiated sum is over the complete graph on n
vertices, wij and vk are real edge and vertex weights, and ω ∈
C. Then, for any ω = eiθ, Z(ω) arises straightforwardly as an
amplitude of some IQP circuit C: 〈0|⊗nC|0〉⊗n = Z(ω)/2n

(see Appendix A and [7–11]). Our conjecture is:

Conjecture 2. Let Z(ω) be the partition function of a ran-
dom instance of the Ising model, picked by choosing uniformly
random weights from the set {0, . . . , 15} on the vertices and
edges of the complete graph on n vertices, evaluated at ω.
Then it is #P-hard to approximate |Z(eiπ/8)|2 up to multi-
plicative error 1/4 + o(1) for a 1/24 fraction of instances
over the choice of vertex and edge weights.

It is known that the family of partition functions Z(ω)
parametrised as above is #P-hard to compute in the worst case
up to the above multiplicative error bound [10, 11]. Conjec-
ture 2 thus states that this worst-case hardness result can be
improved to an average-case hardness result.

Our second conjecture is based on the hardness of comput-
ing the gap of degree-3 polynomials over F2, f : {0, 1}n →
{0, 1}, which are expressible (up to an additive constant) as

f(x) =
∑
i,j,k

αijkxixjxk +
∑
i,j

βijxixj +
∑
i

γixi (mod 2),

where αijk, βij , γi ∈ {0, 1}. The gap is defined by gap(f) :=
|{x : f(x) = 0}|−|{x : f(x) = 1}|. It can be shown that, for
any degree-3 polynomial f , 〈0|⊗nCf |0〉⊗n = gap(f)/2n for
some IQP circuit Cf (see Appendix B). We write ngap(f) =
gap(f)/2n. Then we have the following conjecture:

Conjecture 3. Let f : {0, 1}n → {0, 1} be a uniformly ran-
dom degree-3 polynomial over F2. Then it is #P-hard to ap-
proximate ngap(f)2 up to a multiplicative error of 1/4+o(1)
for a 1/24 fraction of polynomials f .

It has been known for some time that ngap(f) is #P-hard
to compute exactly in the worst case [12]. We show in Ap-
pendix D, using IQP techniques, that this worst-case hardness
still holds for approximating ngap(f)2 up to multiplicative er-
ror less than 1/2. Just as with Conjecture 2, what remains is to
lift this worst-case hardness result to average-case hardness.

We remark that an additional piece of evidence provided
in [4] for the average-case hardness of multiplicative approxi-
mations to Boson Sampling (the permanent-of-Gaussians con-
jecture) was a direct proof that exact simulation of Boson
Sampling probability distributions is hard on average. This
was based on average-case hardness results for computation
of the permanent, for which we do not know IQP analogues.
However, currently known techniques do not seem sufficient
to extend these exact average-case hardness results for Boson
Sampling to approximate hardness results [4, Section 9.2].

As with the case of Boson Sampling, the worst-case hard-
ness of multiplicative approximations to both Z(ω) and
ngap(f) ([11] and Appendix D) implies via standard results
on random-self-reducibility [13] that there exists some distri-
bution over the choices of these functions that is #P-hard on
average – but not necessarily the distributions that we require
for Conjectures 2 and 3.

There are a number of technical ingredients of Theorem 1
which will be discussed in full below. The basic idea is that,
for the class of problems underlying Conjectures 2 and 3, any
classical sampler that is accurate up to a good additive error
bound in the worst case, is forced to also be accurate to within
a reasonable multiplicative error on average. This is shown
by using a classic result of complexity theory, the so-called
Stockmeyer counting algorithm [14]. Another essential in-
gredient is anticoncentration results for ngap(f) (for Conjec-
ture 3) and the partition function of the random Ising model
(for Conjecture 2). That such anticoncentration results can be
proven is a consequence of the elegant mathematical struc-
tures upon which IQP circuits are based.

We first mention that recent independent work of Feffer-
man and Umans [15] has explored an alternative way to gen-
eralise the ideas of Aaronson and Arkhipov [4]. This work
uses Quantum Fourier Sampling to construct states whose cor-
responding probability distributions are hard to sample from
classically, under similar conjectures to [4]. An appealing as-
pect of the construction of [15] is that it shows that there are
specific, and rather simple, quantum states which are hard to
simulate classically, assuming an anticoncentration conjecture
holds. However, constructing these states appears to require
the full power of quantum computation, unlike the results de-
scribed here and in [4].

We now describe our results. We assume basic knowledge
of standard complexity classes [5, 16] such as P, #P and BPP.
A crucial complexity-theoretic tool we will use is a result of
Stockmeyer on approximate counting:

Theorem 4 (Stockmeyer [14], see [4] for statement here).
There exists an FBPPNP machine which, for any boolean
function f : {0, 1}n → {0, 1}, can approximate

p = Pr
x

[f(x) = 1] =
1

2n

∑
x∈{0,1}n

f(x)

to within a multiplicative factor of (1 + ε) for all ε =
Ω(1/ poly(n)), given oracle access to f .

We refer to [3, 6] for formal definitions of the IQP model.
We commonly consider IQP circuits which consist of an n-
fold tensor product of a Hadamard gate H⊗n, a component
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whose gates are diagonal in the Pauli-Z basis, and a further
application of H⊗n. For the main results of this paper we
will consider IQP circuits whose diagonal-Z component con-
sists of either Z, CZ (Controlled-Z, aka Controlled-Phase),
and CCZ (Controlled-Controlled-Z) gates or Z,

√
CZ, and

T =
(
1 0
0 eiπ/4

)
gates. Both of these sets of gates would be

universal if we could also perform Hadamard (H) gates at any
point in the circuit – which we cannot do in IQP because this
gate does not commute with the Z gate. However, if we al-
low the unphysical resource of postselection, these Hadamard
gates can effectively be implemented [3], allowing IQP circuit
amplitudes 〈y|C|x〉 to express any quantum circuit amplitude
(up to a known constant). See Appendix C for a description
of this construction. A consequence is that exact classical
computation of such amplitudes is #P-hard, even up to con-
stant multiplicative error [3] or exponentially small additive
error [9].

Approximation of general IQP circuits – We first prove a
key technical ingredient, which relates approximate sampling
from the output distributions of IQP circuits to approximating
individual output probabilities. This is essentially the same
argument as used in [4] for the permanent, although we be-
lieve it becomes substantially simpler in the setting of IQP.
The intuition behind this result is that adding random X gates
to an IQP circuit randomly permutes the output probabilities.
This allows the user of a sampler which is accurate for all cir-
cuits to obfuscate from the sampler which one of the output
probabilities the user is interested in.

Lemma 5. Let C be an arbitrary IQP circuit on n qubits. Let
Cx, for x ∈ {0, 1}n, be the circuit produced by appending an
X gate to C for each i such that xi = 1. Assume there exists
a classical polynomial-time algorithm A which, for any IQP
circuit C′, can sample from a probability distribution which
approximates the output probability distribution of C′ up to
additive error ε in `1 norm. Then, for any δ such that 0 <
δ < 1, there is a FBPPNP algorithm which, given access to
A, approximates |〈0|Cx|0〉|2 up to additive error

O((1 + o(1))ε/(2nδ) + |〈0|Cx|0〉|2/ poly(n))

with probability at least 1− δ (over the choice of x).

Proof. For each x, y ∈ {0, 1}n, set

pxy := Pr[Cx outputs y], qxy := Pr[A outputs y on input Cx],

where in both cases the probability is taken over the algo-
rithm’s internal randomness. For any y of our choice, we can
apply Theorem 4 to A to estimate q0y (where we write 0 for
0n). This gives us an FBPPNP algorithm which produces an
estimate q̃y such that

|q̃y − q0y| ≤ q0y/ poly(n).

Then

|q̃y − p0y| ≤ |q̃y − q0y|+ |q0y − p0y|
≤ q0y/poly(n) + |q0y − p0y|
≤ (p0y + |q0y − p0y|)/ poly(n) + |q0y − p0y|
= p0y/poly(n) + |q0y − p0y|(1 + 1/ poly(n)).

As A approximates the output probability distribution of C0
up to `1 error ε, it follows from Markov’s inequality that

Pr
y

[|p0y − q0y| ≥ ε/(2nδ)] ≤ δ

for any 0 < δ < 1, where y is picked uniformly at random.
Thus

|q̃y − p0y| ≤ p0y/ poly(n) +
ε(1 + 1/poly(n))

2nδ

with probability at least 1− δ, over the choice of y. But

p0y = Pr[C0 outputs y] = |〈y|C0|0〉|2 = |〈0|Cy|0〉|2.

This completes the proof.

If |〈0|Cx|0〉|2 = Ω(2−n), the algorithm of Lemma 5 gives
a good approximation – i.e. a multiplicative approximation up
to a 1 + 1/ poly(n) factor. We encapsulate this formally as
the following corollary.

Corollary 6. Let F be a family of IQP circuits on n qubits.
Pick a random circuit C by choosing a circuit from F uni-
formly at random, then appending X gates on a uniformly
random subset of the qubits. Assume that there exist universal
constants α, p > 0 such that Pr[|〈0|C|0〉|2 ≥ α · 2−n] ≥ p.
Further assume there exists a classical polynomial-time al-
gorithm A which, for any IQP circuit C′, can sample from a
probability distribution which approximates the output prob-
ability distribution of C′ up to additive error ε = αp/8 in `1
norm. Then there is a FBPPNP algorithm which, given ac-
cess to A, approximates |〈0|C|0〉|2 up to multiplicative error
1/4 + o(1) on at least a p/2 fraction of circuits C.

Proof. With probability at least p over the choice of C,
|〈0|C|0〉|2 ≥ α · 2−n. Setting ε = αp/8, δ = p/2 in Lemma
5, there is a FBPPNP algorithm which, given access to A,
approximates |〈0|C|0〉|2 up to additive error O((1 + o(1))α ·
2−n−2+|〈0|C|0〉|2/ poly(n)) with probability at least 1−p/2
(over the choice of C). Therefore, with probability at least p/2,
the algorithm approximates |〈0|C|0〉|2 up to multiplicative er-
ror 1/4 + o(1).

We next show that the first precondition of Corollary 6 is
indeed satisfied for two interesting families of IQP circuits.

Anticoncentration bounds – Fix a family F of IQP cir-
cuits. We would like to show that |〈0|C|0〉|2 is likely to be
high for a circuit C formed by picking a random circuitD from
F , then appending X gates on a uniformly random subset S
of the qubits. We will use the following fact:

Fact 7 (Paley-Zygmund inequality). If R is a non-negative
random variable with finite variance, then for any 0 < α < 1,
Pr[R ≥ αE[R]] ≥ (1− α)2E[R]2/E[R2].

We will apply Fact 7 to the random variableR = |〈0|C|0〉|2,
first observing that

EC [|〈0|C|0〉|2] = ED,x[|〈x|D|0〉|2]

=
1

2n
ED

∑
x∈{0,1}n

|〈x|D|0〉|2 =
1

2n
,
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where in the second expectation x is picked uniformly at ran-
dom from {0, 1}n. This deals with the numerator; to handle
the denominator, we need to upper-bound E[|〈0|C|0〉|4].

The first family of circuits we consider corresponds to poly-
nomials over F2. We prove in Appendix E that for uniformly
random degree-3 polynomials f , Ef [ngap(f)4] ≤ 3 · 2−2n.
Based on this, and the tight connection between IQP circuits
over the gate set {Z,CZ,CCZ} and degree-3 polynomials, we
have the following result:

Theorem 8. Assume there exists a classical polynomial-time
algorithm A which, for any IQP circuit C, can sample from a
probability distribution which approximates the output prob-
ability distribution of C up to additive error 1/192 in `1
norm. Then there is an FBPPNP algorithm which, given ac-
cess to A, approximates ngap(f)2 up to multiplicative error
1/4+o(1) on at least a 1/24 fraction of degree-3 polynomials
f : {0, 1}n → {0, 1}.

Proof. Combining Fact 7 and the bound on Ef [ngap(f)4], we
have Prf [ngap(f)2 ≥ α/2n] ≥ (1 − α)2/3 for any 0 <
α < 1. Fixing α = 1/2, we get Prf [ngap(f)2 ≥ 2−n−1] ≥
1/12. The claim then follows by inserting these parameters
into Corollary 6.

We next consider the Ising model, where we are inter-
ested in evaluating the partition function Z(ω) of a randomly
weighted graph at ω = eiπ/8 (see (1)). Each edge of the com-
plete graph has a weight wij , and each vertex has a weight vk,
each picked uniformly at random from the set {0, . . . , 15}.

We show in Appendix E that 〈0|C|0〉 = Z(ω)/2n

for an IQP circuit C consisting of gates from the set
{diag(1, 1, 1, i),diag(1, eiπ/4)}; and further that we can con-
sider a random circuit of this form as being chosen by picking
a random circuit using this gate set, then following it by a ran-
dom choice of X gates. In addition, Ew,v

[
|Z(ω)|4

]
≤ 3 · 22n.

This implies the following result, whose proof is essentially
the same as that of Theorem 8:

Theorem 9. Let Z(ω) be the partition function of a ran-
dom instance of the Ising model, picked by choosing random
weights from the set {0, . . . , 15} on the vertices and edges of
the complete graph on n vertices, evaluated at ω. Assume
there exists a classical polynomial-time algorithm A which,
for any IQP circuit C, can sample from a probability distri-
bution which approximates the output probability distribution
of C up to additive error 1/192 in `1 norm. Then there is a
FBPPNP algorithm which, given access to A, approximates
|Z(eiπ/8)|2 up to multiplicative error 1/4 + o(1) with proba-
bility at least 1/24 (over the choice of weights).

Combining Theorems 8 and 9 gives our main result, Theo-
rem 1.

Outlook – In our opinion, the most compelling question is
how best to physically implement the classes of IQP circuits

discussed in this paper, as they are arguably among the sim-
plest classes of quantum computations that are unlikely to be
classically simulable. For both the Ising model and degree-3
polynomial case the most obvious experimental implementa-
tions require non-local gates, which is quite challenging. In
terms of the Ising model case 2-qubit interactions might need
to be generated between any two qubits in a system. Such in-
teractions do not arise naturally in lattice geometries and as
such will need to be engineered. From an experimental per-
spective there has already been a large amount of progress in
these directions. The dynamics of the Ising model with local
interactions have been digitally simulated in ion traps [17, 18]
and very recently non-local interactions have been utilised in
the digital simulation of fermionic systems with superconduc-
tors [19]. As technologies such as cavity buses for supercon-
ducting systems [20] become more reliable, we expect that an
increasing number of systems will be able to implement IQP
circuits in a regime that is likely not to be classically simula-
ble.

Theoretically there are a number of natural questions that
remain to be answered, the most obvious of which is whether
or not Conjectures 2 and 3 are true. To the best of our knowl-
edge there are no techniques that are capable of lifting the
known worst-case hardness results for the Ising model and
gaps of degree-3 polynomials to average-case results. How-
ever, recent breakthroughs [21–23] in categorising the com-
plexity of statistical mechanical systems via the underlying
interaction graph properties give some hope that these conjec-
tures can be resolved.

As well as the connections used here between IQP, the Ising
model and low-degree polynomials, it is known that IQP cir-
cuits are closely related to Tutte polynomials and weight enu-
merator polynomials of binary linear codes [7]. It is a com-
pelling question as to whether the ideas developed here can
be extended to these models. It would also be very interesting
to explore the connection between nonadaptive measurement-
based quantum computing and IQP [24, 25] in order to find
subclasses of IQP that are physically straightforward to im-
plement, and for which one can prove conditional hardness
results similar to those shown here.
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Consider the general Ising model:

HI =
∑
i<j

wijzizj +
∑
i

vizi

where z ∈ {−1,+1}n, i, j label vertices in the complete graph, wij is a weight assigned to the edge (i, j) and vi is a weight
assigned to the vertex i. We want to show that the partition function of HI evaluated at eiθ, Z = Tr[eiθHI ], is proportional to an
amplitude of an n-qubit IQP circuit.

Imagine we have an IQP circuit constructed from the gates eiθX⊗X and eiθX , and consider the circuit amplitude
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where X is a Pauli-X operator. Then

〈0|⊗neiθ(
∑
i<j wijXiXj+

∑
i viXi)|0〉⊗n = 〈0|⊗nH⊗neiθ(

∑
i<j wijZiZj+

∑
i viZiH⊗n|0〉⊗n

=
1

2n

∑
x,y∈{0,1}n

〈y|eiθ(
∑
i<j wijZiZj+

∑
i viZi)|x〉

=
1

2n

∑
x∈{0,1}n

eiθ(
∑
i<j wij(−1)

xixj+
∑
i vi(−1)

xi )

=
1

2n

∑
z∈{−1,1}n

eiθ(
∑
i<j wijzizj+

∑
i vizi)

=
1

2n
Tr[eiθHI ].

If we consider IQP circuits constructed from the gates ei
π
tX⊗X and ei

π
tX , then it is clear that amplitudes of such circuits give

rise to partition functions of the form Z(ω) = Tr[ωHI ] where ω = ei
π
t and wij , vi ∈ {0, . . . , 2t− 1}.

See Appendix E below for an alternative connection between IQP and the Ising model using a different gate set.

Appendix B: Gaps of degree-3 polynomials

We can also use IQP circuit amplitudes to express the gap of any degree-3 polynomial over F2 (with no constant term),
f : {0, 1}n → {0, 1}:

f(x) =
∑
i,j,k

αijkxixjxk +
∑
i,j

βijxixj +
∑
i

γixi,

where αijk, βij , γi ∈ {0, 1}.
This can be seen by noting the action of the Z, CZ, and CCZ gates on the computational basis states. Given a single qubit

in a computational basis state, |x1〉, the Pauli-Z gate has action Z|x1〉 = (−1)x1 |x1〉. Similarly we see CZ12|x1x2〉 =
(−1)x1x2 |x1x2〉 and CCZ123|x1x2x3〉 = (−1)x1x2x3 |x1x2x3〉. Then, in order to generate the phase (−1)f(x)|x〉, we sim-
ply apply for each non-zero αijk, βij , γi in f a corresponding CCZ, CZ, or Z gate to the n-qubit computational basis state, |x〉.
Let C̃f denote this circuit and Cf = H⊗nC̃fH⊗n denote its Hadamard transform, which is an IQP circuit.

We want to show that 〈0|⊗nCf |0〉⊗n is proportional to the gap of f . This is straightforward:

〈0|⊗nH⊗nC̃fH⊗n|0〉⊗n =
1

2n

∑
x,y∈{0,1}n

〈y|C̃f |x〉 =
1

2n

∑
x∈{0,1}n

(−1)f(x) =
1

2n
gap(f),

recalling that gap(f) is defined as gap(f) := |{x : f(x) = 0}| − |{x : f(x) = 1}|. Note that similar ideas were previously
used in [26, 27] for different classes of circuits.

Appendix C: The Hadamard gadget

Arbitrary Hadamard operations can be implemented in IQP using post-selection [3] – something that cannot be done efficiently
in physical systems but nonetheless turns out to be useful as a mathematical tool. We perform Hadamard gates by introducing
Hadamard gadgets to our IQP circuits. Imagine that we have an n-qubit state |ψ〉 upon which we wish to apply a Hadamard
gate to qubit j, and denote this by Hj |ψ〉. We now add an extra qubit e initialised to the state He|0〉e, recalling that all lines of
an IQP circuit in the Z basis begin and end with a H. Then we perform some gates to produce the state HjCZjeHe|ψ〉|0〉e and
measure qubit j in the computational basis, post-selecting on the 0 outcome. We note that the gate Hj must be present as this is
an IQP circuit. It is easily checked that the effect of this protocol is to teleport the state of qubit j to qubit e while performing a
Hadamard operation on this qubit. If we had desired to perform more gates on qubit j we now perform them on qubit e.

There are a few important things to note about the Hadamard gadget. Firstly for each “intermediate” Hadamard to be per-
formed there is a cost of 1 qubit, 1 CZ gate, and 1 qubit of post-selection. Secondly, if we did not perform post-selection there
would be a probability of 1/2 for this procedure to implement a Hadamard gate, so if a circuit had m intermediate Hadamard
gates the success probability would be 1/2m, making this procedure impractical.

Finally, it is clear that the Hadamard gadget preserves multiplicative approximations of circuit amplitudes. Imagine we had
an n-qubit quantum circuit U which is expressed in terms of gates that are diagonal in the Z basis and m intermediate H gates.
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Then using the Hadamard gadget m times we get the IQP circuit C such that 〈0|⊗nU|0〉⊗n = 2m/2〈0|⊗(n+m)C|0〉⊗(n+m).
Furthermore, if we had a multiplicative approximation, A, to this latter quantity within multiplicative error γ then |A −
〈0|⊗(n+m)C|0〉⊗(n+m)| ≤ γ〈0|⊗(n+m)C|0〉⊗(n+m). Then it is clear that A′ = 2m/2A also provides a multiplicative approxima-
tion to 〈0|⊗nU|0〉⊗n within γ.

Appendix D: Hardness of multiplicative approximations

We now show that approximating the squared gap of a degree-3 polynomial over F2 is GapP-complete, even up to constant
multiplicative error. GapP is a complexity class containing #P [28]. The majority of the proof is very similar to arguments used
in other settings, such as for the permanent [29] or the Ising model [11]. However, we believe that the connection to IQP again
somewhat simplifies the argument. A similar argument could be used to prove hardness of multiplicative approximation for the
Ising model; we omit this as it was shown in [11].

Proposition 10. Let f be a degree-3 polynomial over F2. The problem of producing an estimate z̃ such that ||ngap(f)| − z̃| ≤
ε|ngap(f)|, for any ε < 1/2, is GapP-complete.

Proof. Let f : {0, 1}n → {0, 1} be a function described by a polynomial-size classical circuit C. By definition, computing
ngap(f) for arbitrary functions f is GapP-complete [28]. We now show that this problem can be reduced to approximating
|ngap(f)| for degree-3 polynomials f , up to sufficiently high precision.

The first step is to show a connection between a “shifted” version of the general problem and IQP. For any m = O(n) and
for any c ∈ [−1, 1] such that c is an integer multiple of 21−m, there is a polynomial-size classical circuit Dc on m input bits
computing a function g such that ngap(g) = −c. By adding a control bit which determines whether to execute C or Dc, we
obtain a polynomial-size classical circuit on n+m+ 1 bits computing a function fc such that ngap(fc) = 1

2 (ngap(f)− c).
By universality of the Toffoli gate for reversible classical computation, we can write down a quantum circuit Qc consisting of

Toffoli, CNOT and X gates such that Qc performs the map

|0〉⊗a|x〉|0〉 7→ |0〉⊗a|x〉|fc(x)〉,

where the first register contains a ancilla qubits, with a = poly(n). Let the circuit Q′c be defined as follows: start in the state
|0〉⊗a|0〉⊗(n+m+1)|0〉; apply an X gate to the third register; apply Hadamard gates to the second and third registers; execute Qc;
apply Hadamard and X gates to the third register; and finally apply Hadamard gates to the second register. The state near the
end of this circuit, just before the last Hadamard gates are applied, is

|0〉⊗a
 1√

2n+m+1

∑
x∈{0,1}n+m+1

(−1)fc(x)|x〉

 |0〉.
Therefore, 〈0|Q′c|0〉 = ngap(fc) = 1

2 (ngap(f) − c), where we henceforth abbreviate |0〉⊗n = |0〉 for any integer n. As
discussed in Appendix C, there exists an IQP circuit Q′′c such that 〈0|Q′c|0〉 = α〈0|Q′c|0〉 for some easily computed real number
α. An approximation of 〈0|Q′′c |0〉 up to multiplicative error ε therefore implies an approximation of 〈0|Q′c|0〉 up to the same
error.

Assume we have a deterministic algorithm A such that, on taking as input an arbitrary IQP circuit C, A outputs z̃ such that
||〈0|C|0〉|−z̃| ≤ ε|〈0|C|0〉|, for some ε < 1. We will useA to output estimates d̃ such that |d̃−| ngap(f)−c|| ≤ ε|ngap(f)−c|.
Observe that A can be used to distinguish with certainty between the two cases that c = ngap(f), and c 6= ngap(f). So if we
can guess c = ngap(f), A certifies that our guess is correct.

We now perform the following sequence of steps to compute ngap(f). At each step, we have a guess c for ngap(f), starting
with c = 0. We use A to output an estimate d̃ of |ngap(f) − c|. We then consider the two possibilities c ± d̃. We apply A to
estimate |ngap(f)− (c± d̃)|, obtaining outputs d̃+, d̃−, and choose as our new value of c either c+ d̃ (if d̃+ ≤ d̃−) or otherwise
c− d̃. We then repeat until c = ngap(f).

Write d̃ = (1 + γ)|c− ngap(f)|, for some γ such that |γ| ≤ ε. If c < ngap(f), we have

|c+ d̃− ngap(f)| = |c+ (1 + γ)(ngap(f)− c)− ngap(f)| = |γ(ngap(f)− c)| ≤ ε|c− ngap(f)|,

so if we choose c+ d̃ for the next step, the distance between c and ngap(f) is reduced by multiplying it by a factor smaller than
ε. A similar calculation holds in the case c > ngap(f) if we choose c − d̃ for the next step. As ngap(f) is an integer multiple
of 2−n, if we pick the correct choice at each step, we need only O(n) steps to obtain c = ngap(f). We now show that, for
sufficiently small ε, the correct choice is indeed picked.
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Assuming c < ngap(f), we would like d̃+ < d̃−. This will hold if

(1 + ε)|c+ d̃− ngap(f)| < (1− ε)|c− d̃− ngap(f)|
⇔ (1 + ε)|c+ (1 + γ)|c− ngap(f)| − ngap(f)| < (1− ε)|c− (1 + γ)|c− ngap(f)| − ngap(f)|
⇔ (1 + ε)|γ(ngap(f)− c)| < (1− ε)|(2 + γ)(ngap(f)− c)|
⇔ (1 + ε)|γ| < (1− ε)|2 + γ|.

This inequality is easily seen to hold for all γ such that |γ| ≤ ε < 1/2. The case c > ngap(f) is similar.
One omission in this argument is that we can only approximate |ngap(f) − c| for values c which are integer multiples of

21−m, but depending on the estimates output by A, we may want to use values of c which are not integer multiples. In this case,
we simply truncate c to the nearest integer multiple of 21−m. For sufficiently large m = O(n), the additional error introduced
by this truncation is negligibly small.

This immediately implies hardness of multiplicatively approximating ngap(f)2 to the same accuracy, because

|ngap(f)2 − z̃2| ≤ εngap(f)2 ⇒ ||ngap(f)| − z̃|(|ngap(f)|+ z̃) ≤ εngap(f)2 ⇒ ||ngap(f)| − z̃| ≤ ε|ngap(f)|.

Appendix E: Proofs of anticoncentration bounds

Here we prove the lemmas required for the anticoncentration bounds claimed in the main body of the paper. Our main
technical tool will be the following result:

Lemma 11. Let ω = e2πi/r, η = e2πi/s for some integers r and s such that r, s ≥ 2, and if s = 2 then r = 2. Fix integer n.
For pairs of integers i < j between 1 and n, let αij be picked uniformly at random from {0, . . . , r − 1}. For k ∈ {1, . . . , n}, let
βk be picked uniformly at random from {0, . . . , s− 1}. Then∑

w,x,y,z∈{0,1}n

∣∣∣Eα [ω∑
i<j αij(wiwj+xixj−yiyj−zizj)

]
Eβ
[
η
∑
k βk(wk+xk−yk−zk)

]∣∣∣ ≤ 3 · 22n.

Proof. Each term in the sum is clearly upper-bounded by 1. Our goal will be to show that many terms in the sum are actually
zero, using the identities Eα[ωαt] = 0 for any integer t 6≡ 0 mod r, and similarly Eβ [ηβt] = 0 for t 6≡ 0 mod s. First,

Eβ
[
η
∑
k βk(wk+xk−yk−zk)

]
=

n∏
k=1

Eβk [ηβk(wk+xk−yk−zk)],

which equals 0 unless z ≡ w + x − y mod s. If this is the case, it also holds that z ≡ w + x − y mod r. To see this, observe
that for s ≥ 3, as w+ x− y ∈ {−1, 0, 1, 2}n, z ≡ w+ x− y mod s implies that in fact z = w+ x− y. If s = 2, then r = s by
assumption and the claim is immediate. Hence

Eα
[
ω
∑
i<j αij(wiwj+xixj−yiyj−zizj)

]
= Eα

[
ω
∑
i<j αij(wiwj+xixj−yiyj−(w+x−y)i(w+x−y)j)

]
=
∏
i<j

Eαij
[
ωαij(wi(yj−xj)+xi(yj−wj)+yi(wj+xj)−2yiyj)

]
.

We claim that if w, x and y are all distinct, then there exists a pair (i, j) (also distinct) such that

wi(yj − xj) + xi(yj − wj) + yi(wj + xj) 6≡ 2yiyj mod r, (E1)

which implies that the product evaluates to 0. Since w 6= x, let i be such that wi 6= xi. We may assume without loss of generality
that wi = 0 and xi = 1, since the other case just relabels w for x and vice versa. Therefore it remains to find a j > i such that

yj − wj + yi(wj + xj) 6≡ 2yiyj mod r. (E2)

In fact, finding a j < i is just as good, because the expression (E1) is also symmetric under exchange of i and j. If yi = 0 then
since y 6= w, there must exist some j such that yj 6= wj . Moreover, j 6= i because yj cannot differ from both wi and xi (which
we have already seen are different). So yj = 0, wj = 1 (or vice versa), they cannot be equivalent modulo r, and (E2) holds in
this case. On the other hand, if yi = 1 then since y 6= x, there must be some j such that yj 6= xj , and j 6= i because we already
chose xi = 1. So yj = 0, xj = 1 (or vice versa), they are not equivalent modulo r, and (E2) holds in this case too.

We have therefore shown that each term in the sum in the statement of the lemma evaluates to 0 unless both z ≡ w + x − y
mod s, and also w = x, w = y or x = y. The number of ways of choosing strings w, x, y, z to comply with this constraint is at
most 3 · 22n. This completes the proof.
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We first apply Lemma 11 to random degree-3 polynomials. A degree-3 polynomial f : {0, 1}n → {0, 1} can be picked
uniformly at random in a straightforward manner. Assuming that f(0n) = 0 without loss of generality and writing

f(x) =
∑
i,j,k

αijkxixjxk +
∑
i,j

βijxixj +
∑
i

γixi,

where αijk, βij , γi ∈ {0, 1}, we simply pick each of these coefficients uniformly at random. Observe that the random γi
coefficients correspond to applying X gates to a random subset of the qubits. We now show that, for each possible choice of the
αijk coefficients, the expected value of ngap(f)4 (taken over the β, γ coefficients) is low.

Lemma 12. Let f : {0, 1}n → {0, 1} be a polynomial over F2 whose degree ≤ 2 part is uniformly random. Then
Ef [ngap(f)4] ≤ 3 · 2−2n.

Proof. We have

Ef
[
ngap(f)4

]
= Ef

[(
Ex∈{0,1}n(−1)f(x)

)4]
= Ef

[
Ew,x,y,z∈{0,1}n(−1)f(w)+f(x)+f(y)+f(z)

]
= Ew,x,y,z∈{0,1}nEf

[
(−1)f(w)+f(x)+f(y)+f(z)

]
.

Let f≤2 and f>2 be the parts of f of degree ≤ 2 and degree > 2, respectively. Then

Ef
[
(−1)f(w)+f(x)+f(y)+f(z)

]
= (−1)f>2(w)+f>2(x)+f>2(y)+f>2(z)Ef≤2

[
(−1)f≤2(w)+f≤2(x)+f≤2(y)+f≤2(z)

]
.

Expanding f≤2(x) =
∑
i,j βijxixj +

∑
k γkxk, the expectation in this expression can be written as

Eβ,γ
[
(−1)

∑
i,j βij(wiwj+xixj+yiyj+zizj)+

∑
k γk(wk+xk+yk+zk)

]
.

So

Ef
[
ngap(f)4

]
≤ 1

24n

∑
w,x,y,z∈{0,1}n

∣∣∣Eβ [(−1)
∑
i,j βij(wiwj+xixj+yiyj+zizj)

]
Eγ
[
(−1)

∑
k γk(wk+xk+yk+zk)

]∣∣∣
≤ 3 · 2−2n

by Lemma 11.

Next we consider the partition function (1) of the Ising model for random weights wij , vk ∈ {0, . . . , 15}, evaluated at
ω = eiπ/8. To make contact with the previous analysis, and with IQP circuits, we rewrite the expression (1) for Z(ω) as

Z(ω) =
∑

x∈{0,1}n
ω
∑
i<j wij(1−2xi)(1−2xj)+

∑n
k=1 vk(1−2xk)

= ω
∑
i<j wij+

∑n
k=1 vk

∑
x∈{0,1}n

ω4
∑
i<j wijxixj−2

∑n
k=1 v

′
kxk ,

where v′k = vk +
∑
j 6=k wjk. Observe that v′k is uniformly random mod 16. Up to an easily computed phase, we can write

Z(ω) =
∑

x∈{0,1}n
i
∑
i<j wijxixje−(πi/4)(

∑n
k=1 v

′
kxk).

Then it is clear that Z(ω)/2n = 〈0|⊗nC|0〉⊗n for an IQP circuit C consisting of gates from the set
{diag(1, 1, 1, i),diag(1, eiπ/4)}. Further, because of the uniformly random choice of w and v′, we can consider such a cir-
cuit as being formed by picking a random circuit using this gate set, then following it by a random choice of X gates. It follows
immediately from Lemma 11 that Ew,v′

[
|Z(ω)|4

]
≤ 3 · 22n.
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