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We apply classical algorithms for approximately solving constraint satisfaction problems to find bounds on
extremal eigenvalues of local Hamiltonians. We consider qubit Hamiltonians for which we have an upper bound
on the number of terms in which each qubit participates, and find asymptotically optimal bounds for the operator
norm and ground-state energy of such Hamiltonians under this constraint. In each case the bound is achieved
by a product state which can be found efficiently using a classical algorithm.

I. INTRODUCTION

We study the extremal eigenvalues of quantum Hamiltoni-
ans which can be written as sums of terms where each term
depends only on a few qubits, and each qubit is included in
only a few terms. With this mild form of locality imposed,
how far apart must the largest and smallest eigenvalues be? If
the Hamiltonian were non-interacting, the separation should
scale with the size of the system. For a more general Hamilto-
nian, the extremal eigenvectors may be highly entangled and
interacting terms may contribute opposite signs. Neverthe-
less, in this paper we show lower bounds on the norms of local
Hamiltonians under very general conditions. An additional ar-
gument shows specifically that the ground-state energy is low
(or if desired, that the top eigenvalue is high).

Theorem 1. Let H be a traceless k-local Hamiltonian on n
qubits such that k = O(1). Assume that H can be expressed
as a weighted sum of m distinct Pauli terms such that each
term is weight Θ(1), and each qubit participates in at most `
terms. Then ‖H‖ = Ω(m/

√
`) and λmin(H) ≤ −Ω(m/`).

In each case the bound is achieved by a product state which
can be found efficiently using a classical algorithm.

In the above theorem, ‖H‖ is the operator norm of H and
λmin(H) is the lowest eigenvalue (ground-state energy) of H .
(Of course a similar statement could also be made about λmax.
We focus on λmin because of its relevance to physical systems
and to constraint satisfaction problems.)

Both bounds in Theorem 1 are tight, even for classical
Hamiltonians, as demonstrated by the following examples.
The first is based on an example in [2]. Consider the 2-local
Hamiltonian on n qubits

H =
∑

(i,j)∈E

αij ZiZj ,

where E is the edges of an arbitrary r-regular undirected
graph on n vertices, and each weight αij ∈ {±1} is picked
uniformly at random. Then m = rn/2, ` = r. For each fixed
x ∈ {0, 1}n,

〈x|H|x〉 =
∑

(i,j)∈E

αij(−1)xi+xj
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is a sum of rn/2 uniformly distributed elements of {±1}. Via
a standard Chernoff bound argument,

Pr
H

[|〈x|H|x〉| ≥ t] ≤ 2e−
t2

rn .

Fixing t = Θ(n
√
r) and taking a union bound over all x ∈

{0, 1}n, ‖H‖ = O(n
√
r) = O(m/

√
`) with high probability.

Second, consider the 2-local Hamiltonian on n qubits

H =
∑
i<j

ZiZj .

Then H is a sum of m = Θ(n2) Pauli terms of weight 1,
where each qubit participates in ` = Θ(n) terms. We have

〈x|H|x〉 =
∑
i<j

(−1)xi+xj =
(n− 2|x|)2 − n

2
,

so λmin(H) ≥ −n/2 = −Θ(m/`).
Theorem 1 can be applied to qudit Hamiltonians with local

dimension d > 2 by embedding each subsystem in dlog2 de
qubits at the expense of increasing the locality from k to
kdlog2 de. The restriction to terms of weight Θ(1) is not es-
sential and is only included to simplify the bounds.

Both results that make up Theorem 1 are based on the
use of a correspondence between local quantum Hamiltoni-
ans and low-degree polynomials, which allows us to apply
classical approximation algorithms for constraint satisfaction
problems. This correspondence uses a qubit 2-design [4, 10]
to convert arbitrary qubit Hamiltonians to polynomials on the
boolean cube.

The operator norm bound in Theorem 1 (stated more pre-
cisely as Lemma 3 below) is based on recent work of Barak et
al. [2] which gives an efficient randomised algorithm for satis-
fying a relatively large fraction of a set of linear equations over
F2. The bound on λmin (stated more precisely as Lemma 5 be-
low) is based on analysing a natural greedy algorithm which
is similar to a classical algorithm of Håstad [11]. Our results
can be seen as generalising these two classical algorithms to
the quantum regime.

Other related work. Bansal, Bravyi and Terhal [1] have
previously shown that, for 2-local qubit Hamiltonians H
on a planar graph with Pauli interactions of weight Θ(1),
λmin(H) ≤ −Ω(m). Similarly to our result, their proof
uses a mapping between quantum and classical Hamiltoni-
ans and proves the existence of a product state achieving a
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−Ω(m) bound. However, the two results are not comparable;
ours holds for non-planar graphs and k-local Hamiltonians for
k > 2, while theirs encompasses planar graphs with vertices
of arbitrarily high degree. The quantum-classical mapping
used is also different.

This work was motivated by [2] (whose main result is pre-
sented in Section III). Ref. [2] in turn was inspired by [6, 7],
which gives a quantum algorithm for finding low-energy
states of classical Hamiltonians. The relative performance of
these different algorithms (ours/[2] vs. [6, 7]) is in general un-
known, and it is also open to determine the extent to which [6]
can be generalised to finding low-energy states of local Hamil-
tonians.

One other related work is [3], which showed that when
k = 2 and the degree of the interaction graph is large, then
product states can provide a good approximation for any state,
with respect to the metric given by averaging the trace dis-
tance over the pairs of systems acted on by the Hamiltonian.
In particular this means they can approximate the minimum
and maximum eigenvalues. Both our result and [3] yield sim-
ilar error bounds (ours are somewhat tighter), but in this sense
apply to incomparable settings: [3] show that product states
nearly match the energy of some other state (e.g. the true
ground state) with possibly unknown energy while our paper
puts explicit bounds on the maximum and/or minimum en-
ergy.

Why product states? Ground states of local Hamiltoni-
ans may be highly entangled and there are conjectures that
Hamiltonians may exist where all low-energy states are highly
entangled [8]. But our bounds on ‖H‖ and λmin(H) are
achieved only with product states. One reason for this in the
case of ‖H‖ is that we are using random states, and product
states have much larger fluctuations than generic entangled
states. Indeed the variance of 〈ψ|H|ψ〉 for a random unit vec-
tor |ψ〉 is O(m/2n). It is an interesting open question to find
a distribution over entangled states that improves the constant
factors in Theorem 1 that we achieve with product states.

A. Preliminaries

We will need some basic facts from classical Fourier anal-
ysis of boolean functions [9]. Any function f : {±1}n → R
can be written as

f(x) =
∑
S⊆[n]

f̂(S)xS ,

where xS :=
∏
i∈S xi and [n] := {1, . . . , n}. This is known

as the Fourier expansion of f . Parseval’s equality implies that

Var(f) := Ex[f(x)2]− Ex[f(x)]2 =
∑
S 6=∅

f̂(S)2, (1)

where the expectation is taken over the uniform distribution
on {±1}n. In addition, f̂(∅) = Ex[f(x)]. The influence of
the j’th coordinate on f is defined as

Infj(f) =
∑
S3j

f̂(S)2.

II. THE QUANTUM-CLASSICAL CORRESPONDENCE

Let H be a k-local Hamiltonian which has Pauli expansion

H =
∑

s∈{I,X,Y,Z}n
αs s1 ⊗ s2 ⊗ · · · ⊗ sn

for some weights αs, and write ‖Ĥ‖p := (
∑
s |αs|p)1/p for

p ≥ 1. In order to apply classical bounds to extremal eigen-
values of H , we observe that the action of a k-local Hamil-
tonian on product states corresponds to a low-degree polyno-
mial. Define the following set of states [10, 13]:

|ψ++〉 =
1√
6

(

√
3 +
√

3|0〉+ eiπ/4
√

3−
√

3|1〉),

|ψ−+〉 = Z|ψ++〉, |ψ+−〉 = X|ψ++〉, |ψ−−〉 = Y |ψ++〉.

These four states form a qubit 2-design; equivalently, a sym-
metric informationally-complete quantum measurement (SIC-
POVM) on one qubit [10]. This measurement was studied in
detail in [13]. Geometrically, the states describe a tetrahedron
within the Bloch sphere [4].

Then define the functions fs : {±1}2 → R, for s ∈
{I,X, Y, Z}, by

fs(x) = 〈ψx|s|ψx〉.

These functions are pleasingly simple: one can verify that

fI(x) = 1, fX(x) =
x1√

3
, fY (x) =

x1x2√
3
, fZ(x) =

x2√
3
.

(2)
Split each x ∈ {±1}2n into n consecutive blocks of length
2, written as x = x(1)x(2) . . . x(n), and define the function
fH : {±1}2n → R by

fH(x) = 〈ψx(1) | . . . 〈ψx(n) |H|ψx(1)〉 . . . |ψx(n)〉
=

∑
s∈{I,X,Y,Z}n

αsfs1(x(1))fs2(x(2)) . . . fsn(x(n)).

As each x ∈ {±1}2n corresponds to a state |ψx(1)〉 . . . |ψx(n)〉,
we have λmax(H) ≥ maxx∈{±1}2n fH(x) and λmin(H) ≤
minx∈{±1}2n fH(x). We will now proceed to show bounds
on maxx∈{±1}2n fH(x) and minx∈{±1}2n fH(x) by viewing
fH(x) as a polynomial.

AsH is k-local, and each function fs (s 6= I) is a monomial
of degree at most 2, fH is a polynomial of degree at most 2k.
Because the Fourier expansion of each function fs contains
only one term, each term in H corresponds to exactly one
term in the Fourier expansion of fH . Indeed

f̂H(s) = αs3
−|s|/2, (3)

where s ∈ {I,X, Y, Z}n and |s| = |{i : si 6= I}|. This
corresponds to identifying {I,X, Y, Z}n with subsets of [2n]
in the natural way. Thus by eqns. (1), (2) and (3) we have

Var(fH) =
∑

s∈{I,X,Y,Z}n
α2
s 3−|s| (4)

Infj(fH) =
∑
s,sj 6=I

α2
s 3−|s|.
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III. OPERATOR NORM BOUNDS

We will use the following result of Barak et al. [2], which
is a constructive version of a probabilistic bound previously
shown by Dinur et al. [5]:

Theorem 2 (Barak et al. [2]). There is a universal constant
C and a randomised algorithm such that the following holds.
Let f : {±1}n → R be a polynomial with degree at most
k such that Var(f) = 1. Let t ≥ 1 and suppose that
Infi(f) ≤ C−kt−2 for all i ∈ [n]. Then with high proba-
bility the algorithm outputs x ∈ {±1}n such that |f(x)| ≥ t.
The algorithm runs in time poly(m,n, exp(k)), where m is
the number of nonzero monomials in f .

Note that very recent independent work of Håstad [12] de-
scribes an alternative, randomised algorithm achieving a sim-
ilar bound.

Given the quantum-classical correspondence discussed in
the previous section, we can now apply Theorem 2 to fH to
prove the following result, which is one half of Theorem 1.

Lemma 3. There is a universal constantD and a randomised
classical algorithm such that the following holds. Let H be
a traceless k-local Hamiltonian given as a weighted sum of
m Pauli terms such that, for all j, Infj(fH) ≤ Imax. Then
with high probability the algorithm outputs a product state
|ψ〉 such that |〈ψ|H|ψ〉| ≥ D−k‖Ĥ‖22/

√
Imax. The running

time of the algorithm is poly(m,n, exp(k)).

Proof. First observe that if we simply pick x ∈ {±1}2n
uniformly at random and consider the corresponding product
state |ψx〉,

Ex[〈ψx|H|ψx〉2] = Var(fH) ≥ ‖Ĥ‖
2
2

3k

by (4). In addition (see e.g. [9, Theorem 9.24]), as fH is a
degree-2k polynomial,

Pr
x

[|fH(x)| ≥
√

Var(fH)] ≥ exp(−O(k)).

Therefore, simply picking exp(O(k)) random product states
of the form |ψx〉 achieves |〈ψx|H|ψx〉| ≥ ‖Ĥ‖2/3k/2 with
high probability. Let E be a universal constant to be cho-
sen later. If Imax ≥ E−k‖Ĥ‖22, then |〈ψx|H|ψx〉| ≥
(
√

3E)−k‖Ĥ‖22/
√
Imax as desired, taking D =

√
3E. So

assume henceforth that Imax ≤ E−k‖Ĥ‖22. Let f ′H =

fH/
√

Var(fH) so Var(f ′H) = 1. Then

Infj(f
′
H) =

Infj(fH)

Var(fH)
≤ 3k

Imax

‖Ĥ‖22
.

Set

t =
C−k/2√

maxi Infi(f ′H)
≥ E−k/2 ‖Ĥ‖2√

Imax

≥ 1,

where C is the constant in Theorem 2 and we choose E large
enough for the first inequality to hold. Then the algorithm

of Theorem 2 outputs x ∈ {±1}2n such that |f ′H(x)| ≥
E−k/2‖Ĥ‖2/

√
Imax. Renormalising again by multiplying

by
√

Var(fH) ≥ 3−k/2‖Ĥ‖2, |〈ψx|H|ψx〉| = |fH(x)| ≥
(
√

3E)−k‖Ĥ‖22/
√
Imax, which completes the proof.

The first part of Theorem 1 is now immediate from Lemma
3. LetH be a k-local Hamiltonian with k = O(1) such thatH
is a sum of m distinct Pauli terms, each of weight Θ(1), with
each qubit participating in ` terms. Then ‖Ĥ‖22 = Θ(m),
Infj(fH) = O(`).

IV. BOUNDS ON EXTREMAL EIGENVALUES

We now describe an algorithm for bounding extremal
eigenvalues which is weaker, but holds for both the largest
and smallest eigenvalues. Once again, the algorithm is based
on applying the quantum-classical correspondence in Section
II to a classical algorithm. We first describe the classical algo-
rithm, which is a simple greedy approach to find large values
taken by a low-degree polynomial on the boolean cube.

Let f : {±1}n → R satisfy W (f) :=
∑
S 6=∅ |f̂(S)| = W ,

and assume that, for all i ∈ [n],

|{T ⊆ [n] : f̂(T ) 6= 0 and i ∈ T}| ≤ `.

Consider the following algorithm, based on ideas of [11] but
somewhat simpler:

1. Find S such that |f̂(S)| is maximal.

2. Substitute values for xi, i ∈ S, such that f̂(∅) increases
by at least |f̂(S)|.

3. Repeat until f is constant; call this constant fend.

It is not obvious that step (2) can be achieved, because there
might exist T ( S such that f̂(T ) 6= 0. Define a function
fS by fS(x) =

∑
T⊆S f̂(T )xT . For each T ( S such

that T 6= ∅ and each a ∈ {±1}, Ex,xS=a[xT ] = 0. So
Ex,xS=sgn(f̂(S))[fS(x)] = f̂(∅)+ |f̂(S)|, and there must exist

some y achieving fS(y) ≥ f̂(∅) + |f̂(S)|. Searching over at
most 2k different values x is sufficient to find y.

Lemma 4. When the above algorithm terminates, fend ≥
f̂(∅) +W/(2k`).

Proof. Let fj be the new function produced at the j’th stage of
the algorithm, with f0 = f . Let Mj be the value of |f̂j−1(S)|
corresponding to the set S chosen at stage j. Then f̂j(∅) =

f̂j−1(∅) + Mj and W (fj) ≥ W (fj−1) − 2k`Mj . The latter
inequality is shown as follows. For each i ∈ S, there are
at most ` subsets T such that f̂j−1(T ) 6= 0 and i ∈ T . So
there are at most k` subsets T such that T ∩ S 6= ∅. For
each such T , the substitution of values xi, i ∈ S, implies that
f̂j(T ) is set to 0, and for some other subset UT , f̂j(UT ) =

f̂j−1(UT )±f̂j−1(T ). These are the only coefficients modified
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by the substitution process. ThusW (fj) can only decrease by
at most 2|f̂j−1(T )| ≤ 2Mj for each T such that S ∩ T 6= ∅.
So Mj ≥ (W (fj−1)−W (fj))/(2k`) for j ≥ 1 and hence

fend = f̂(∅) +
∑
j

Mj

≥ f̂(∅) +
1

2k`

∑
j

W (fj−1)−W (fj)

= f̂(∅) +
W

2k`

as claimed.

The following lemma is now essentially immediate.

Lemma 5. There is a universal constant E and a determin-
istic classical algorithm such that the following holds. Let H
be a traceless k-local Hamiltonian which can be written as a
weighted sum of m distinct Pauli terms such that each qubit
participates in at most ` terms. Then the algorithm outputs
a product state |ψ〉 such that 〈ψ|H|ψ〉 ≥ E−k‖Ĥ‖1/`. The
algorithm runs in time poly(m,n, exp(k)).

Proof. Apply the algorithm of Lemma 4 to the degree-2k
polynomial fH : {±1}2n → R defined as in Section II. We

have W (fH) ≥ 3−k/2‖Ĥ‖1, f̂H(∅) = 0. Hence the algo-
rithm finds |ψ〉 such that 〈ψ|H|ψ〉 ≥ 3−k/2‖Ĥ‖1/(4k`) ≥
E−k‖Ĥ‖1/` for a large enough universal constant E.

Applying the same procedure to −H is of course sufficient
to also find |ψ〉 such that 〈ψ|H|ψ〉 ≤ −E−k‖Ĥ‖1/`. Observ-
ing that ‖Ĥ‖1 = Θ(m) for a Hamiltonian H which is a sum
of m distinct Pauli terms of weight Θ(1) completes the proof
of the second part of Theorem 1.
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[12] J. Håstad. Improved bounds for bounded occurrence con-

straint satisfaction, 2015. http://www.csc.kth.se/

˜johanh/bounded2.pdf.
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